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Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer’s disease 
neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, 
the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropatho-
logic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal stud-
ies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese–American men), United 
Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average 
age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts 
in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% 
were cognitively normal, 14.9% had MCI, and 42.4% had dementia—broadly consistent with epidemiologic data in this 
age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this 
subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with “frequent” neuritic amyloid plaques, 
54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data 
on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive 
impairment). In the subset of individuals with Thal Aβ phase = 0 (lacking detectable Aβ plaques), the brains with LATE-NC 
had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data 
relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological 
diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neu-
rocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC 
severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was 
seen in almost 40% of participants and often, but not always, coexisted with Alzheimer’s disease neuropathology.
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Introduction

Brain autopsies of persons with documented amnestic 
dementia often reveal evidence of Alzheimer’s disease 
neuropathologic change (ADNC) [69], limbic predomi-
nant age-related TDP-43 encephalopathy neuropathologic 
change (LATE-NC) [81], or both. However, the independ-
ent and joint prevalence of each of these disorders are 
unclear. There remain uncertainties about optimal classi-
fication of LATE-NC and some individual brains are chal-
lenging to categorize, as is the case for other subtypes of 
neurodegenerative disease [8, 29, 43, 54, 65, 82, 97]. Thus, 
high-quality data, derived from different geographic loca-
tions and including autopsy results, are required to shed 
light on the prevalence and co-existence of these high-
morbidity brain pathologies.

The cardinal diagnostic feature of LATE-NC is TDP-
43 pathology–aberrant TDP-43 protein deposits visualized 
with immunohistochemistry [81]. TDP-43 pathology was 
discovered in 2006 as the primary pathological hallmark 
of frontotemporal lobar degeneration with TDP-43 inclu-
sions (FTLD-TDP) and amyotrophic lateral sclerosis [84]. 
However, TDP-43 pathology is now appreciated to occur 
in many other conditions [19]. Although diagnostic ambi-
guities still exist in TDP-43 neuropathologic assessments, 
LATE-NC has distinguishing characteristics including the 
neuroanatomical distribution of TDP-43 pathology, clini-
cal features, genetic risk factors, and epidemiology [21, 
39, 53, 81, 94]. For example, the demographic group most 
likely to show LATE-NC is persons beyond 85 years of age 
[81], and, LATE-NC is strongly associated with amnestic 
dementia, independent of other known brain pathologies 
[12, 32, 36, 39, 40, 44, 47, 51, 59, 70, 72, 79, 92].

Like LATE-NC, ADNC is prevalent and is associated 
with amnestic dementia. ADNC and LATE-NC are geneti-
cally pleiotropic: the APOE ε4 ADNC risk allele is also 
associated with increased risk for LATE-NC [3, 28, 44, 
118]. LATE-NC and ADNC are often present in the same 
brains [45, 46, 61, 63], and TDP-43 pathology may co-
localize with tau-immunoreactive neurofibrillary tangles 
(NFTs), a hallmark ADNC lesion [44, 103, 111]. The 
presence of “mixed” pathologies is important because the 
clinical manifestations vary with different combinations 
of pathologies [62]. For example, “pure LATE-NC” is, on 
average, associated with a less severe clinical phenotype 
than “pure ADNC”, whereas the common combination 
(ADNC + LATE-NC) is associated with a more aggressive 
clinical course than either alone [48, 49, 74, 110, 119].

Despite recent progress, questions persist. Investigators 
have considered whether TDP-43 pathology in aging is 
best defined as a subtype of ADNC [43, 117]. While there 
is heterogeneity in the genetic, pathologic, and clinical 

features of AD-type dementia [9, 41, 62, 71], there cur-
rently are no consensus-based criteria for delineating sub-
types of ADNC. Basic related questions include: What is 
the overall end-of-life frequency of LATE-NC in the brains 
of older persons? How does the prevalence of LATE-NC 
vary in different research cohorts? How frequently is 
LATE-NC seen in brains with no-, low-, intermediate-, or 
high-severity ADNC, and in those with varying severities 
of primary age-related tauopathy (PART) [22]?

Addressing questions about the prevalence of different 
pathologies requires relatively population-representative 
autopsy cohorts. Dementia clinic- and hospital-based 
cohorts are invaluable resources for research, but they tend 
to be substantially enriched for unusual subtypes of demen-
tia [99], early-onset diseases, and genetic risk factors, which 
limit the generalizability of the findings. While there have 
been prior reports about LATE-NC from individual research 
centers, and from various consortia [5, 57, 67], there has not 
been a prior study bringing together findings from a large 
number of community-based autopsy cohorts.

In the current study, summary data were gathered related 
to LATE-NC and ADNC from 13 separate well-established 
study cohorts with available autopsy information. These 
cohorts included participants who were mostly recruited 
without dementia and followed longitudinally to autopsy at 
research centers in United States (8 cohorts), United King-
dom (2 cohorts), Brazil, Austria, and Finland. Several of the 
included cohorts can be described as “population-based”, 
in that the individual donors were recruited from a general 
population within a geographical boundary in a study design 
that aimed to recruit from all subgroups within the popula-
tion (See Supplemental Table 1, online resource). While the 
cohorts that are not population-based did not use probabil-
ity-sampling and are not completely generalizable to their 
target populations, they are likely to be far more representa-
tive of the populations from which they were derived than 
clinic- or hospital-based cohorts. The combined data from 
multiple research cohorts provided the bases for gaining 
insights into how commonly LATE-NC is seen at autopsy, 
with or without comorbid ADNC.

Methods

The main goals of this study were to examine the frequency 
of LATE-NC at the end of life in community-based research 
participants and to stratify results by the level of reported 
ADNC severity. Based on those goals, summary data were 
requested related to ADNC and LATE-NC from 13 high-
quality community-based and population-based cohorts of 
brain aging and dementia. (The term “community-based” is 
mostly used from here forward to refer to the present col-
lection of cohorts.) Data were collected from each of the 
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following autopsy cohorts (in alphabetical order): Adult 
Changes in Thought (ACT) [58]; Brazilian Biobank for 
Aging Studies (BAS) of the University of Sao Paulo [106]; 
Cambridge City over-75 s Cohort (CC75C) [16]; Medical 
Research Council Cognitive Function and Ageing Study 
(CFAS) [115]; Duke University/University of North Caro-
lina AD Research Center (Duke/UNC-ADRC) [36]; Hono-
lulu Asia-Aging Study (HAAS) [116]; Mayo Clinic Study 
of Aging (MCSA) [91]; Nun Study[112]; Rush University 
Religious Orders Study/Memory and Aging Project (ROS-
MAP) [10]; University of California Irvine The 90 + Study 
(The 90 + Study) [50]; University of Kentucky AD Research 
Center (UKy-ADRC) [98]; Vantaa 85 + Study [52]; and, 
Vienna Trans-Danube Aging (VITA) study [55]. See Sup-
plemental Table 1, online resource, for more information 
on each cohort. All study procedures were approved by the 
respective Institutional Review Boards or Research Ethics 
Boards. Each participant (or their next of kin if they lacked 
capacity) provided informed consent for cohort participa-
tion. No additional approvals were needed for analysis of 
the de-identified summary data from each cohort. Many of 
the research participants were recruited from the community 
using methods such as local media advertising, health fairs, 
and presentations to community groups.

The structured data requests sent to a representative of 
each cohort are shown in Supplemental Table 2, online 
resource. For the collection of data on ADNC, different 
pathology-based measures were requested: Braak NFT dis-
tribution staging (0–VI scale) [14] performed using anti-
phospho-Tau antibodies; CERAD neuritic amyloid plaque 
density scores (graded as “None”, “Sparse plaques”, “Mod-
erate plaques”, or “Frequent plaques”), which indicate the 
detected density of neuritic plaques in cerebral cortex [66]; 
and, Thal Aβ phases (a 0–5 scale based on anatomic dis-
tribution of Aβ plaques detected with Aβ immunostaining) 
[6, 108]. The rationale for incorporating these parameters 
was that they are all used for determining the presence and 
severity of ADNC according to current consensus-based 
criteria [69].

There were differences among the cohorts in the methods 
of tissue-processing at autopsy, neuropathologic evaluations, 
and data missingness. See Supplemental Table 3, online 
resource, for more information about how many participants 
were included from each cohort. Cohort-specific data format 
variations were conspicuous in the area of cognitive assess-
ment instruments that were administered to participants. 
To operationalize global cognitive status, the cohorts used 
Mini-Mental State Examination (MMSE) [33] scores, except 
HAAS used the Cognitive Abilities Screening Instrument 
(CASI) [107], and both the Brazil BAS cohort and MCSA 
used the Clinical Dementia Rating sum of boxes scores [27]. 
For the UKy-ADRC, only participants who were recruited 
while cognitively normal were included and 11 subjects 

were excluded from the cognitive assessments due to no 
MMSE scores. For the BAS, participants 50 years or older 
at death were included and participants were excluded from 
this cohort with inconsistent clinical information, a post-
mortem interval greater than 24 h, or if the brain tissue was 
incompatible for neuropathological analyses (e.g., cerebro-
spinal fluid pH < 6.5 or major acute brain lesions including 
hemorrhages). The Nun Study used MMSE cut points as 
follows: scores of < 17: dementia; 17–21: mild cognitive 
impairment (MCI); and, > 21 nondemented. For HAAS, the 
CASI scores were used at cutoffs >  = 74 (normal), 60–73.9 
(MCI), or < 60 (dementia). ROS/MAP data on clinical status 
were missing for 1 subject (0.05%). For The 90 + Study, 14 
participants were excluded from the MMSE analyses due to 
missing scores. For the Duke/UNC-ADRC cohort, partici-
pants 90 years or over at death were included in the study. 
Approximately 70% from this cohort were cognitively nor-
mal at recruitment, and 29 participants were excluded from 
the cognitive assessment due to no MMSE score. For the 
Vantaa 85 + Study, DSM-IIIR criteria were used to diagnose 
dementia and MMSE scores were assessed for most partici-
pants in the baseline study and follow-ups. For the MCSA, 
37 participants did not have the Clinical Dementia Rating 
sum of boxes scores within 3 years of death.

Cohorts were also queried as to whether they had clini-
cal evaluations during life and corroborating neuropatho-
logic studies that likely would have captured cases of FTD/
FTLD-TDP if they were in the cohort. The specific question 
posed to each autopsy cohort was: how many clear-cut FTD/
FTLD-TDP cases were in the cohort? The symptoms of FTD 
include behavioral disturbances and language problems [53, 
89, 104], but variants of these cognitive signs and symptoms 
(e.g., disinhibition and aphasia) may also occur in Alzhei-
mer’s disease and other dementia disorders, so there was 
some subjectivity in the clinical diagnosis.

To address whether multiple blinded neuropathologic 
raters from different institutions would agree with the results 
of Braak NFT staging, particularly in the context of cases 
with LATE-NC but lacking substantial ADNC, a multi-
center digital pathology study was performed. Brain sections 
from 10 cognitively impaired individuals were included in 
this focused study, of which 8 had LATE-NC, 1 had FTLD-
TDP, and 1 had severe ADNC. The following slides had 
been stained for phospho-Tau IHC (PHF-1 antibody [34]): 
hippocampus at the level of the lateral geniculate nucleus; 
anterior hippocampus and entorhinal cortex; occipital neo-
cortex (Brodmann Area [BA] 17/18/19); superior and mid-
temporal neocortex (BA 21/22); and, middle frontal gyrus 
(BA 9). Slides were anonymized and then converted to 
digital format using a Leica/Aperio ScanScope AT2 slide 
scanner at 40 × resolution. Four separate raters with expe-
rience in digital neuropathologic evaluation (coauthors 
M.D.C., J.D., B.N.D., and J.H.N.) scored the pathologies via 
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internet connection, using either the Aperio ImageScope™ 
or QuPath open-source software, to derive Braak NFT stages 
for each case while blinded to other information.

For data analyses, the joint distribution of neuropatho-
logic rating parameters were obtained from each cohort 
via templated spreadsheets (Supplemental Table 2, online 
resource). The overall joint distributions were simply sum-
mations of each cell in the joint distribution from each 
cohort. For demographic characteristics (average age at 
death and sex), a single summary measure was provided 
by each cohort. To compute the overall summary of age at 
death and sex distribution, as well as APOE ε4 positivity, 
cohort-specific results were combined by weighting each 
cohort by its sample size. The association between APOE 
ε4 positivity and LATE-NC rate was evaluated using simple 
meta-regression that ignored sample weights, did not include 
the VITA cohort (where APOE genotype data were unavaila-
ble), and did not factor in APOE genotype data missingness. 
For the comparisons of Braak NFT stages (PART severity 
[22]) in Thal Aβ phase = 0 cases (comparing the results with 
versus without LATE-NC), a Fisher’s exact test was applied 
to determine statistical significance.

Results

Selected demographic, clinical, genetic, and summary neu-
ropathologic data on included participants from each of the 
13 community-based cohorts are shown in Table 1. The total 
number of included participants was 6196. Subset analyses 
were performed and the included numbers of subjects from 
each center for each analysis are provided in Supplemental 
Table 3, online resource. The median number of research 
participants included per cohort was 321, with a range of 
109–1620 participants per cohort. Mean weighted age of 
death for all included cohorts was 88.1 years; age ranges for 
the cohorts was 72.2–97.2 years. Overall, 62.3% of partici-
pants were women.

A chart depicting the clinical features of participants at 
their last clinical evaluation is shown in Fig. 1 (n = 5665 
participants had those data available). Slightly over 40% 
were judged to be cognitively normal at their last clini-
cal examination, and approximately the same proportion 
had documented dementia. In the 12 cohorts reporting the 
parameter, ~ 15% had MCI (See Supplemental Table  3, 
online resource).

In terms of FTD/FTLD cases, data were only considered 
from a cohort if FTD cases (clinically) and/or FTLD-TDP 
cases (pathologically) would likely have been documented 
in that cohort. Having applied those criteria, data were pro-
vided from 9 different cohorts, comprising n = 3267 par-
ticipants. In this combined subsample, no clinical FTD/
FTLD-TDP case was identified (Table 2). Although these 

participants were evaluated by clinicians, it is conceivable 
that early FTLD-TDP cases were present but not detected.

APOE ε4 allele genotype data were available from a total 
of n = 5157 included participants (83.2% of the combined 
cohort). APOE allele data missingness by cohort is indi-
cated in Table 1. Of the participants with known APOE 
genotype, 25.5% carried at least one copy of the APOE ε4 
allele (range: 13.0–33.6%). In the 12 cohorts with available 
APOE genotyping, there was a marginal positive associa-
tion between APOE ε4 allele carrier prevalence and LATE-
NC frequency (r2 = 0.36; p = 0.039), indicating that cohorts 
with higher APOE ε4 prevalence also had higher LATE-NC 
frequency (Fig. 2a). By contrast, there was no such statisti-
cally significant association between LATE-NC frequency 
with cohorts’ average age, sex (percent female), or percent 
of included subjects with neocortical Lewy body pathology 
(Fig. 2b–d).

LATE-NC is classified according to a 0–3 stage system, 
related to the anatomic distribution of TDP-43 pathology 
[81] and derived from studies that evaluated brains across a 
broad spectrum of pathologic severity [45, 73]. Cohort neu-
ropathologists applied different antibodies to detect TDP-43 
pathology; most cohorts used antibodies against phosphoryl-
ated TDP-43 protein (data not shown). Findings in the vari-
ous subset analyses, stratified by the subsamples evaluated 
and the LATE-NC results, are depicted in Table 3.

The full spectrum of ADNC severity was represented 
in the sample. Among those with known CERAD neu-
ritic plaque scores (n = 6125), 31.6% were classified as 
CERAD “None”, 17.6% “Sparse plaques”, 28.3% “Moderate 
plaques”, and 22.5% “Frequent plaques” (Table 4, Fig. 3). In 
participants with known Braak NFT stage (n = 5985), 31.5% 
were Braak NFT stages 0-II, 42.0% III/IV, and 26.5% V-VI 
(Table 4, Fig. 4). As such, approximately 1/4 of participants 
had severe ADNC.  

In a subset of cases comprising n = 3803 participants, data 
were available including LATE-NC stages (0–3), Braak NFT 
stages (0-VI), and Thal Aβ phases (0–5) on each individ-
ual subject. The distribution of results stratifying by these 
parameters is shown in Table 5. Selected findings from those 
data are presented in chart format in Fig. 5. 

Collectively, these data indicated that brains with more 
severe ADNC were relatively likely to have comorbid 
LATE-NC. For example, participants with Braak NFT 
stage 0-II had a 22.4% probability of LATE-NC being 
diagnosed, whereas those with Braak NFT stage VI had a 
54.7% probability of a LATE-NC diagnosis (Table 4, Fig. 4). 
However, most participants with LATE-NC (61.2%) coin-
cided with Braak NFT stages between 0 and IV (because 
only ~ 1/4 of participants had severe ADNC). Similar 
trends were observed for CERAD neuritic amyloid plaque 
densities (Table 4, Fig. 3), and Thal Aβ phases (Table 5). 
Although cohort-to-cohort variation was seen, there was 
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broad agreement in findings, as can be appreciated by the 
25th–75th percentile error bars in Figs. 3, 4.

Trends could be identified along the full ranges of ADNC 
and LATE-NC severities. Note that in the Table 5 data, 

LATE-NC stage 3 brains comprised only 11% of LATE-
NC + cases (168 out of 1469), and LATE-NC stage 3 was 
associated with a high rate of severe ADNC–approximately 
the same frequency of severe ADNC as seen in LATE-NC 
stage 2. Furthermore, in brains lacking Aβ amyloid deposi-
tion (Thal Aβ phase = 0; n = 787), PART pathology was rela-
tively more severe, i.e. higher Braak NFT stages, in persons 
with comorbid LATE-NC (Fig. 5).

While LATE-NC tended to be more frequent in more 
severe ADNC cases, LATE-NC was nonetheless present 
across all ADNC levels and even in those without ADNC. 
As shown in Table 3, 1935 participants had “None” neuritic 
amyloid plaques, and of these, 522 (27.0%) had LATE-NC. 
In the subset of individuals with known Thal Aβ phase = 0 
(i.e. lacking Aβ plaques), 19.4% had LATE-NC, and 11.6% 
had LATE-NC Stages > 1, a severity of LATE-NC which has 
been consistently associated with cognitive impairment [18, 
70, 73, 74, 78] (Table 5).

To assess how different neuropathologic raters would 
diagnose Braak NFT staging of LATE-NC cases that lacked 
severe ADNC, a convenience sample of phospho-Tau immu-
nostained slides was evaluated by four separate blinded neu-
ropathology diagnosticians, using digital pathology over the 
internet. As expected [4], there was some variance in Braak 
NFT staging by the raters, but the median rendered Braak 
NFT stages were within 1 Braak stage of the initial diagnosis 
in 8/10 cases and within 1.5 Braak stages in all 10 cases (see 
Supplemental Table 4, online resource).

Summary information on final cognitive status of 
included participants was requested from each cohort, with 
the data stratified by Braak NFT stages (bottom of Supple-
mental Table 2, online resource). These data were a focal-
point because Braak NFT staging is the widely gathered 

Fig. 1  Frequencies of clinical/cognitive features among the included 
participants. All cohorts had data about whether participants had nor-
mal cognition or dementia prior to death, and most (12 cohorts) had 
some measure for an intermediate clinical status, usually mild cog-
nitive impairment (MCI). The finding of slightly over 40% cognitive 
normal prior to death is consistent with epidemiologic data of human 
populations in this age range [21, 60, 86, 90]. The result of each 
cohort was weighted equally in order to convey the cohort-to-cohort 
variance. For numbers of participants included from each cohort, 
see Table 1. Error bars denote 25th and 75th percentiles. *-MCI data 
were present for all cohorts except Vantaa 85 + 

Table 2  Number of cases with definite frontotemporal dementia (FTD) in the nine cohorts where this diagnosis was evaluated (among n = 3267 
participants)

Cohort Sample size Number of definite clinical 
FTD cases identified

Notes

ACT 863 0
CC75C 228 0 Ascertained by post-mortem clinical consensus
CFAS 510 0 Ascertained by post-mortem clinical consen-

sus; 2 with “lobar atrophy”
Duke ADRC 109 0
HAAS 321 0
Mayo/MCSA 209 0
The 90 + Study (UC Irvine) 402 0 2 “possible” bvFTD, 1 turned out to have AD, 

the other vascular pathology
Uky ADRC 318 0
VITA 307 0
Total number with clinical workup 3267
Total number of definite clinical FTD 

cases identified
0
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ADNC parameter that correlates most robustly with cog-
nitive impairment [80]. Detailed stratified cognitive test-
ing results were not available from VITA, CC75C, and 
CFAS cohorts and thus were not included in the clinical-
pathological analyses. Among the cohorts with accessible 

information, the cognitive status data were variable from 
cohort to cohort. There were different cognitive assess-
ment instruments, different intervals of testing, and differ-
ent workflows used in administering the tests. The nature of 
these combined summary data precluded statistical testing. 

Fig. 2  The association between 
the percentage of included 
LATE-NC + participants in each 
cohort (x-axis) with percentages 
carrying the APOE ε4 allele (a), 
average age at death (b), sex 
(percent female (c), and, pro-
portion with neocortical Lewy 
bodies (LBs), (d) on the y-axes. 
Each of the autopsy cohorts is 
indicated by a separate circular 
marker. The only association 
that was statistically significant 
in a simple regression analysis 
was APOE ε4 carrier frequency 
rate (a). APOE data were 
missing from a single cohort; 
see Table 1 for the numbers of 
research participants from each 
contributory cohort

Table 3  Overall percentage of participants with LATE-NC, stratified by the neuropathologic workups and in the subset of cases with low/no 
ADNC

*See Table 4; **See Table 5

Participants with 
Braak NFT staging*

Participants with CERAD neu-
ritic amyloid plaque scores*

Participants with Braak NFT stages, 
Thal Aβ phases, and all LATE-NC 
stages**

Number of cohorts providing relevant data 13 13 8
Total number of individual participants 5985 6125 3803
Overall LATE-NC% in this group 38.4% 39.4% 38.3%
Criteria for low/no ADNC Braak 

NFT stages = 0-II
CERAD score = “none” Thal Aβ phase = 0

Number of participants with low/no ADNC 1883 1935 787
LATE-NC% in low/no ADNC group 22.4% 27.0% 19.4%



34 Acta Neuropathologica (2022) 144:27–44

1 3

However, a recurrent pattern did emerge across the different 
study groups, despite the many sources of variance and the 
smaller sample sizes when using data from single cohorts: 
there was a tendency for cognitive scores to be lower in indi-
viduals with LATE-NC, across the full spectrum of ADNC 
severity in terms of Braak NFT stages (Fig. 6). Some of the 
implications and context of the present study are presented 
in Fig. 7.

Discussion

Data related to LATE-NC and ADNC were gathered, com-
bined, and analyzed from 13 community-based and popula-
tion-based longitudinal cohort studies. Overall, almost 40% 
of autopsied participants had LATE-NC. LATE-NC was 
relatively common in brains with severe ADNC–approxi-
mately half of severe ADNC cases had comorbid LATE-NC. 
By contrast, approximately one in four brains with no or 
minimal evidence of ADNC had LATE-NC. PART pathol-
ogy was relatively more severe in persons with comorbid 
LATE-NC. There was a tendency for cognitive scores to 
be worse in persons with LATE-NC, across the full spec-
trum of ADNC severity. These findings address basic ques-
tions about LATE-NC in people with and without comorbid 
ADNC.

Both the quality and quantity of data were strengths of 
this study. The community- and population-based study 
designs of the contributory cohorts included many per-
sons recruited while cognitively normal and followed 
longitudinally to autopsy. At the last exam before death, 
clinical features of the combined cohort showed slightly 
over 40% cognitive normal, and no FTD/FTLD examples 
were documented. This may underestimate the extent 
of cognitive impairment experienced, although most of 
the decedents were assessed in the last year of life. We 
emphasize that this distribution of clinical findings is in 
accord with epidemiologic data from human populations 
of this age group [21, 60, 86, 90]. While no study with 

autopsies examines all potential subjects, and none is 
perfectly representative of the variability in human popu-
lations across demographic and ethnoracial boundaries, 
community- and population-based autopsy cohorts are 
the nearest approximation to a generalizable sample. Each 
cohort included here has provided the basis for published 
work related to LATE-NC [3, 32, 36–39, 51, 56, 77, 83, 
88, 105]. Aggregating these data into a combined cohort 
comprising > 6000 people provided new insight into the 
prevalence of LATE-NC in aging, while also highlighting 
between-cohort variability.

One way to evaluate recruitment bias in a dementia study 
is to compare the frequency of APOE ε4 allele among the 
reported participants with population-based figures. This 
is especially relevant because APOE ε4 is associated with 
increased risk for LATE-NC [28, 93, 114]. In most human 
populations, approximately 25% of individuals carry at least 
one copy of the APOE ε4 allele [20, 101] (the ε4 prevalence 
tends to be somewhat higher in Scandinavia [30, 101]). It 
is notable that 25.5% of the genotyped participants in the 
current study had at least one APOE ε4 allele. By contrast, 
in many dementia research cohorts the APOE ε4 prevalence 
is higher [31]. For example, a recent report on LATE-NC 
derived from multiple clinic-based cohorts included 495 
participants of which 47.4% were APOE ε4 + (and 11.7% 
had FTD clinical syndrome) [49]. Many dementia studies 
have even higher APOE ε4 positivity [23]. These studies 
may provide important insights (some impossible to achieve 
in community-based cohorts), but the distribution of patho-
logic findings in such clinic-based cohorts are unlikely to be 
representative of a broader population.

The current work has important limitations. Although 
the community-based cohorts encompassed thousands of 
research participants from five countries on three continents, 
human populations other than White Caucasians were under-
represented. Prior studies compared LATE-NC between eth-
noracially defined groups [72, 77], but more work is required 
in this area [31, 85].

Table 4  Joint distribution of 
LATE-NC positivity with 
CERAD neuritic amyloid 
plaque ratings [66] and Braak 
NFT stages [4, 13]

Total without 
LATE-NC

Total with 
LATE-NC

LATE-NC, %

CERAD neuritic amyloid plaque 
density scores (n = 6125)

None 1413 522 27.0
Sparse 702 376 34.9
Moderate 976 759 43.7
Frequent 621 756 54.9

Braak NFT stages (n = 5985) 0-II 1461 422 22.4
III 812 381 31.9
IV 717 604 45.7
V 492 643 56.7
VI 205 248 54.7
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There were additional challenges in reconciling the 
LATE-NC data between cohorts. Neuropathologists used 
study-specific protocols, including non-identical tissue sam-
pling and different antibodies. Some biologic variance is to 
be expected given the between-cohort differences in age, 
cognitive status, geography, and birth cohorts. These factors 
contribute to the wide variability of frequency of detected 
LATE-NC across the different included cohorts (range 

11–63%). However, this inclusive approach, encompassing 
a range of diagnostic methods rather than one specific pro-
scribed protocol, reflects the broad range of neuropathologic 
methods that are applied in everyday practice around the 
world, as well as true differences in frequency of neuro-
pathologic lesions.

Another consideration is that TDP-43 pathology 
restricted to the amygdala was included to operationalize 
the presence of LATE-NC. There were undoubtedly LATE-
NC false-negatives because the amygdala was not examined 
in some cases. LATE-NC stage 1 is hypothesized to be an 

Fig. 3  LATE-NC absence or presence, stratified by CERAD neu-
ritic amyloid plaques scores. All LATE-NC stages were combined 
and the results from each of the cohorts averaged. The frequency of 
LATE-NC increased with greater neuritic amyloid plaque densities. 
The distribution of CERAD plaques by frequencies is shown in (a). 
Note that subgroups with none or minimal ADNC were the most well 
represented in this combined meta-cohort (see Table 2). Correlation 
with LATE-NC status is shown in (b). Given the study design dif-
ferences between cohorts, the results were generally consistent. For 
these charts, the results of each cohort were weighted equally in order 
to convey the cohort-to-cohort variance. For exact numbers of par-
ticipants included from each cohort, see Supplemental Table 3, online 
resource. Error bars denote 25th and 75th percentiles

Fig. 4  LATE-NC absence or presence, stratified by Braak NFT 
stages. Here, all LATE-NC stages were combined and the results 
from each of the cohorts averaged. The distribution of Braak  NFT 
stage groups by frequencies is shown in (a). Correlation with LATE-
NC status is shown in (b). The frequency of LATE-NC increased 
with higher Braak NFT stages. Given the study design differences 
between cohorts, the results were generally consistent. For these 
charts the results of each cohort were weighted equally to convey the 
cohort-to-cohort variance. For exact numbers of participants included 
from each cohort, see Supplemental Table  3, online resource. Error 
bars denote 25th and 75th percentiles
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incipient disease stage, analogous to early pathologic stages 
of AD and Lewy body diseases [76, 80]. As specific exam-
ples, Braak NFT stages I-III, Thal Aβ phases 1–2, and Braak 
Parkinson’s disease stages 1–2 are all common in persons 
without documented neurological impairment [35, 42, 109]. 
Among the 3803 brains in the current study where all the 
LATE-NC stages were known, LATE-NC stage 1 comprised 
36% of the LATE-NC cases and may correlate with limited, 

if any, cognitive manifestations [24, 73–75, 81]. However, 
the counterpoint is that 25% of the entire cohort had LATE-
NC stage > 1, which is associated robustly with cognitive 
impairment [12, 32, 36, 39, 40, 44, 47, 51, 59, 70, 72, 79, 
92].

Beyond the evaluation of LATE-NC, there are other chal-
lenges in reconciling neuropathologic data from different 
cohorts. The various studies had gathered brain donations 

Table 5  Numbers of participants with complete data on LATE-NC stages, Braak NFT stages, and Thal Aβ phases, stratified according to all 
three pathologic readouts (n = 3803)*

*For the numbers of cases contributory from each cohort, see Supplemental Table 3, online resource

LATE-NC stage 0 Braak NFT stages Total

0 I II III IV V VI

Thal Aβ phases 0 110 136 176 128 80 4 0 634
1 18 76 119 130 101 7 1 452
2 16 23 72 54 37 5 2 209
3 7 34 62 130 119 55 8 415
4 2 10 15 58 106 115 17 323
5 0 4 10 23 58 138 68 301

2334

LATE-NC stage 1 Braak NFT stages Total

0 I II III IV V VI

Thal Aβ phases 0 4 9 15 22 10 2 0 62
1 1 8 23 34 31 2 0 99
2 1 2 8 10 7 0 1 29
3 2 7 8 28 40 28 3 116
4 0 1 0 9 48 32 7 97
5 0 0 1 6 19 69 21 116

519

LATE-NC stage 2 Braak NFT stages Total

0 I II III IV V VI

Thal Aβ phases 0 3 12 9 16 32 3 0 75
1 1 6 21 22 45 7 1 103
2 0 0 5 22 21 3 1 52
3 0 2 11 20 54 40 7 134
4 0 0 2 10 53 112 11 188
5 0 0 1 6 31 131 61 230

782

LATE-NC stage 3 Braak NFT stages Total

0 I II III IV V VI

Thal Aβ phases 0 2 2 3 4 5 0 0 16
1 2 7 5 5 2 0 0 21
2 0 1 1 2 1 0 0 5
3 0 2 1 6 15 14 1 39
4 0 2 1 2 11 14 3 33
5 0 0 2 2 6 32 12 54

168
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over decades, and tissue handling methods have changed 
over time. One may expect imperfect agreement regarding 
low-Braak NFT stages as uniform staging requires stand-
ard sectioning and staining, and neuroanatomical expertise. 
(LATE-NC has been associated with NFT anatomical distri-
bution that deviates from conventional Braak NFT staging 
[103].) Indeed, prior studies reported imperfect agreements 
in ADNC assessments among neuropathologists [4, 68]. 
This tendency was also evident in our digital pathological 
study with four separate raters evaluating the same cases 
using digital pathology over the internet.

An interpretation of the public health implications of 
this cross-sectional study should consider that the average 
age at death for included participants was 88.1 years. The 
frequency of autopsy-confirmed LATE-NC in this study 

(slightly under 40%), and other findings, does not represent 
projected population prevalence, but instead are a readout 
related to persons dying in that age range and agreeing 
to research brain donation. The study sample coincides 
with an age group at relatively high risk for LATE-NC 
[81]. (The role of age as a factor in the relative frequen-
cies of neurodegenerative disorders could not be exam-
ined thoroughly in the present study.) It may be argued 
that the included participants were unusually long-lived 
persons, considering normative data. For example, the 
average age of death in the United States during 2020 was 
80.5 years for women, and 75.1 for men [2]—slightly older 
in European cohorts. Yet these averaged longevity calcula-
tions included many individuals who died at considerably 
younger ages. US Social Security Administration actuarial 

Fig. 5  Findings in the 3803 
participants with available 
LATE-NC stage data (a), Thal 
Aβ phases (b), and Braak NFT 
staging, which indicate an asso-
ciation between LATE-NC and 
PART pathology. A pie chart 
(a) shows the relative frequen-
cies of the different LATE-NC 
stages. Note that ~ 25% of par-
ticipants have LATE-NC stage 2 
(21% of participants) or stage 3 
(4% of participants). A separate 
pie chart (b) depicts the relative 
frequencies of different Thal Aβ 
phases. The bar chart in panel 
(c) shows the number of cases 
with Thal Aβ phase = 0, strati-
fied by Braak NFT stages. In 
these brains lacking Aβ amyloid 
pathology, the presence of 
LATE-NC was associated with 
higher Braak NFT stages (more 
severe PART pathology). For 
exact numbers, see Table 5, and 
for a breakdown of the numbers 
of participants included from 
each cohort, see Supplemental 
Table 3, online resource
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data predict that a woman who lives to age 70 years in the 
United States has a 32% chance to live until age 90 years, 
and a 70-year-old man a 21% chance to live until age 
90 years [1]. Thus, a substantial proportion of adults will 
probably survive to the ages of participants included in the 
current study, with high risk for ADNC and LATE-NC.

This study reported summary information from each 
cohort rather than individual participant-level data, so 
regression models and other descriptive statistics were 
not appropriate for evaluating most of the data. In terms 
of clinical–pathological correlation, only broad trends 
were described, because robust statistical testing require 
a more standardized cognitive assessment format. There 
are many possible sources of data variability, e.g., addi-
tional pathologies, and testing variation between cohorts. 
Importantly, prior studies have established that LATE-NC 
is independently associated with cognitive impairment in 
aging when other factors (e.g., pathologic comorbidities) 
were considered [12, 36, 39, 70, 79, 92]. Thus, the main 
contribution of the current study is not clinical–patho-
logical correlation, but instead it is a relatively sound 
estimate of LATE-NC prevalence in community- and 

population-based elderly autopsy cohorts across the 
ADNC severity spectrum.

LATE-NC was more common in brains with comorbid 
ADNC than in those without ADNC. Specifically, there was 
a 2- to 2.5-fold enrichment for LATE-NC in persons with 
severe ADNC versus those lacking ADNC. LATE-NC is 
not the only pathology that tends to be increased in parallel 
with ADNC. For example, Lewy body pathology subtypes 
and cerebrovascular pathologies such as arteriolosclerosis 
are also relatively prevalent in persons with ADNC [11, 17, 
88, 95], as are white matter hyperintensities visualized with 
neuroimaging [7, 102], and other, rarer, phenomena [25, 
64, 100]. The tendency for these brain conditions to coexist 
with ADNC may be due to shared ‘upstream’ risk factors 
such as the APOE ε4 allele which is known to be pleiotropic 
for multiple diseases (see above), or other causes of brain 
injury. ‘Downstream’ of genetic and other risk factors, one 
subtype of pathology may directly promote other deleterious 
changes in the same cells. In particular, TDP-43 pathology 

Fig. 6  There is a tendency for LATE-NC to be associated with cog-
nitive impairment, across a broad range of Braak NFT stages, in ten 
community-based cohorts. Data were gathered on cognitive status, 
stratifying by LATE-NC status and Braak NFT stages. Trends were 
evaluated from each cohort as to whether the cognitive status tended 
to be lower in persons with LATE-NC (down-going black arrow) or 
higher (up-going white arrow) in given Braak NFT stages. To opera-
tionalize global cognitive status, final Mini-Mental State Examina-
tion scores [33] were used, except HAAS used the Cognitive Abilities 
Screening Instrument [107] and the Brazil BAS and MCSA cohorts 
used the Clinical Dementia Rating sum of boxes scores [27]. There 
was a tendency for participants with LATE-NC to have lower cogni-
tion across the full range of Braak NFT stages

Fig. 7  Selected findings and context of the current study. Data were 
analyzed from participants in 13 high quality community- and pop-
ulation-based cohorts comprising over 6000 individuals followed 
longitudinally to autopsy. As such, the findings (with appropriate 
caveats) have broad implications. In participants that had none or 
minimal ADNC, a substantial proportion (~ 25%) had LATE-NC. 
This indicates that there are ADNC-independent TDP-43 pathol-
ogy-driving mechanisms, which probably include gene variants in 
TMEM106B and GRN [26, 87, 96]. LATE-NC also was associated 
with more severe PART pathology (and vice versa), indicating path-
ologic synergy between LATE-NC and PART. Approximately 2/3rd 
of subjects in advanced age showed moderate or severe ADNC at 
brain autopsy, in concordance with the published literature [15]. In 
these individuals, there was a relatively high frequency of LATE-NC: 
approximately 50% of participants with moderate to severe ADNC 
had LATE-NC. The “mixed” ADNC-LATE-NC may be driven by 
pleiotropic genetic factors (e.g., APOE ε4 allele [114]) and there may 
also be pathologic synergies downstream from genetics. For example, 
intracellular tauopathy may promote TDP-43 pathology in the same 
cell [44, 103, 111]. The neuron shown here is stained with immuno-
fluorescence in the hippocampal dentate gyrus, and is immunolabeled 
green (tau), and red (phospho-TDP-43) with overlap depicted in white 
[103]
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often co-occurs with tau pathology in neurons vulnerable to 
NFT formation, such as in the entorhinal cortex [44, 111]. 
Conversely, tau inclusions coexist in cells prone to TDP-43 
pathology, such as the hippocampal dentate granule neurons, 
in LATE-NC [103]. The increased severity of PART pathol-
ogy in cases with LATE-NC in the present study further 
underscores the tendency for there to be pathologic syner-
gies between tau and TDP-43 pathologies.

Although often comorbid, LATE-NC and ADNC were 
also seen in brains that lacked the other pathology. It is 
notable that ~ 75% of participants overall had some detect-
able ADNC, as shown previously [15, 109]. Thus, the gen-
eralization is true that “most people with LATE-NC have 
ADNC”, yet most old people’s brains without LATE-NC 
also have ADNC. In this sample with a broad range of 
pathologies, > 60% of brains with LATE-NC lacked severe 
ADNC (i.e., had Braak NFT stages 0–IV). Among those 
with severe ADNC, approximately one-half lacked TDP-
43 pathology. These data indicate that LATE-NC is not an 
integral feature of ADNC. Further support for the idea that 
LATE-NC and ADNC are distinct disorders come from prior 
published reports. For example, LATE-NC is an unusual 
co-pathology (< 10% prevalence) in severe ADNC linked 
to Down syndrome [113].

There was a substantial subgroup of participants with 
LATE-NC but with none or very mild ADNC: persons with 
Braak NFT stages 0-II had a 22.4% probability of LATE-NC 
whereas persons with “None” neuritic amyloid plaque score 
had a 26.9% probability of LATE-NC. Remarkably, among 
3267 subjects surveyed for the condition, no FTD/FTLD 
case was identified. Thus, in community dwelling older 
persons with no or minimal evidence of ADNC, LATE-NC 
was still common and was not associated with a clinical 
diagnosis of FTD (in the nine cohorts in which that clinical 
evaluation was made). It is possible that a handful of FTD/
FTLD cases was overlooked. Yet their extreme paucity in 
such a large combined cohort implies that FTD/FTLD-TDP 
is very uncommon in community-based cohorts. If the ~ 25% 
autopsy frequency is considered an estimate, albeit impre-
cise, of lifetime risk for LATE-NC in persons without 
ADNC, it can be contrasted with the epidemiologic stud-
ies that have found ~ 0.1% lifetime risk for FTLD-TDP [21, 
53]. Thus, though there are important intersections between 
FTLD-TDP and LATE-NC, our results further support the 
conclusion that LATE-NC should be considered a separate 
entity from FTD/FTLD.

In summary, the current study found that LATE-NC was 
a frequent pathology in older brains: ~ 25% of participants 
overall had LATE-NC stage > 1, which is associated with 
cognitive impairment. LATE-NC was relatively common in 
brains with coexisting ADNC, and PART pathology was also 
relatively more severe in brains with comorbid LATE-NC. 
However, the presence of LATE-NC or ADNC was neither 

necessary nor sufficient to predict the presence of the other. 
Encompassing the full spectrum of ADNC severity, LATE-
NC tended to be associated with cognitive impairment. 
These data are interpreted to indicate that LATE-NC, with 
or without comorbid ADNC, is highly prevalent and impact-
ful in persons of advanced age.
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