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Abstract
Glioblastoma is the most common primary brain tumor and has a dismal prognosis. The development of central necrosis 
represents a tipping point in the evolution of these tumors that foreshadows aggressive expansion, swiftly leading to mortality. 
The onset of necrosis, severe hypoxia and associated radial glioma expansion correlates with dramatic tumor microenviron-
ment (TME) alterations that accelerate tumor growth. In the past, most have concluded that hypoxia and necrosis must arise 
due to “cancer outgrowing its blood supply” when rapid tumor growth outpaces metabolic supply, leading to diffusion-limited 
hypoxia. However, growing evidence suggests that microscopic intravascular thrombosis driven by the neoplastic overex-
pression of pro-coagulants attenuates glioma blood supply (perfusion-limited hypoxia), leading to TME restructuring that 
includes breakdown of the blood–brain barrier, immunosuppressive immune cell accumulation, microvascular hyperprolifera-
tion, glioma stem cell enrichment and tumor cell migration outward. Cumulatively, these adaptations result in rapid tumor 
expansion, resistance to therapeutic interventions and clinical progression. To inform future translational investigations, the 
complex interplay among environmental cues and myriad cell types that contribute to this aggressive phenotype requires 
better understanding. This review focuses on contributions from intratumoral thrombosis, the effects of hypoxia and necrosis, 
the adaptive and innate immune responses, and the current state of targeted therapeutic interventions.
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Introduction

Glioblastoma (IDH-wild type, WHO grade 4) is the most 
frequent malignant brain tumor and has a dismal prognosis. 
The 5-year survival rate is only 5.6% and the median sur-
vival interval is 15 months from initial diagnosis [173]. By 
definition, glioblastoma is a high grade, infiltrating astro-
cytic glioma with one or more of the following features: (1) 
necrosis, (2) microvascular proliferation, or (3) the presence 
of specific genetic alterations (EGFR amplification, TERT 
promoter mutation, or the +7/−10 cytogenetic signature) 

[230]. Historically, the histologic presence of necrosis was 
the first recognized feature linked to poor prognosis among 
diffuse gliomas and it remained the sole criterion for estab-
lishing the diagnosis of glioblastoma as grade 4 for decades. 
Even today, it is recognized that nearly all patients with glio-
blastoma die after a brief period of accelerated tumor expan-
sion following the onset of necrosis.

In fact, necrosis is a criterion of malignancy in many 
tumor types, highlighting its fundamental association with 
rapid growth and poor patient prognosis [28, 197]. The pre-
vailing dogma passed along to explain the relationship of 
malignancy and necrosis has been that “cancer outgrows its 
blood supply,” as metabolic demands exceed supply during 
the rapid and uncontrolled cell division and tumor expan-
sion (diffusion-limited hypoxia). While this explanation has 
been superficially satisfying, it has never been supported by 
evidence, it is counterintuitive on deeper inspection, and 
its perpetuation has precluded serious investigations into 
more plausible mechanisms that link malignant behavior to 
necrosis in a manner that might shed light towards potential 
therapies.
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Several studies seem to contradict the malignant 
necrosis dogma and suggest that cancers grow in a man-
ner that actively compromises their blood supply, leading 
to necrosis and augmented growth due to hypoxia- and 
tumor microenvironment (TME)-mediated mechanisms. 
This theory holds that tumors grow in a manner that 
attenuates local blood flow, leading to perfusion-limited 
hypoxia and necrosis. There is strong evidence to sug-
gest that microscopic intravascular thrombosis within a 
tumor, most likely driven by the neoplastic overexpres-
sion of pro-coagulants, initiates or propagates hypoxia and 
necrosis that in turn causes TME restructuring in a manner 
that favors accelerated growth [71, 150, 199, 234, 241]. 
The spatial distribution of thrombosis in and around foci 
of necrosis is highly suggestive of an intimate relation-
ship between the two, with thrombosis potentially caus-
ing necrotic development. Microscopic thrombosis can be 
identified in nearly all glioblastomas but is rarely found 
in lower grade gliomas without necrosis, which are char-
acterized by sheet-like diffuse infiltration and grow more 
slowly (Fig. 1). The small number of diffusely infiltrative 
astrocytic gliomas that have thrombosis, but not necrosis, 
are also associated with poor prognosis, suggesting that it 

is a precursor to the development of necrosis and higher 
grade behavior [241].

Molecular genetic alterations driving progression among 
the diffuse gliomas are well characterized and have eluci-
dated several molecular subtypes based on genomic altera-
tions, epigenetic signatures or transcriptional class [1, 25, 
27, 32, 153, 172, 181, 254]. Transcriptional classification 
has identified three robust subtypes among the IDH-wild-
type GBMs (proneural, classical and mesenchymal) that 
appear to have distinct TME properties. Proneural (PN) 
tumors are enriched for PDGFRA, CDK4 and SOX2 ampli-
fication and display increased PI3K/AKT signaling [22, 
181]. Despite PDGF signaling correlating with immune 
modulation in other solid tumors, glioblastoma displays a 
strictly proliferative association with PDGF expression [9]. 
Mesenchymal (MES) tumors contain inactivating mutations 
in NF1, increased MAPK signaling, and are enriched for 
endothelial markers and inflammatory infiltrates, especially 
the macrophage component [22, 170, 259]. Regarding pro-
angiogenic signals, MES upregulate ADAM9 that enhances 
chemotactic factor shedding from tumor cells, cleaves 
the extracellular matrix (ECM) promoting invasion, and 
releases angiogenic factors from endothelial cells promoting 

Fig. 1  Histopathology of glioma progression (H&E staining). Dif-
fusely infiltrating astrocytic tumor without necrosis (histologic grade 
3) shows a pattern of sheet-like infiltration by individual tumor 
cells within the brain parenchyma (a). The presence of intravascu-
lar thrombosis (arrow) within a diffuse glioma signals transition to 
the development of hypoxia, necrosis, and rapid progression. Note 
the perivascular clearing of neuropil, representing the initial stages 
of BBB breakdown, activation of perivascular TAMs, parenchymal 

disruption, and outward migration of glioma cells (b; see also Fig. 3 
right panel). At later stages, the presence of intravascular thrombosis 
(arrow) is spatially associated with adjacent tumor necrosis (c; aster-
isk). As the necrotic focus enlarges (asterisk), it becomes surrounded 
by palisading cells that migrate radially outward in three dimensions 
(d; arrow indicates direction of movement; see also Fig.  2d, boxed 
region for corresponding MRI region, and Fig. 5)
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microvascular hyperproliferation [178]. MES tumor cells 
also display increased MMP14 membrane localization that 
promotes ECM cleavage, endothelial and tumor cell inva-
sion and contributes to the vascular abnormalities commonly 
seen in solid tumors [51]. Classical (CL) tumors are char-
acterized by EGFR mutation and amplification, NOTCH 
pathway activation, and downregulation of both apoptotic 
and MAPK signaling pathways [22]. EGFR activation in 
combination with PTEN loss enhances VEGF expression to 
support angiogenesis [186], as well as CCL2 secretion that 
enriches TAM infiltration [4].

Despite transcriptional class differences, all glioblastoma 
subsets display accelerated progression following the onset 
of necrosis, indicating that it may be a shared final com-
mon pathway that represents an abrupt turning point towards 
rapid expansion [93, 202]. Of interest, cellular proliferation 
rates are not a prognostic factor once necrosis develops, indi-
cating that other factors influence survival to a greater extent 
[19]. Most likely, accelerated growth of glioblastoma is due 
at least to some extent to hypoxia-induced expansion encour-
aged through TME dynamics [79]. There is no doubt that 
glioblastomas are highly heterogeneous, as recognized by 
the now outdated term “multiforme”. In addition to glioma 
cells of variable morphologies, differentiation states and 
stem-like features, glioblastomas also contain tumor-associ-
ated macrophages (TAMs), a variety of other immune cells, 
florid angiogenesis, entrapped native neural elements and 
reactive glia [15, 54, 107, 153, 191, 245]. TAMs consist of 
activated resident brain microglia and bone marrow derived 
monocytes (BMDMs), which differentiate into macrophages 
upon extravasation into the brain parenchyma. While TME 
restructuring following necrosis in glioblastoma appears to 
be an initiator of rapid tumor growth, appropriate animal 
models to establish the causal relationship between necrosis, 
TME alterations, and radial expansion are lacking. Indeed, 
many orthotopic patient-derived xenograft (PDX) mouse 
models do not develop necrosis [103, 132]. A recent study 
postulates that this arises in part from defective cross species 
chemokine signaling [40]. This review assesses the stages 
of TME-related changes that occur during disease progres-
sion in glioblastoma, highlighting the role of hypoxia and 
necrosis in modulating the immune response.

Thrombosis

The blood–brain barrier (BBB), comprised of brain micro-
vascular endothelial cells, astrocytes, pericytes, oligoden-
drocytes and unique basement membrane, represents one 
of the most controlled vascular networks of any organ and 
its deterioration marks a dramatic change in disease pro-
gression among patients with diffuse gliomas. The BBB is 
largely intact in non-necrotic, lower grade diffuse gliomas 

and corresponds to the absence of contrast enhancement on 
MR imaging [255]. The enhancement pattern that becomes 
apparent in high-grade gliomas represents contrast agent 
seeping through the BBB and being retained in the brain 
tumor parenchyma (Fig. 2) [96]. Initial stages of contrast 
enhancement are often subtle and patchy and can be noted 
before the onset of necrosis. This likely represents the first 
stages of vascular pathology and barrier compromise (cor-
responding with endothelial hypertrophy) yet precedes the 
onset of severe hypoxia and necrosis that is associated with 
more extensive vascular proliferation (Fig. 3). Prior work has 
suggested that microscopic intravascular thrombosis arises 
at this early stage of glioblastoma progression and is respon-
sible for initiating or propagating hypoxia. The classic MRI 
features of glioblastoma, with central necrosis surrounded by 
a rim of intense contrast enhancement and enveloped by T2 

Fig. 2  MRI images typical of glioma progression. Fluid-attenuated 
inversion recovery (FLAIR) (a, c) and T1 post-contrast (b, d) MRI. 
The outline of this histologic grade 3 diffusely infiltrative glioma is 
noted on FLAIR images (a, arrow). The tumor does not demonstrate 
central necrosis or contrast enhancement on post-contrast images 
(b, arrow, corresponding to histology in Fig. 1a). After the onset of 
hypoxia and necrosis, MRI demonstrates the tumor outline on FLAIR 
images (c, arrow), while T1 post-contrast images show the  classic 
features glioblastoma, with a prominent region of central necrosis 
surrounded by a rim of intense contrast enhancement (d, arrow). The 
region of the box (d) corresponds to the histology in Fig. 1d, with the 
border region moving radially outward away from the tumor center
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signal intensity, are noted later, once there is substantial loss 
of BBB integrity and extensive microvascular proliferation 
in and around the contrast-enhancing component (Fig. 2). 

The link between cancer and thrombotic events is not 
new. Trousseau recognized well over a century ago that 
cancer patients exhibit significant systemic dysregulation 
of coagulation, resulting in frequent peripheral deep venous 
thromboses and embolic events [58, 150, 246]. This same 
tendency towards thrombosis is present within the neoplasm, 
where the causative pro-coagulants are highly expressed 
[210, 239]. Many investigations have focused on tissue fac-
tor (TF), the body’s most potent pro-coagulant, as the pri-
mary mediator of systemic coagulopathy [208, 209]. Nota-
bly, TF is significantly upregulated in gliomas and its levels 
correlate with tumor grade [203, 204]. Factors associated 
with malignant behavior in gliomas, such as EGFR over-
expression, PTEN loss and hypoxia-induced early growth 
response gene (Egr)-1, have all been shown to upregulate 
TF expression by gliomas [203, 204, 241, 248]. The vascular 
leakiness that is noted by neuroimaging at early stages of 
malignant progression would allow circulating coagulation 
factors, including TF’s primary downstream effector, fac-
tor VIIa, to encounter TF. Interestingly, IDH mutant glio-
mas show significantly reduced TF levels as compared to 

IDH-wild-type gliomas, potentially related to their slower 
rate of malignant progression [249, 250]. Conversely, higher 
grade gliomas display dysfunctional coagulation/fibrinoly-
sis regulatory pathways supporting local coagulation events 
within the tumor [266]. Increased levels of coagulation are 
also likely due to thrombin-protease-activated receptor 1 
(PAR1) signaling, which is similarly upregulated in glio-
blastoma [60, 71, 126]. PAR1 localizes to astrocyte end feet 
where its binding to thrombin leads to a wide variety of 
downstream effects, including neuroinflammation and vas-
cular pathology [71]. Thrombin-mediated PAR1 cleavage 
actives the G-protein-coupled receptor leading to Rho and 
phospholipase C activation and adenylyl cyclase inactiva-
tion [20, 30] and promotes VEGF secretion [99] while elic-
iting an immunosuppressive response [215]. Local VEGF 
accumulation around the BBB induces pericyte detachment, 
basement membrane degradation, vessel enlargement and 
leakiness, perpetuating the cycle of vascular pathology 
[237, 238]. During this process, glioblastomas also upregu-
late podoplanin, which enhances local platelet aggregation 
and has been implicated in systemic thrombosis through 
its cell surface expression by circulating glioblastoma cells 
[180, 199, 234]. Podoplanin binds C-type lectin-like recep-
tor (CLEC)-2 on circulating platelets and induces clotting 

Fig. 3  Vascular pathology disrupts the blood–brain barrier, limits 
perfusion, and reshapes the tumor microenvironment. Astrocyte end 
feet, pericytes, and endothelial cells in pre-thrombotic vessels form 
an intact blood–brain barrier (left) and provide a relatively immune 
privileged environment within the central nervous system. When 
intact, this barrier largely excludes circulating immune cells from the 

early tumor microenvironment (TME). Following thrombosis (right), 
astrocytes and pericytes detach from vascular endothelial cells, which 
also develop leaky junctions, permitting circulating BMDM to trav-
erse the vascular wall and enter the TME. Vascular disruption reduces 
perfusion and leads to focal hypoxia, driving cells radially out from 
the area of nutrient deprivation
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[180]. Concurrently, the emerging hypoxia upregulates plas-
minogen activator inhibitor 1 (PAI-1) and fibronectin in the 
perinecrotic niche and surrounding occluded vasculature, 
generating local pro-coagulant environments [207].

Upregulation of coagulation factors influences the TME 
in manners that may be unexpected, distinct from their role 
in thrombosis. For example, TF, factor VIIa (FVIIa), and fac-
tor XIIa (FXIIa), are capable of recruiting TAMs to the TME 
and inducing an immunosuppressive phenotype [69, 149]. 
The TF-FVIIa complex can trigger mitogenic, angiogenic, 
and cell survival signaling, as well as enhance a glioma stem 
cell (GSC) phenotype in certain contexts [248]. Podoplanin 
may have effects on dendritic cell mediated immunosup-
pression by binding to and activating CLEC-2, leading to 
platelet aggregation, enhancing local and distal thrombotic 
events and monocyte/macrophage recruitment to the area 
of vascular pathology, reflecting another mechanistic link 
between coagulation and tumor progression [146, 195, 199]. 
The prevention or suppression of early thrombotic events in 
glial neoplasms represents a strategy to slow down disease 
progression that results from hypoxia- and necrosis-driven 
TME changes.

Hypoxia

Hypoxia, a state of low oxygen availability, is a critical medi-
ator of pathologic events, yet remains challenging to model 
and study within physiologically relevant experimental sys-
tems. Establishing hypoxic conditions, maintaining physi-
ological gradients and monitoring of oxygen levels in vivo 
remain daunting prospects, yet recent advances in positron 

emission tomography (PET) and two-photon phosphores-
cence microscopy are encouraging [119, 228, 274]. Nev-
ertheless, fluctuations in oxygen availability have profound 
effects on homeostasis, as well as disease onset and progres-
sion, and therefore must be a central consideration of any 
serious scientific pursuit of mechanisms relevant to glioma 
progression [224, 242]. We have suggested that vaso-occlu-
sive mechanisms initiate and propagate the severe hypoxia 
that is present in nearly all high-grade diffuse gliomas and 
trigger the adaptive responses that lead to TME restructur-
ing and tumor expansion. Hypoxia-inducible factors (HIFs) 
1 and 2 are the predominant cellular oxygen sensors, and 
are upregulated under hypoxic conditions to activate a tran-
scriptional program conducive to an adaptive response that 
allows cell survival under these conditions [164]. In the case 
of malignant gliomas, the response to hypoxia also results in 
events that favor disease progression (Fig. 4). Nuclear HIFs 
enhance glycolytic metabolism, cellular migration through 
a urokinase (uPA)-uPA receptor (uPAR) autocrine loop, and 
invasion through matrix metalloproteinases (MMPs)-2 and 
-9 secretion [18, 33, 72, 115, 127, 152, 160, 162, 164, 217, 
283]. Enhanced glioma cell HIF expression leads to a dis-
tinct survival advantage in hypoxic and necrotic conditions 
[137, 152, 179, 257, 284] including therapeutic resistance 
through GSC enrichment [134, 251, 258, 276]. Furthermore, 
intratumoral HIF and other hypoxia-induced genes correlate 
with a more aggressive, pro-invasive and highly angiogenic 
phenotype across many solid tumors including glioblastoma 
[49, 64, 90, 115, 157, 189, 236, 253, 260, 271].

The adaptive response to hypoxia also influences inflam-
matory and immune responses following the onset of 
necrosis. For example, HIF-1α modulates hypoxic T cell 

Fig. 4  The hypoxic tumor 
microenvironment is highly 
coordinated and dynamic. 
Glioblastoma cells upregulate 
HIFs and subsequently stimu-
late MMPs to remodel the 
ECM, clotting factors to induce 
focus thrombosis, angiogenic 
factors that drive microvascular 
hyperproliferation, and immu-
nomodulatory factors including 
damage-associated molecular 
patterns that form an immuno-
suppressive environment
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metabolism, facilitating Treg recruitment and an immuno-
suppressive phenotype [158]. Hypoxia increases TF secre-
tion exacerbating focal vascular pathology, and Ras and 
PI3K-Akt signaling further enhance migration away from 
the hypoxic region [2, 204]. One study described p21 acti-
vated kinase (PAK) 1-dependent autophagy, linking hypoxia 
to glioblastoma tumorigenesis and radial expansion [62]. 
Hypoxic glioblastoma cells display not only altered DNA 
repair machinery, but are increasingly resistant to chemo- 
and radiation therapies [35, 45, 167]. Others have shown 
that hypoxia-induced epigenetic changes in histone deacety-
lase (HDAC) 3 activity and downstream transcription factors 
CCAAT enhancer binding protein beta (CEBPB) and JUN 
contribute to temozolomide (TMZ) resistance [66]. Intratu-
moral hypoxia also induces an inflammatory GSC phenotype 
that facilitates glioblastoma radial expansion [235]. Thus, 
acute and sustained hypoxia arising from vaso-occlusion and 
associated with necrosis has profound effects on disease pro-
gression and therapeutic resistance.

Necrosis

While the metabolic stress related to hypoxia contributes 
to a wide range of adaptive responses, as noted above, the 
associated development of necrosis also plays a pivotal 
role in reshaping the local brain tumor microenvironment. 
Although  necrosis has historically been considered an 
unprogrammed, passive cell death response, work over the 
last 2 decades has uncovered specific signaling networks 
that regulate its development [281]. Separating the effects of 
necrosis and hypoxia may be difficult or impossible, and the 
classic histopathologic features of glioblastoma, including 
intratumoral thrombosis, microvascular proliferation, and 
neoplastic palisade formation around necrosis are intimately 
related to both (Fig. 5) [18, 191, 265]. Our prior work sug-
gests that intravascular thrombosis causes vaso-occlusion, 
leading to nutrient deprivation and sustained hypoxia/anoxia 
that triggers cellular necrosis [202, 204, 241]. How these 
early hypoxic/necrotic events coordinate TME, reshaping is 
an area of active research. Necrotic cells are now known to 
release endogenous damage-associated molecular patterns 
(DAMPs), capable of recruiting TAMs or damage-associ-
ated microglia (DAM) to the TME [21, 50, 87], facilitating 

Fig. 5  Necrosis initiates a sterile inflammatory response that pro-
motes glioma progression. Intratumoral thrombosis within the 
hypoxic/necrotic core forces glioblastoma cells to migrate towards a 
more hospitable locale. While most surviving perinecrotic glioblas-
toma cells migrate away from the necrotic core, an enriched stem-like 
phenotype is found in the highly hypoxic perinecrotic (palisading) 

niche. Meanwhile, blood–brain barrier disruption allows immune 
access to the tumor, monocyte influx and macrophage differentia-
tion as those cells migrate towards the necrotic core. Simultaneously 
this emerging perivascular niche becomes enriched in stem-like cells, 
budding vessels, and myeloid-derived suppressor cells
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disease progression [120, 201] (Fig. 5). DAMP release nor-
mally initiates sterile inflammation to drive tissue repair yet 
when left unchecked can facilitate a chronic inflammatory 
state resulting in unwanted tissue damage, particularly in 
ischemia-related injuries [46, 110, 198]. Necrosis-associated 
DAMPs include adenosine/adenosine triphosphate (ATP) 
[17, 105, 128], biglycan [6, 200, 213], heparan sulfate [113, 
272], heat shock proteins (HSPs) [11, 12, 109, 193, 252], 
high-mobility group box 1 (HMGB1) [94, 212, 222, 244, 
282], hyaluronan (HA) [112, 214, 240], interleukin (IL)-1α 
[36, 59, 73, 125], IL-33 [31, 163, 216, 220], S100 proteins 
[42, 91, 92, 135], and versican [95, 121, 264]. Of interest, 
ATP, HA, HMGB1, IL-1α and S100 proteins are potent 
DAMPs that are enriched in brain and glioma tissues [10, 
21, 73, 92, 94, 128, 182, 192, 221, 229, 247]. Extracellular 
adenosine binds to adenosine receptors on many immune 
cells including macrophages, driving initial inflamma-
tion, then inducing an M2-like immunosuppressive phe-
notype [128] and enhancing glioblastoma invasion [182]. 
HA cleavage from the ECM into small molecular weight 
fragments engage not only it’s canonical receptor, CD44, 
but also several Toll-like receptors (TLR2 and 4) known to 
mediate inflammatory responses [240] while simultaneously 
enhancing glioblastoma invasive capacity [37]. HMGB1 
acts through both TLR4 and the receptor for advanced gly-
cation end products (RAGE) to initiate pro-inflammatory 
cytokine release, recruiting bone marrow-derived monocytes 
(BMDMs) to sites of injury and contributing to the immuno-
suppressive TME [94, 101, 232]. Initial IL-1α release from 
necrotic cells draws neutrophils and BMDM in, followed by 
a second wave of IL-1α secretion from subsequently acti-
vated macrophages, further enhancing the pro-inflammatory 
microenvironment [59, 125]. S100 proteins also bind RAGE 
and attract BMDM to the TME, contributing to immune cell 
reprogramming and at the same time promoting tumor cell 
proliferation [87, 92, 135]. In addition to the generation of 
sterile inflammation, necrotic cellular pathology upregulates 
cell survival pathways to compensate for an increasingly 
inhospitable environment. Dramatic microenvironmental 
restructuring following necrosis enriches for distinct cellular 
subpopulations that thrive under these selective pressures.

Immune microenvironment

Microglia represent the largest phagocytic cell population 
in the brain under normal homeostatic conditions. They 
are unique to the brain and arise from immature yolk sac 
 (Runx1+) progenitor cells between embryonic days 8.5 and 
9.5 [68, 70, 83]. They are also among the most long-lived 
brain-resident cells, rivaling post-mitotic neuron life spans 
[280]. As mentioned, DAMs respond to DAMPs during 
brain injury [14, 50], representing an early and rapid innate 

immune response. In some disease states, DAMs play a 
neuroprotective role and hinder disease progression [120, 
154]. However, sustained neuroinflammation and DAM 
reprogramming can result in neurotoxic events mediated 
not only by DAMs but also through modulating reactive 
astrocytes [13, 138]. Upon brain injury, stroke or tumo-
rigenesis, the BBB becomes compromised leading to sig-
nificant influx of circulating BMDM, as well as microglial 
activation [41, 168, 183, 262], and distinguishing these cell 
types and various activation states requires detailed analy-
sis [77, 129]. In addition, TAM derived IL-1b exacerbates 
BBB defects, enhancing vascular edema and BBB leaki-
ness [88]. These cell lineage determinations become crucial 
when determining how to counteract disease processes as 
BMDMs and microglia play differing roles in brain inflam-
matory responses [29, 55, 277]. A recent study utilizing a 
mouse model of pediatric high-grade glioma demonstrated 
that BMDMs, but not microglia are responsible for mediat-
ing the intratumoral immune response [206]. In addition, a 
single-cell RNA sequencing study revealed spatial and func-
tional diversity among infiltrating microglia and BMDMs 
[130, 169]. These distinct subpopulations require informed 
consideration when designing therapeutic interventions to 
effectively target the malignant immune behaviors while 
preserving neuroprotective responses.

Despite advanced understanding of inflammation fol-
lowing traumatic brain injury and ischemia [46, 110, 262], 
mechanisms and therapeutic vulnerabilities of the sterile 
inflammatory response have not been well established in 
the glioblastoma TME. Following necrosis, TAMs represent 
the most abundant non-neoplastic cells within glioblastoma, 
accounting for 30–50% of all cells within the tumor mass 
(Fig. 6) [39, 79, 80]. TAMs are not passive bystanders, but 
rather actively promote tumor progression and modulate 
treatment responses [61, 98, 187, 278]. By the time a malig-
nant brain tumor has developed severe hypoxia and central 
necrosis, the vast majority (> 80%) of TAMs derive from 
BMDMs, while the remainder are comprised of microglia 
[38, 80]. However, not all microglia respond to chemotactic/
activating factors leaving residual undifferentiated tumor-
associated microglia that appear as web-like immune sur-
veillance cells enriched around the disease periphery [41, 
227]. TAM density increases five- to tenfold following 
necrosis, mainly in hypoxic, perinecrotic zones [48, 156, 
259]. Hypoxia induces TAM influx, activation then conver-
sion from an anti-tumor (M1-like) to an immunosuppressive 
(M2-like) phenotype, promoting tumor progression [38, 39, 
86, 169]. A recent TCGA pan-cancer study indicated that 
glioblastoma has a prominent TAM signature, with a highly 
immunosuppressive phenotype and suppressed Th1 lympho-
cytes [243]. Immune response genes are enriched in mesen-
chymal glioblastomas, indicating genomic background and 
transcriptional activities influence the TME [54, 111, 254, 
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285]. One study found increased immune cell infiltration, 
including TAMs and lymphocytes, in human mesenchymal 
glioblastomas compared to proneural and classic subtypes 
[118], while another found that classical glioblastomas 
display greater  CD4+ and  CD8+ T cell infiltration [40]. 
Analysis of TCGA glioblastoma data showed that allograft 
inflammatory factor 1 (AIF1), the gene encoding ionized 
calcium binding adaptor molecule 1 (IBA1), was signifi-
cantly upregulated in mesenchymal glioblastomas compared 
to others [118]. Distribution within the TME—potentially 
related to the hypoxia gradient—also alters TAM behavior, 
as peripheral TAMs display pro-inflammatory signaling, 
homing circulating BMDMs to the TME [26, 130]. Myeloid-
derived suppressor cells (MDSCs) are functionally similar 
to immunosuppressive TAMs but express specific cell sur-
face markers such as CD33, CD14 and CD15 in humans 
or CD11b and protein gamma response 1 (Gr1) in mouse 
models [34, 175]. TAM-secreted CCL2 recruits MDSCs 
from circulation while GSC-secreted macrophage migration 
inhibitory factor (MIF) enhances their immunosuppressive 
activity [3, 34, 175]. The protective role has largely been 
attributed to enhanced MDSC programmed death-ligand 1 
(PD-L1) expression that mitigates  CD4+ T cell activity in 
and around the glioblastoma TME [56]. This active recruit-
ment and reprogramming among immune subpopulations in 
and around the tumor create an increasingly complex, het-
erogeneous milieu that we are just beginning to recognize. 
Future investigations into the temporal and spatial dynamics 
will enable systematic interventions to reverse the immune 
privileged tumor state.

Glioblastoma exhibits far fewer infiltrating lymphocytes 
than other solid tumors, consisting largely of Tregs followed 
by  CD3+ T helper cells, other  CD4+ T cells and few  CD8+ 
T cells [85, 268]. Importantly, glioblastoma T cell infiltra-
tion co-localizes with areas displaying vascular pathology, 

suggesting that thrombosis, vascular leakiness or angiogen-
esis may mediate T cell access to the CNS [47, 145]. Tregs 
respond to glioblastoma secreted CCL2 as well as GSC and 
dendritic cell (DC) produced indoleamine 2,3-dioxygenase 
(IDO), and their accumulation inversely correlates with sur-
vival [44, 114, 159, 176, 256]. In addition, TAMs upregulate 
T cell immunoglobulin- and mucin domain-containing mol-
ecule (TIM) 3 and TIM4 expression on infiltrating T cells, 
inducing Treg programming while simultaneously eliminat-
ing hypoxia-induced phosphatidylserine (PS) expressing 
 CD8+ T cells in the glioblastoma TME [268, 275]. How-
ever, in neurodegeneration and traumatic brain injury, Tregs 
appear to enhance re-myelination and OPC proliferation 
while suppressing DAM and  CD8+ T cell activity, providing 
a neuroprotective effect combating disease progression [124, 
139, 270]. Given the differing roles that various immune 
subpopulations play in neurologic disorders, it is essential 
to properly identify and target those specific immune cells 
to harness the innate and adaptive immune system to coun-
teract disease progression.

Glioma stem cells

Many recent reviews provide a comprehensive understand-
ing of the history and significance of GSCs and their mark-
ers [131, 273]. Single cell RNAseq analysis and lineage trac-
ing experiments reveal substantial inter- and intratumoral 
heterogeneity and inherent plasticity among GSC subpopu-
lations [15, 53, 76, 107, 165, 245]. While terms and con-
cepts related to GSCs vary considerably in the literature, 
most studies converge on the conclusion that GSC enrich-
ment correlates with tumor grade, therapeutic resistance and 
recurrence [63, 131]. Most studies have also indicated that 
GSCs are enriched in specific biological niches, particularly 

Fig. 6  Enhanced tumor-associated macrophages (TAMs) in glioma 
progression (CD163 immunohistochemistry). In diffusely infiltrat-
ing gliomas that are low grade (histologic grade 2) and have an intact 
blood–brain barrier (BBB), there is a small population of inactive, 
flattened, perivascular CD163-positive TAMs (arrows) and only rare 
CD163-positive cells within the CNS parenchyma (a). With glioma 
progression and the development of hypoxia and BBB breakdown, 
there is activation and enlargement of the perivascular CD163-pos-

itive TAM population (arrow) and a large influx of CD163-positive 
TAMs from derived from circulating BMDM that traverse the BBB 
and infiltrate into the brain (b, corresponding to histology in Fig. 1b). 
With the development of necrosis, large numbers of CD163-positive 
TAMs are noted around necrosis (asterisk) and within the infiltrat-
ing component of the glioblastoma (c, corresponding to histology in 
Fig. 1c)
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in the hypoxic palisading cells around necrosis and within 
the immediate perivascular region [24, 79, 81, 116, 155]. 
Thus, establishing mechanistic links between TME enrich-
ment of GSCs is highly relevant to the human disease and 
may have therapeutic implications. In particular, the peri-
necrotic niche contains a high density of neoplastic cells 
that show dramatic upregulation of hypoxia-inducible tran-
scription factors and downstream targets, with a gradually 
diminishing hypoxic gradient extending beyond this zone 
[18, 20, 23, 164, 202, 265]. GSCs are enriched within this 
niche through a combination of hypoxic- and necrotic-driven 
chemotaxis and GSC phenotype enrichment [7, 18, 84, 102, 
117, 134, 217, 226]. In turn, the GSC subpopulation facili-
tates TAM recruitment and subsequent immunosuppressive 
conversion along with microvascular hyperplasia surround-
ing the necrotic zones [63, 225, 253]. Within the perivascu-
lar niche, GSCs secrete chemotactic factors, such as VEGF, 
FGF, and PDGF, that disrupt the BBB and local vasculature; 
colony-stimulating factor (CSF) 1, periostin and stromal 
cell-derived factor (SDF) 1a that facilitate BMDM influx 
into the TME; and IL1 and IL6 that reprogram macrophages 
into an immunosuppressive phenotype [16, 61, 79, 89, 269, 
279, 287]. A recent study found GSC-secreted extracellu-
lar vesicles reprogram local endothelial cells and identi-
fied potential pro-angiogenic miRNAs [147]. Others have 
suggested that bone marrow-derived mesenchymal stem 
cells recruited to the TME directly fuse with perivascular 
GSCs to drive neoangiogenesis in the expanding glioblas-
toma [231]. Endothelial cells secrete IL-8, which enhances 
the GSC phenotype and promotes glioblastoma expansion 
[155, 219] while also generating a positive feedback loop in 
which TAMs respond by producing tumor necrosis factor 
alpha (TNFα) that supports endothelial cell activation and 
microvascular proliferation [261]. In addition, these tumor-
associated endothelial cells protect glioblastomas from radi-
ation therapy [67, 78], chemotherapy [100], and angiogenic 
blockade [142]. GSCs accumulate within these tumor niches 
using them as safe havens and represent a critical subpopula-
tion to address when developing future clinical approaches.

GSCs in both the perivascular and perinecrotic niche play 
a coordinated role in attracting and redirecting circulating 
monocytes towards the central necrotic region. The BBB 
disruption that occurs together with vascular pathology not 
only generates an ideal environment for one subset of GSCs; 
it also establishes an entry point for recruiting BMDMs into 
the tumor microenvironment [24, 177, 286]. While some 
BMDMs will remain in this niche, others proceed through 
the parenchymal space along the hypoxic gradient into the 
necrotic core. Upon arrival, tumor infiltrating TAMs again 
find themselves surrounded by GSCs in the perinecrotic 
niche, where there is a mutually beneficial relationship in 
an otherwise inhospitable environment [117, 217, 251]. The 
specific signaling interplay that enables this directed TAM 

relocation largely remains a mystery, in part due to difficulty 
in modeling these unique microenvironmental niches sepa-
rated by a hypoxic gradient. Understanding this relationship 
could reveal divergent roles for these GSC subpopulations 
and enable differential immunotherapeutic based interven-
tions aimed at disrupting complementary homing signals.

Therapeutic interventions

Therapeutic interventions for modulating macrophage 
activity across cancer types have been the subject of much 
investigation and review [5, 104, 108, 151, 185]. Here, we 
highlight recent advances in microenvironmental manipula-
tion within the context of brain disease. Vascular pathol-
ogy, GSC enrichment and immunosuppressive infiltrating 
immune cells all contribute to enhanced therapeutic resist-
ance in glioblastoma and serve as rational broad targets for 
therapy [74, 106, 161, 218, 223, 251].

Glucocorticoids are time-tested immunomodulatory 
agents that are commonly employed at initial clinical pres-
entation, perioperatively and during radiotherapy for patients 
with gliomas to diminish reactive edema and improve patient 
quality of life [52]. However, steroid-related side effects and 
toxicities necessitate short-term usage and dose de-escala-
tion regimens. Both preclinical and retrospective clinical 
studies have suggested that corticosteroids may compromise 
immunotherapeutic efficacies and clinical outcomes [174, 
184].

T cell-targeted immunotherapy has become the gold-
standard approach to generating anti-tumor immunity in 
solid tumors. However, the early phase 3 immunotherapy 
trial targeting programmed cell death protein 1 (PD-1) 
in glioblastoma failed to improve overall patient survival 
(NCT02017717), which has been attributed to limited 
immune access to the TME [196].

Novel preclinical work shows that nanoscale immunocon-
jugates successfully penetrate the BBB to enhance T cell-tar-
geted immunotherapy and overcome Treg-mediated immu-
nosuppression [65]. Astonishingly, one study even found 
that anti-PD-1 therapy activated an anti-tumor immune 
response despite lacking conventional CD8 cytotoxic T cells 
in the TME [194]. These therapeutic adaptations emphasize 
the necessity for understanding TME interactions to inform 
effective clinical interventions.

A recently established macrophage-related gene signa-
ture [233], containing both macrophage and glioblastoma 
expressed genes, predicted therapeutic sensitivity more 
accurately than the previously published immune response 
signature [43] or the classical (EGFR amplified) signature. 
Other investigations demonstrated that  CD74+ TAMs and 
MDSCs reduce clinical therapeutic efficacy [123, 267]. 
Given the unique immunology within glioblastomas, 
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many interventions have been developed to inhibit TAM 
influx and/or conversion to an M2-like phenotype. These 
approaches upregulate IL-12 signaling, disrupt mamma-
lian target of rapamycin (mTOR), colony-stimulating factor 
1 receptor (CSF-1R), cyclin-dependent kinase (CDK), or 
phosphoinositide-3-kinase (PI3K) signaling, yielding mixed 
results with the most promising demonstrating resensitiza-
tion to standard of care therapies and increased survival 
in animal glioblastoma models [8, 97, 133, 136, 140, 141, 
144, 188, 190, 191, 263]. Still other studies show promising 
potential for exploiting the robust immune presence within 
glioblastoma. For instance, inhibiting proprotein convertases 
not only reduces immunosuppressive TAM polarization, 
but re-engages anti-tumoral activity to blunt glioblastoma 
expansion [205].

Due to treatment resistance inherent in GSC subpopu-
lations, forced differentiation or directly targeting GSC 
phenotype promoting pathways have a substantial capac-
ity to resensitize glioblastomas to conventional therapeutic 
approaches and extend time to recurrence. The perinecrotic 
niche protects GSCs through necrotic-driven DAMP sign-
aling, which when obstructed eliminates these safe havens. 
This has been supported by the finding that disruption of 
adenosine signaling was capable of blunting GSC-driven 
migration and invasion, and that HMGB1 blockade was 
capable of reducing vascular permeability, neuroinflamma-
tion and edema [94, 166, 232]. Another approach seeks to 
diminish the GSC phenotype, targeting key transcriptional 
programs along the ERK1/2-SRY-box transcription fac-
tor 9 (SOX9), casein kinase (CK)2-signal transducer and 
activator of transcription (STAT)3, or SOX2-miR-126-3p 
axes resulting in cellular differentiation, decreased prolifera-
tion and invasion, increased apoptosis as well as enhanced 
susceptibility to radiation and TMZ therapies [75, 82, 143, 
148, 211]. In addition, GSCs can give rise to drug refractory 
recurrent disease necessitating novel second-line therapies. 
One such study found CDK inhibitor-resistant glioblastomas 
are sensitive to c-MET/Trk dual inhibition, demonstrating 
effective sequential intervention modalities [171]. Other 
approaches exploit GSC-specific metabolism identifying 
a glycogen synthase kinase (GSK) 3β inhibitor, kenpaul-
lone, and a pyrimidine synthesis inhibitor, 10580, which 
resensitize tumors to standard of care therapy [57, 122]. 
Future endeavors will continue to capitalize on these unique 
disease-related aspects to precisely target neurological and 
neuroinflammatory malregulation, further emphasizing the 
importance of understanding these microenvironmental 
pathways.

Conclusion

The brain TME contains a diversity of cell types, a 
complex vascular barrier, and unconventional stroma. 
Combined, these features, along with the access barri-
ers imposed by the skull, make understanding dynamic 
microenvironmental changes of glioblastoma a challeng-
ing process, differing from neoplastic processes in other 
organs. The state of our current understanding suggests 
that the TME of diffuse gliomas is dramatically altered 
with the development of microscopic intravascular throm-
bosis at an early stage that is responsible for initiating or 
propagating a cascade that results in rapid disease pro-
gression. Glioblastomas display enhanced pro-coagulant 
activity, stemming from intrinsic genomic drivers (EGFR 
overexpression, PTEN loss) as well as hypoxia-induced 
signaling (Egf-1). These coagulant factors (TF, FVIIa, 
FXIIa) generate focal intravascular coagulation within 
the TME contributing to central necrosis, BBB disruption, 
radial progression, immune influx and modulation, which 
all combine to the advancement of disease. The resultant 
hypoxic gradient also enhances GSC survival mechanisms 
while reducing therapeutic efficacy, providing a challeng-
ing scenario for clinical intervention.

Prolonged and severe hypoxia cues the onset of necro-
sis that releases a variety of DAMPs (adenosine, HA, 
HMGB1, IL-1α, S100 proteins) that initiate sterile inflam-
mation. Perhaps the most substantial TME feature that dis-
tinguishes glioblastoma from many other solid tumors and 
CNS diseases is the massive influx and reprogramming of 
the innate immune system. While in the past, some have 
suggested that glioblastoma is an immunologically “cold” 
tumor, more recent immunohistochemical, flow cytometric 
and transcriptional analyses have shown that the glioblas-
toma TME displays an abundance of infiltrating immune 
cells. Furthermore, hypoxia-induced signaling supports 
conversion of immune cells from an inflammatory to an 
immunosuppressive phenotype within the TME, including 
Treg recruitment, TAM immunomodulation, and MDSC 
localization to the perivascular niche. At the tumor periph-
ery, MDSCs and DAMs play critical roles in excluding 
adaptive immune cells from the bulk tumor and represent 
potential barriers to current T cell focused immunotherapy 
that are becoming commonplace in other solid tumors.

Current efforts continue to explore spatial, temporal and 
cell-of-origin related contributions to immunomodulation 
among microglial and BMDM subpopulations of TAMs. 
The close spatial and temporal association between TAMs 
and GSCs in perivascular and perinecrotic niches is wor-
thy of further study for their cooperation in the develop-
ment of therapeutic resistance, disease progression and 
recurrence. Given the abundance of TAMs, DAMs, and 
MDSCs within the TME, the potential for successful 
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targeted immunotherapies directed at innate immunity is 
substantial. Other efforts combating GSC enrichment and 
vascular pathology represent mechanisms to resensitize 
these tumors to standard of care interventions and could 
enhance the efficacy of our current clinical options. With 
better understanding of contributing mechanisms, future 
combination therapies have potential for improving patient 
outcomes.
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