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Abstract

Glioblastoma is the most common primary brain tumor and has a dismal prognosis. The development of central necrosis
represents a tipping point in the evolution of these tumors that foreshadows aggressive expansion, swiftly leading to mortality.
The onset of necrosis, severe hypoxia and associated radial glioma expansion correlates with dramatic tumor microenviron-
ment (TME) alterations that accelerate tumor growth. In the past, most have concluded that hypoxia and necrosis must arise
due to “cancer outgrowing its blood supply” when rapid tumor growth outpaces metabolic supply, leading to diffusion-limited
hypoxia. However, growing evidence suggests that microscopic intravascular thrombosis driven by the neoplastic overex-
pression of pro-coagulants attenuates glioma blood supply (perfusion-limited hypoxia), leading to TME restructuring that
includes breakdown of the blood-brain barrier, immunosuppressive immune cell accumulation, microvascular hyperprolifera-
tion, glioma stem cell enrichment and tumor cell migration outward. Cumulatively, these adaptations result in rapid tumor
expansion, resistance to therapeutic interventions and clinical progression. To inform future translational investigations, the
complex interplay among environmental cues and myriad cell types that contribute to this aggressive phenotype requires
better understanding. This review focuses on contributions from intratumoral thrombosis, the effects of hypoxia and necrosis,
the adaptive and innate immune responses, and the current state of targeted therapeutic interventions.

Keywords Glioblastoma - Necrosis - Tumor-associated macrophages

Introduction

Glioblastoma (IDH-wild type, WHO grade 4) is the most
frequent malignant brain tumor and has a dismal prognosis.
The 5-year survival rate is only 5.6% and the median sur-
vival interval is 15 months from initial diagnosis [173]. By
definition, glioblastoma is a high grade, infiltrating astro-
cytic glioma with one or more of the following features: (1)
necrosis, (2) microvascular proliferation, or (3) the presence
of specific genetic alterations (EGFR amplification, TERT
promoter mutation, or the +7/—10 cytogenetic signature)
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[230]. Historically, the histologic presence of necrosis was
the first recognized feature linked to poor prognosis among
diffuse gliomas and it remained the sole criterion for estab-
lishing the diagnosis of glioblastoma as grade 4 for decades.
Even today, it is recognized that nearly all patients with glio-
blastoma die after a brief period of accelerated tumor expan-
sion following the onset of necrosis.

In fact, necrosis is a criterion of malignancy in many
tumor types, highlighting its fundamental association with
rapid growth and poor patient prognosis [28, 197]. The pre-
vailing dogma passed along to explain the relationship of
malignancy and necrosis has been that “cancer outgrows its
blood supply,” as metabolic demands exceed supply during
the rapid and uncontrolled cell division and tumor expan-
sion (diffusion-limited hypoxia). While this explanation has
been superficially satisfying, it has never been supported by
evidence, it is counterintuitive on deeper inspection, and
its perpetuation has precluded serious investigations into
more plausible mechanisms that link malignant behavior to
necrosis in a manner that might shed light towards potential
therapies.
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Several studies seem to contradict the malignant
necrosis dogma and suggest that cancers grow in a man-
ner that actively compromises their blood supply, leading
to necrosis and augmented growth due to hypoxia- and
tumor microenvironment (TME)-mediated mechanisms.
This theory holds that tumors grow in a manner that
attenuates local blood flow, leading to perfusion-limited
hypoxia and necrosis. There is strong evidence to sug-
gest that microscopic intravascular thrombosis within a
tumor, most likely driven by the neoplastic overexpres-
sion of pro-coagulants, initiates or propagates hypoxia and
necrosis that in turn causes TME restructuring in a manner
that favors accelerated growth [71, 150, 199, 234, 241].
The spatial distribution of thrombosis in and around foci
of necrosis is highly suggestive of an intimate relation-
ship between the two, with thrombosis potentially caus-
ing necrotic development. Microscopic thrombosis can be
identified in nearly all glioblastomas but is rarely found
in lower grade gliomas without necrosis, which are char-
acterized by sheet-like diffuse infiltration and grow more
slowly (Fig. 1). The small number of diffusely infiltrative
astrocytic gliomas that have thrombosis, but not necrosis,
are also associated with poor prognosis, suggesting that it

Fig. 1 Histopathology of glioma progression (H&E staining). Dif-
fusely infiltrating astrocytic tumor without necrosis (histologic grade
3) shows a pattern of sheet-like infiltration by individual tumor
cells within the brain parenchyma (a). The presence of intravascu-
lar thrombosis (arrow) within a diffuse glioma signals transition to
the development of hypoxia, necrosis, and rapid progression. Note
the perivascular clearing of neuropil, representing the initial stages
of BBB breakdown, activation of perivascular TAMs, parenchymal
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is a precursor to the development of necrosis and higher
grade behavior [241].

Molecular genetic alterations driving progression among
the diffuse gliomas are well characterized and have eluci-
dated several molecular subtypes based on genomic altera-
tions, epigenetic signatures or transcriptional class [1, 25,
27,32, 153, 172, 181, 254]. Transcriptional classification
has identified three robust subtypes among the IDH-wild-
type GBMs (proneural, classical and mesenchymal) that
appear to have distinct TME properties. Proneural (PN)
tumors are enriched for PDGFRA, CDK4 and SOX2 ampli-
fication and display increased PI3K/AKT signaling [22,
181]. Despite PDGF signaling correlating with immune
modulation in other solid tumors, glioblastoma displays a
strictly proliferative association with PDGF expression [9].
Mesenchymal (MES) tumors contain inactivating mutations
in NF1, increased MAPK signaling, and are enriched for
endothelial markers and inflammatory infiltrates, especially
the macrophage component [22, 170, 259]. Regarding pro-
angiogenic signals, MES upregulate ADAMO that enhances
chemotactic factor shedding from tumor cells, cleaves
the extracellular matrix (ECM) promoting invasion, and
releases angiogenic factors from endothelial cells promoting
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disruption, and outward migration of glioma cells (b; see also Fig. 3
right panel). At later stages, the presence of intravascular thrombosis
(arrow) is spatially associated with adjacent tumor necrosis (c; aster-
isk). As the necrotic focus enlarges (asterisk), it becomes surrounded
by palisading cells that migrate radially outward in three dimensions
(d; arrow indicates direction of movement; see also Fig. 2d, boxed
region for corresponding MRI region, and Fig. 5)



Acta Neuropathologica (2022) 143:291-310

293

microvascular hyperproliferation [178]. MES tumor cells
also display increased MMP14 membrane localization that
promotes ECM cleavage, endothelial and tumor cell inva-
sion and contributes to the vascular abnormalities commonly
seen in solid tumors [51]. Classical (CL) tumors are char-
acterized by EGFR mutation and amplification, NOTCH
pathway activation, and downregulation of both apoptotic
and MAPK signaling pathways [22]. EGFR activation in
combination with PTEN loss enhances VEGF expression to
support angiogenesis [186], as well as CCL2 secretion that
enriches TAM infiltration [4].

Despite transcriptional class differences, all glioblastoma
subsets display accelerated progression following the onset
of necrosis, indicating that it may be a shared final com-
mon pathway that represents an abrupt turning point towards
rapid expansion [93, 202]. Of interest, cellular proliferation
rates are not a prognostic factor once necrosis develops, indi-
cating that other factors influence survival to a greater extent
[19]. Most likely, accelerated growth of glioblastoma is due
at least to some extent to hypoxia-induced expansion encour-
aged through TME dynamics [79]. There is no doubt that
glioblastomas are highly heterogeneous, as recognized by
the now outdated term “multiforme”. In addition to glioma
cells of variable morphologies, differentiation states and
stem-like features, glioblastomas also contain tumor-associ-
ated macrophages (TAMs), a variety of other immune cells,
florid angiogenesis, entrapped native neural elements and
reactive glia [15, 54, 107, 153, 191, 245]. TAMs consist of
activated resident brain microglia and bone marrow derived
monocytes (BMDMs), which differentiate into macrophages
upon extravasation into the brain parenchyma. While TME
restructuring following necrosis in glioblastoma appears to
be an initiator of rapid tumor growth, appropriate animal
models to establish the causal relationship between necrosis,
TME alterations, and radial expansion are lacking. Indeed,
many orthotopic patient-derived xenograft (PDX) mouse
models do not develop necrosis [103, 132]. A recent study
postulates that this arises in part from defective cross species
chemokine signaling [40]. This review assesses the stages
of TME-related changes that occur during disease progres-
sion in glioblastoma, highlighting the role of hypoxia and
necrosis in modulating the immune response.

Thrombosis

The blood-brain barrier (BBB), comprised of brain micro-
vascular endothelial cells, astrocytes, pericytes, oligoden-
drocytes and unique basement membrane, represents one
of the most controlled vascular networks of any organ and
its deterioration marks a dramatic change in disease pro-
gression among patients with diffuse gliomas. The BBB is
largely intact in non-necrotic, lower grade diffuse gliomas

and corresponds to the absence of contrast enhancement on
MR imaging [255]. The enhancement pattern that becomes
apparent in high-grade gliomas represents contrast agent
seeping through the BBB and being retained in the brain
tumor parenchyma (Fig. 2) [96]. Initial stages of contrast
enhancement are often subtle and patchy and can be noted
before the onset of necrosis. This likely represents the first
stages of vascular pathology and barrier compromise (cor-
responding with endothelial hypertrophy) yet precedes the
onset of severe hypoxia and necrosis that is associated with
more extensive vascular proliferation (Fig. 3). Prior work has
suggested that microscopic intravascular thrombosis arises
at this early stage of glioblastoma progression and is respon-
sible for initiating or propagating hypoxia. The classic MRI
features of glioblastoma, with central necrosis surrounded by
arim of intense contrast enhancement and enveloped by T2

Fig.2 MRI images typical of glioma progression. Fluid-attenuated
inversion recovery (FLAIR) (a, ¢) and T1 post-contrast (b, d) MRI.
The outline of this histologic grade 3 diffusely infiltrative glioma is
noted on FLAIR images (a, arrow). The tumor does not demonstrate
central necrosis or contrast enhancement on post-contrast images
(b, arrow, corresponding to histology in Fig. la). After the onset of
hypoxia and necrosis, MRI demonstrates the tumor outline on FLAIR
images (c, arrow), while T1 post-contrast images show the classic
features glioblastoma, with a prominent region of central necrosis
surrounded by a rim of intense contrast enhancement (d, arrow). The
region of the box (d) corresponds to the histology in Fig. 1d, with the
border region moving radially outward away from the tumor center
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Fig.3 Vascular pathology disrupts the blood-brain barrier, limits
perfusion, and reshapes the tumor microenvironment. Astrocyte end
feet, pericytes, and endothelial cells in pre-thrombotic vessels form
an intact blood—brain barrier (left) and provide a relatively immune
privileged environment within the central nervous system. When
intact, this barrier largely excludes circulating immune cells from the

signal intensity, are noted later, once there is substantial loss
of BBB integrity and extensive microvascular proliferation
in and around the contrast-enhancing component (Fig. 2).
The link between cancer and thrombotic events is not
new. Trousseau recognized well over a century ago that
cancer patients exhibit significant systemic dysregulation
of coagulation, resulting in frequent peripheral deep venous
thromboses and embolic events [58, 150, 246]. This same
tendency towards thrombosis is present within the neoplasm,
where the causative pro-coagulants are highly expressed
[210, 239]. Many investigations have focused on tissue fac-
tor (TF), the body’s most potent pro-coagulant, as the pri-
mary mediator of systemic coagulopathy [208, 209]. Nota-
bly, TF is significantly upregulated in gliomas and its levels
correlate with tumor grade [203, 204]. Factors associated
with malignant behavior in gliomas, such as EGFR over-
expression, PTEN loss and hypoxia-induced early growth
response gene (Egr)-1, have all been shown to upregulate
TF expression by gliomas [203, 204, 241, 248]. The vascular
leakiness that is noted by neuroimaging at early stages of
malignant progression would allow circulating coagulation
factors, including TF’s primary downstream effector, fac-
tor VIla, to encounter TF. Interestingly, IDH mutant glio-
mas show significantly reduced TF levels as compared to
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early tumor microenvironment (TME). Following thrombosis (right),
astrocytes and pericytes detach from vascular endothelial cells, which
also develop leaky junctions, permitting circulating BMDM to trav-
erse the vascular wall and enter the TME. Vascular disruption reduces
perfusion and leads to focal hypoxia, driving cells radially out from
the area of nutrient deprivation

IDH-wild-type gliomas, potentially related to their slower
rate of malignant progression [249, 250]. Conversely, higher
grade gliomas display dysfunctional coagulation/fibrinoly-
sis regulatory pathways supporting local coagulation events
within the tumor [266]. Increased levels of coagulation are
also likely due to thrombin-protease-activated receptor 1
(PAR1) signaling, which is similarly upregulated in glio-
blastoma [60, 71, 126]. PAR1 localizes to astrocyte end feet
where its binding to thrombin leads to a wide variety of
downstream effects, including neuroinflammation and vas-
cular pathology [71]. Thrombin-mediated PAR1 cleavage
actives the G-protein-coupled receptor leading to Rho and
phospholipase C activation and adenylyl cyclase inactiva-
tion [20, 30] and promotes VEGF secretion [99] while elic-
iting an immunosuppressive response [215]. Local VEGF
accumulation around the BBB induces pericyte detachment,
basement membrane degradation, vessel enlargement and
leakiness, perpetuating the cycle of vascular pathology
[237, 238]. During this process, glioblastomas also upregu-
late podoplanin, which enhances local platelet aggregation
and has been implicated in systemic thrombosis through
its cell surface expression by circulating glioblastoma cells
[180, 199, 234]. Podoplanin binds C-type lectin-like recep-
tor (CLEC)-2 on circulating platelets and induces clotting
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[180]. Concurrently, the emerging hypoxia upregulates plas-
minogen activator inhibitor 1 (PAI-1) and fibronectin in the
perinecrotic niche and surrounding occluded vasculature,
generating local pro-coagulant environments [207].

Upregulation of coagulation factors influences the TME
in manners that may be unexpected, distinct from their role
in thrombosis. For example, TF, factor VIla (FVIIa), and fac-
tor XIIa (FXIIa), are capable of recruiting TAMs to the TME
and inducing an immunosuppressive phenotype [69, 149].
The TF-FVIla complex can trigger mitogenic, angiogenic,
and cell survival signaling, as well as enhance a glioma stem
cell (GSC) phenotype in certain contexts [248]. Podoplanin
may have effects on dendritic cell mediated immunosup-
pression by binding to and activating CLEC-2, leading to
platelet aggregation, enhancing local and distal thrombotic
events and monocyte/macrophage recruitment to the area
of vascular pathology, reflecting another mechanistic link
between coagulation and tumor progression [146, 195, 199].
The prevention or suppression of early thrombotic events in
glial neoplasms represents a strategy to slow down disease
progression that results from hypoxia- and necrosis-driven
TME changes.

Hypoxia

Hypoxia, a state of low oxygen availability, is a critical medi-
ator of pathologic events, yet remains challenging to model
and study within physiologically relevant experimental sys-
tems. Establishing hypoxic conditions, maintaining physi-
ological gradients and monitoring of oxygen levels in vivo
remain daunting prospects, yet recent advances in positron

Fig.4 The hypoxic tumor
microenvironment is highly
coordinated and dynamic.
Glioblastoma cells upregulate
HIFs and subsequently stimu-
late MMPs to remodel the
ECM, clotting factors to induce
focus thrombosis, angiogenic
factors that drive microvascular
hyperproliferation, and immu-
nomodulatory factors including
damage-associated molecular
patterns that form an immuno-
suppressive environment
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emission tomography (PET) and two-photon phosphores-
cence microscopy are encouraging [119, 228, 274]. Nev-
ertheless, fluctuations in oxygen availability have profound
effects on homeostasis, as well as disease onset and progres-
sion, and therefore must be a central consideration of any
serious scientific pursuit of mechanisms relevant to glioma
progression [224, 242]. We have suggested that vaso-occlu-
sive mechanisms initiate and propagate the severe hypoxia
that is present in nearly all high-grade diffuse gliomas and
trigger the adaptive responses that lead to TME restructur-
ing and tumor expansion. Hypoxia-inducible factors (HIFs)
1 and 2 are the predominant cellular oxygen sensors, and
are upregulated under hypoxic conditions to activate a tran-
scriptional program conducive to an adaptive response that
allows cell survival under these conditions [164]. In the case
of malignant gliomas, the response to hypoxia also results in
events that favor disease progression (Fig. 4). Nuclear HIFs
enhance glycolytic metabolism, cellular migration through
a urokinase (uPA)-uPA receptor (uPAR) autocrine loop, and
invasion through matrix metalloproteinases (MMPs)-2 and
-9 secretion [18, 33, 72, 115, 127, 152, 160, 162, 164, 217,
283]. Enhanced glioma cell HIF expression leads to a dis-
tinct survival advantage in hypoxic and necrotic conditions
[137, 152, 179, 257, 284] including therapeutic resistance
through GSC enrichment [134, 251, 258, 276]. Furthermore,
intratumoral HIF and other hypoxia-induced genes correlate
with a more aggressive, pro-invasive and highly angiogenic
phenotype across many solid tumors including glioblastoma
[49, 64, 90, 115, 157, 189, 236, 253, 260, 271].

The adaptive response to hypoxia also influences inflam-
matory and immune responses following the onset of
necrosis. For example, HIF-1a modulates hypoxic T cell
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metabolism, facilitating Treg recruitment and an immuno-
suppressive phenotype [158]. Hypoxia increases TF secre-
tion exacerbating focal vascular pathology, and Ras and
PI3K-Akt signaling further enhance migration away from
the hypoxic region [2, 204]. One study described p21 acti-
vated kinase (PAK) 1-dependent autophagy, linking hypoxia
to glioblastoma tumorigenesis and radial expansion [62].
Hypoxic glioblastoma cells display not only altered DNA
repair machinery, but are increasingly resistant to chemo-
and radiation therapies [35, 45, 167]. Others have shown
that hypoxia-induced epigenetic changes in histone deacety-
lase (HDAC) 3 activity and downstream transcription factors
CCAAT enhancer binding protein beta (CEBPB) and JUN
contribute to temozolomide (TMZ) resistance [66]. Intratu-
moral hypoxia also induces an inflammatory GSC phenotype
that facilitates glioblastoma radial expansion [235]. Thus,
acute and sustained hypoxia arising from vaso-occlusion and
associated with necrosis has profound effects on disease pro-
gression and therapeutic resistance.

Necrosis

While the metabolic stress related to hypoxia contributes
to a wide range of adaptive responses, as noted above, the
associated development of necrosis also plays a pivotal
role in reshaping the local brain tumor microenvironment.
Although necrosis has historically been considered an
unprogrammed, passive cell death response, work over the
last 2 decades has uncovered specific signaling networks
that regulate its development [281]. Separating the effects of
necrosis and hypoxia may be difficult or impossible, and the
classic histopathologic features of glioblastoma, including
intratumoral thrombosis, microvascular proliferation, and
neoplastic palisade formation around necrosis are intimately
related to both (Fig. 5) [18, 191, 265]. Our prior work sug-
gests that intravascular thrombosis causes vaso-occlusion,
leading to nutrient deprivation and sustained hypoxia/anoxia
that triggers cellular necrosis [202, 204, 241]. How these
early hypoxic/necrotic events coordinate TME, reshaping is
an area of active research. Necrotic cells are now known to
release endogenous damage-associated molecular patterns
(DAMPs), capable of recruiting TAMs or damage-associ-
ated microglia (DAM) to the TME [21, 50, 87], facilitating
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Fig.5 Necrosis initiates a sterile inflammatory response that pro-
motes glioma progression. Intratumoral thrombosis within the
hypoxic/necrotic core forces glioblastoma cells to migrate towards a
more hospitable locale. While most surviving perinecrotic glioblas-
toma cells migrate away from the necrotic core, an enriched stem-like
phenotype is found in the highly hypoxic perinecrotic (palisading)
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niche. Meanwhile, blood—brain barrier disruption allows immune
access to the tumor, monocyte influx and macrophage differentia-
tion as those cells migrate towards the necrotic core. Simultaneously
this emerging perivascular niche becomes enriched in stem-like cells,
budding vessels, and myeloid-derived suppressor cells
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disease progression [120, 201] (Fig. 5). DAMP release nor-
mally initiates sterile inflammation to drive tissue repair yet
when left unchecked can facilitate a chronic inflammatory
state resulting in unwanted tissue damage, particularly in
ischemia-related injuries [46, 110, 198]. Necrosis-associated
DAMPs include adenosine/adenosine triphosphate (ATP)
[17, 105, 128], biglycan [6, 200, 213], heparan sulfate [113,
272], heat shock proteins (HSPs) [11, 12, 109, 193, 252],
high-mobility group box 1 (HMGB1) [94, 212, 222, 244,
282], hyaluronan (HA) [112, 214, 240], interleukin (IL)-1o
[36, 59, 73, 125], IL-33 [31, 163, 216, 220], S100 proteins
[42, 91, 92, 135], and versican [95, 121, 264]. Of interest,
ATP, HA, HMGBI, IL-1a and S100 proteins are potent
DAMPs that are enriched in brain and glioma tissues [10,
21,73, 92,94, 128, 182, 192, 221, 229, 247]. Extracellular
adenosine binds to adenosine receptors on many immune
cells including macrophages, driving initial inflamma-
tion, then inducing an M2-like immunosuppressive phe-
notype [128] and enhancing glioblastoma invasion [182].
HA cleavage from the ECM into small molecular weight
fragments engage not only it’s canonical receptor, CD44,
but also several Toll-like receptors (TLR2 and 4) known to
mediate inflammatory responses [240] while simultaneously
enhancing glioblastoma invasive capacity [37]. HMGB1
acts through both TLR4 and the receptor for advanced gly-
cation end products (RAGE) to initiate pro-inflammatory
cytokine release, recruiting bone marrow-derived monocytes
(BMDMs) to sites of injury and contributing to the immuno-
suppressive TME [94, 101, 232]. Initial IL-1« release from
necrotic cells draws neutrophils and BMDM in, followed by
a second wave of IL-1a secretion from subsequently acti-
vated macrophages, further enhancing the pro-inflammatory
microenvironment [59, 125]. S100 proteins also bind RAGE
and attract BMDM to the TME, contributing to immune cell
reprogramming and at the same time promoting tumor cell
proliferation [87, 92, 135]. In addition to the generation of
sterile inflammation, necrotic cellular pathology upregulates
cell survival pathways to compensate for an increasingly
inhospitable environment. Dramatic microenvironmental
restructuring following necrosis enriches for distinct cellular
subpopulations that thrive under these selective pressures.

Immune microenvironment

Microglia represent the largest phagocytic cell population
in the brain under normal homeostatic conditions. They
are unique to the brain and arise from immature yolk sac
(Runx1*) progenitor cells between embryonic days 8.5 and
9.5 [68, 70, 83]. They are also among the most long-lived
brain-resident cells, rivaling post-mitotic neuron life spans
[280]. As mentioned, DAMs respond to DAMPs during
brain injury [14, 50], representing an early and rapid innate

immune response. In some disease states, DAMs play a
neuroprotective role and hinder disease progression [120,
154]. However, sustained neuroinflammation and DAM
reprogramming can result in neurotoxic events mediated
not only by DAMs but also through modulating reactive
astrocytes [13, 138]. Upon brain injury, stroke or tumo-
rigenesis, the BBB becomes compromised leading to sig-
nificant influx of circulating BMDM, as well as microglial
activation [41, 168, 183, 262], and distinguishing these cell
types and various activation states requires detailed analy-
sis [77, 129]. In addition, TAM derived IL-1b exacerbates
BBB defects, enhancing vascular edema and BBB leaki-
ness [88]. These cell lineage determinations become crucial
when determining how to counteract disease processes as
BMDMs and microglia play differing roles in brain inflam-
matory responses [29, 55, 277]. A recent study utilizing a
mouse model of pediatric high-grade glioma demonstrated
that BMDMs, but not microglia are responsible for mediat-
ing the intratumoral immune response [206]. In addition, a
single-cell RNA sequencing study revealed spatial and func-
tional diversity among infiltrating microglia and BMDMs
[130, 169]. These distinct subpopulations require informed
consideration when designing therapeutic interventions to
effectively target the malignant immune behaviors while
preserving neuroprotective responses.

Despite advanced understanding of inflammation fol-
lowing traumatic brain injury and ischemia [46, 110, 262],
mechanisms and therapeutic vulnerabilities of the sterile
inflammatory response have not been well established in
the glioblastoma TME. Following necrosis, TAMs represent
the most abundant non-neoplastic cells within glioblastoma,
accounting for 30-50% of all cells within the tumor mass
(Fig. 6) [39, 79, 80]. TAMs are not passive bystanders, but
rather actively promote tumor progression and modulate
treatment responses [61, 98, 187, 278]. By the time a malig-
nant brain tumor has developed severe hypoxia and central
necrosis, the vast majority (> 80%) of TAMs derive from
BMDMs, while the remainder are comprised of microglia
[38, 80]. However, not all microglia respond to chemotactic/
activating factors leaving residual undifferentiated tumor-
associated microglia that appear as web-like immune sur-
veillance cells enriched around the disease periphery [41,
227]. TAM density increases five- to tenfold following
necrosis, mainly in hypoxic, perinecrotic zones [48, 156,
259]. Hypoxia induces TAM influx, activation then conver-
sion from an anti-tumor (M1-like) to an immunosuppressive
(M2-like) phenotype, promoting tumor progression [38, 39,
86, 169]. A recent TCGA pan-cancer study indicated that
glioblastoma has a prominent TAM signature, with a highly
immunosuppressive phenotype and suppressed Th1 lympho-
cytes [243]. Immune response genes are enriched in mesen-
chymal glioblastomas, indicating genomic background and
transcriptional activities influence the TME [54, 111, 254,
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Fig.6 Enhanced tumor-associated macrophages (TAMs) in glioma
progression (CD163 immunohistochemistry). In diffusely infiltrat-
ing gliomas that are low grade (histologic grade 2) and have an intact
blood-brain barrier (BBB), there is a small population of inactive,
flattened, perivascular CD163-positive TAMs (arrows) and only rare
CD163-positive cells within the CNS parenchyma (a). With glioma
progression and the development of hypoxia and BBB breakdown,
there is activation and enlargement of the perivascular CD163-pos-

285]. One study found increased immune cell infiltration,
including TAMs and lymphocytes, in human mesenchymal
glioblastomas compared to proneural and classic subtypes
[118], while another found that classical glioblastomas
display greater CD4% and CD8" T cell infiltration [40].
Analysis of TCGA glioblastoma data showed that allograft
inflammatory factor 1 (AIF1), the gene encoding ionized
calcium binding adaptor molecule 1 (IBA1), was signifi-
cantly upregulated in mesenchymal glioblastomas compared
to others [118]. Distribution within the TME—potentially
related to the hypoxia gradient—also alters TAM behavior,
as peripheral TAMs display pro-inflammatory signaling,
homing circulating BMDMs to the TME [26, 130]. Myeloid-
derived suppressor cells (MDSCs) are functionally similar
to immunosuppressive TAMs but express specific cell sur-
face markers such as CD33, CD14 and CD15 in humans
or CD11b and protein gamma response 1 (Grl) in mouse
models [34, 175]. TAM-secreted CCL2 recruits MDSCs
from circulation while GSC-secreted macrophage migration
inhibitory factor (MIF) enhances their immunosuppressive
activity [3, 34, 175]. The protective role has largely been
attributed to enhanced MDSC programmed death-ligand 1
(PD-L1) expression that mitigates CD4" T cell activity in
and around the glioblastoma TME [56]. This active recruit-
ment and reprogramming among immune subpopulations in
and around the tumor create an increasingly complex, het-
erogeneous milieu that we are just beginning to recognize.
Future investigations into the temporal and spatial dynamics
will enable systematic interventions to reverse the immune
privileged tumor state.

Glioblastoma exhibits far fewer infiltrating lymphocytes
than other solid tumors, consisting largely of Tregs followed
by CD3* T helper cells, other CD4" T cells and few CD8*
T cells [85, 268]. Importantly, glioblastoma T cell infiltra-
tion co-localizes with areas displaying vascular pathology,
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itive TAM population (arrow) and a large influx of CD163-positive
TAMs from derived from circulating BMDM that traverse the BBB
and infiltrate into the brain (b, corresponding to histology in Fig. 1b).
With the development of necrosis, large numbers of CD163-positive
TAMs are noted around necrosis (asterisk) and within the infiltrat-
ing component of the glioblastoma (¢, corresponding to histology in
Fig. 1c)

suggesting that thrombosis, vascular leakiness or angiogen-
esis may mediate T cell access to the CNS [47, 145]. Tregs
respond to glioblastoma secreted CCL2 as well as GSC and
dendritic cell (DC) produced indoleamine 2,3-dioxygenase
(IDO), and their accumulation inversely correlates with sur-
vival [44, 114, 159, 176, 256]. In addition, TAMs upregulate
T cell immunoglobulin- and mucin domain-containing mol-
ecule (TIM) 3 and TIM4 expression on infiltrating T cells,
inducing Treg programming while simultaneously eliminat-
ing hypoxia-induced phosphatidylserine (PS) expressing
CDS8* T cells in the glioblastoma TME [268, 275]. How-
ever, in neurodegeneration and traumatic brain injury, Tregs
appear to enhance re-myelination and OPC proliferation
while suppressing DAM and CD8* T cell activity, providing
a neuroprotective effect combating disease progression [124,
139, 270]. Given the differing roles that various immune
subpopulations play in neurologic disorders, it is essential
to properly identify and target those specific immune cells
to harness the innate and adaptive immune system to coun-
teract disease progression.

Glioma stem cells

Many recent reviews provide a comprehensive understand-
ing of the history and significance of GSCs and their mark-
ers [131, 273]. Single cell RNAseq analysis and lineage trac-
ing experiments reveal substantial inter- and intratumoral
heterogeneity and inherent plasticity among GSC subpopu-
lations [15, 53, 76, 107, 165, 245]. While terms and con-
cepts related to GSCs vary considerably in the literature,
most studies converge on the conclusion that GSC enrich-
ment correlates with tumor grade, therapeutic resistance and
recurrence [63, 131]. Most studies have also indicated that
GSCs are enriched in specific biological niches, particularly
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in the hypoxic palisading cells around necrosis and within
the immediate perivascular region [24, 79, 81, 116, 155].
Thus, establishing mechanistic links between TME enrich-
ment of GSCs is highly relevant to the human disease and
may have therapeutic implications. In particular, the peri-
necrotic niche contains a high density of neoplastic cells
that show dramatic upregulation of hypoxia-inducible tran-
scription factors and downstream targets, with a gradually
diminishing hypoxic gradient extending beyond this zone
[18, 20, 23, 164, 202, 265]. GSCs are enriched within this
niche through a combination of hypoxic- and necrotic-driven
chemotaxis and GSC phenotype enrichment [7, 18, 84, 102,
117, 134, 217, 226]. In turn, the GSC subpopulation facili-
tates TAM recruitment and subsequent immunosuppressive
conversion along with microvascular hyperplasia surround-
ing the necrotic zones [63, 225, 253]. Within the perivascu-
lar niche, GSCs secrete chemotactic factors, such as VEGF,
FGF, and PDGF, that disrupt the BBB and local vasculature;
colony-stimulating factor (CSF) 1, periostin and stromal
cell-derived factor (SDF) 1a that facilitate BMDM influx
into the TME; and IL1 and IL6 that reprogram macrophages
into an immunosuppressive phenotype [16, 61, 79, 89, 269,
279, 287]. A recent study found GSC-secreted extracellu-
lar vesicles reprogram local endothelial cells and identi-
fied potential pro-angiogenic miRNAs [147]. Others have
suggested that bone marrow-derived mesenchymal stem
cells recruited to the TME directly fuse with perivascular
GSCs to drive neoangiogenesis in the expanding glioblas-
toma [231]. Endothelial cells secrete IL-8, which enhances
the GSC phenotype and promotes glioblastoma expansion
[155, 219] while also generating a positive feedback loop in
which TAMs respond by producing tumor necrosis factor
alpha (TNFa) that supports endothelial cell activation and
microvascular proliferation [261]. In addition, these tumor-
associated endothelial cells protect glioblastomas from radi-
ation therapy [67, 78], chemotherapy [100], and angiogenic
blockade [142]. GSCs accumulate within these tumor niches
using them as safe havens and represent a critical subpopula-
tion to address when developing future clinical approaches.

GSCs in both the perivascular and perinecrotic niche play
a coordinated role in attracting and redirecting circulating
monocytes towards the central necrotic region. The BBB
disruption that occurs together with vascular pathology not
only generates an ideal environment for one subset of GSCs;
it also establishes an entry point for recruiting BMDMs into
the tumor microenvironment [24, 177, 286]. While some
BMDMs will remain in this niche, others proceed through
the parenchymal space along the hypoxic gradient into the
necrotic core. Upon arrival, tumor infiltrating TAMs again
find themselves surrounded by GSCs in the perinecrotic
niche, where there is a mutually beneficial relationship in
an otherwise inhospitable environment [117, 217, 251]. The
specific signaling interplay that enables this directed TAM

relocation largely remains a mystery, in part due to difficulty
in modeling these unique microenvironmental niches sepa-
rated by a hypoxic gradient. Understanding this relationship
could reveal divergent roles for these GSC subpopulations
and enable differential immunotherapeutic based interven-
tions aimed at disrupting complementary homing signals.

Therapeutic interventions

Therapeutic interventions for modulating macrophage
activity across cancer types have been the subject of much
investigation and review [5, 104, 108, 151, 185]. Here, we
highlight recent advances in microenvironmental manipula-
tion within the context of brain disease. Vascular pathol-
ogy, GSC enrichment and immunosuppressive infiltrating
immune cells all contribute to enhanced therapeutic resist-
ance in glioblastoma and serve as rational broad targets for
therapy [74, 106, 161, 218, 223, 251].

Glucocorticoids are time-tested immunomodulatory
agents that are commonly employed at initial clinical pres-
entation, perioperatively and during radiotherapy for patients
with gliomas to diminish reactive edema and improve patient
quality of life [52]. However, steroid-related side effects and
toxicities necessitate short-term usage and dose de-escala-
tion regimens. Both preclinical and retrospective clinical
studies have suggested that corticosteroids may compromise
immunotherapeutic efficacies and clinical outcomes [174,
184].

T cell-targeted immunotherapy has become the gold-
standard approach to generating anti-tumor immunity in
solid tumors. However, the early phase 3 immunotherapy
trial targeting programmed cell death protein 1 (PD-1)
in glioblastoma failed to improve overall patient survival
(NCTO02017717), which has been attributed to limited
immune access to the TME [196].

Novel preclinical work shows that nanoscale immunocon-
jugates successfully penetrate the BBB to enhance T cell-tar-
geted immunotherapy and overcome Treg-mediated immu-
nosuppression [65]. Astonishingly, one study even found
that anti-PD-1 therapy activated an anti-tumor immune
response despite lacking conventional CDS cytotoxic T cells
in the TME [194]. These therapeutic adaptations emphasize
the necessity for understanding TME interactions to inform
effective clinical interventions.

A recently established macrophage-related gene signa-
ture [233], containing both macrophage and glioblastoma
expressed genes, predicted therapeutic sensitivity more
accurately than the previously published immune response
signature [43] or the classical (EGFR amplified) signature.
Other investigations demonstrated that CD74* TAMs and
MDSCs reduce clinical therapeutic efficacy [123, 267].
Given the unique immunology within glioblastomas,
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many interventions have been developed to inhibit TAM
influx and/or conversion to an M2-like phenotype. These
approaches upregulate IL-12 signaling, disrupt mamma-
lian target of rapamycin (mTOR), colony-stimulating factor
1 receptor (CSF-1R), cyclin-dependent kinase (CDK), or
phosphoinositide-3-kinase (PI3K) signaling, yielding mixed
results with the most promising demonstrating resensitiza-
tion to standard of care therapies and increased survival
in animal glioblastoma models [8, 97, 133, 136, 140, 141,
144, 188, 190, 191, 263]. Still other studies show promising
potential for exploiting the robust immune presence within
glioblastoma. For instance, inhibiting proprotein convertases
not only reduces immunosuppressive TAM polarization,
but re-engages anti-tumoral activity to blunt glioblastoma
expansion [205].

Due to treatment resistance inherent in GSC subpopu-
lations, forced differentiation or directly targeting GSC
phenotype promoting pathways have a substantial capac-
ity to resensitize glioblastomas to conventional therapeutic
approaches and extend time to recurrence. The perinecrotic
niche protects GSCs through necrotic-driven DAMP sign-
aling, which when obstructed eliminates these safe havens.
This has been supported by the finding that disruption of
adenosine signaling was capable of blunting GSC-driven
migration and invasion, and that HMGB1 blockade was
capable of reducing vascular permeability, neuroinflamma-
tion and edema [94, 166, 232]. Another approach seeks to
diminish the GSC phenotype, targeting key transcriptional
programs along the ERK1/2-SRY-box transcription fac-
tor 9 (SOX9), casein kinase (CK)2-signal transducer and
activator of transcription (STAT)3, or SOX2-miR-126-3p
axes resulting in cellular differentiation, decreased prolifera-
tion and invasion, increased apoptosis as well as enhanced
susceptibility to radiation and TMZ therapies [75, 82, 143,
148, 211]. In addition, GSCs can give rise to drug refractory
recurrent disease necessitating novel second-line therapies.
One such study found CDK inhibitor-resistant glioblastomas
are sensitive to c-MET/Trk dual inhibition, demonstrating
effective sequential intervention modalities [171]. Other
approaches exploit GSC-specific metabolism identifying
a glycogen synthase kinase (GSK) 3p inhibitor, kenpaul-
lone, and a pyrimidine synthesis inhibitor, 10580, which
resensitize tumors to standard of care therapy [57, 122].
Future endeavors will continue to capitalize on these unique
disease-related aspects to precisely target neurological and
neuroinflammatory malregulation, further emphasizing the
importance of understanding these microenvironmental
pathways.
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Conclusion

The brain TME contains a diversity of cell types, a
complex vascular barrier, and unconventional stroma.
Combined, these features, along with the access barri-
ers imposed by the skull, make understanding dynamic
microenvironmental changes of glioblastoma a challeng-
ing process, differing from neoplastic processes in other
organs. The state of our current understanding suggests
that the TME of diffuse gliomas is dramatically altered
with the development of microscopic intravascular throm-
bosis at an early stage that is responsible for initiating or
propagating a cascade that results in rapid disease pro-
gression. Glioblastomas display enhanced pro-coagulant
activity, stemming from intrinsic genomic drivers (EGFR
overexpression, PTEN loss) as well as hypoxia-induced
signaling (Egf-1). These coagulant factors (TF, FVIIa,
FXIla) generate focal intravascular coagulation within
the TME contributing to central necrosis, BBB disruption,
radial progression, immune influx and modulation, which
all combine to the advancement of disease. The resultant
hypoxic gradient also enhances GSC survival mechanisms
while reducing therapeutic efficacy, providing a challeng-
ing scenario for clinical intervention.

Prolonged and severe hypoxia cues the onset of necro-
sis that releases a variety of DAMPs (adenosine, HA,
HMGBI, IL-1a, S100 proteins) that initiate sterile inflam-
mation. Perhaps the most substantial TME feature that dis-
tinguishes glioblastoma from many other solid tumors and
CNS diseases is the massive influx and reprogramming of
the innate immune system. While in the past, some have
suggested that glioblastoma is an immunologically “cold”
tumor, more recent immunohistochemical, flow cytometric
and transcriptional analyses have shown that the glioblas-
toma TME displays an abundance of infiltrating immune
cells. Furthermore, hypoxia-induced signaling supports
conversion of immune cells from an inflammatory to an
immunosuppressive phenotype within the TME, including
Treg recruitment, TAM immunomodulation, and MDSC
localization to the perivascular niche. At the tumor periph-
ery, MDSCs and DAMs play critical roles in excluding
adaptive immune cells from the bulk tumor and represent
potential barriers to current T cell focused immunotherapy
that are becoming commonplace in other solid tumors.

Current efforts continue to explore spatial, temporal and
cell-of-origin related contributions to immunomodulation
among microglial and BMDM subpopulations of TAMs.
The close spatial and temporal association between TAMs
and GSCs in perivascular and perinecrotic niches is wor-
thy of further study for their cooperation in the develop-
ment of therapeutic resistance, disease progression and
recurrence. Given the abundance of TAMs, DAMs, and
MDSCs within the TME, the potential for successful
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targeted immunotherapies directed at innate immunity is
substantial. Other efforts combating GSC enrichment and
vascular pathology represent mechanisms to resensitize
these tumors to standard of care interventions and could
enhance the efficacy of our current clinical options. With
better understanding of contributing mechanisms, future
combination therapies have potential for improving patient
outcomes.
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