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Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is neuropathologically characterized by degenera-
tion of dopaminergic neurons of the substantia nigra (SN) and formation of Lewy bodies and Lewy neurites composed of 
aggregated α-synuclein. Proteolysis of α-synuclein by matrix metalloproteinases was shown to facilitate its aggregation and 
to affect cell viability. One of the proteolysed fragments, Gln79-α-synuclein, possesses a glutamine residue at its N-terminus. 
We argue that glutaminyl cyclase (QC) may catalyze the pyroglutamate (pGlu)79-α-synuclein formation and, thereby, con-
tribute to enhanced aggregation and compromised degradation of α-synuclein in human synucleinopathies. Here, the kinetic 
characteristics of Gln79-α-synuclein conversion into the pGlu-form by QC are shown using enzymatic assays and mass 
spectrometry. Thioflavin T assays and electron microscopy demonstrated a decreased potential of pGlu79-α-synuclein to 
form fibrils. However, size exclusion chromatography and cell viability assays revealed an increased propensity of pGlu79-
α-synuclein to form oligomeric aggregates with high neurotoxicity. In brains of wild-type mice, QC and α-synuclein were 
co-expressed by dopaminergic SN neurons. Using a specific antibody against the pGlu-modified neo-epitope of α-synuclein, 
pGlu79-α-synuclein aggregates were detected in association with QC in brains of two transgenic mouse lines with human 
α-synuclein overexpression. In human brain samples of PD and dementia with Lewy body subjects, pGlu79-α-synuclein 
was shown to be present in SN neurons, in a number of Lewy bodies and in dystrophic neurites. Importantly, there was a 
spatial co-occurrence of pGlu79-α-synuclein with the enzyme QC in the human SN complex and a defined association of 
QC with neuropathological structures. We conclude that QC catalyzes the formation of oligomer-prone pGlu79-α-synuclein 
in human synucleinopathies, which may—in analogy to pGlu-Aβ peptides in Alzheimer’s disease—act as a seed for patho-
genic protein aggregation.
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Introduction

Parkinson’s disease (PD) is the second most frequent 
progressive neurodegenerative disorder after Alzhei-
mer’s disease (AD) [7, 12]. The brains of PD patients are 
neuropathologically characterized by the degeneration of 
dopaminergic neurons of the substantia nigra (SN) pars 
compacta, which results in dopamine depletion of the 
striatum [52, 68]. This dopaminergic hypoactivity affects 
functions of the complex basal ganglia network, leading 
to clinical symptoms, such as hypokinesis and tremor 
[15, 34]. Another typical feature of PD is the appearance 
of Lewy bodies and Lewy neurites that are mainly com-
posed of aggregated α-synuclein [28, 82]. Under physio-
logical conditions, α-synuclein is believed to be a natively 
unfolded protein of 140 amino acids, but it may also exist 
as α-helically folded multimers [8, 25]. It is predomi-
nantly localized to presynaptic nerve terminals and has 
been shown to act as a molecular chaperone in the forma-
tion of SNARE complexes being involved in the regula-
tion of dopamine release [35]. In the course of PD, how-
ever, α-synuclein conformation is altered to form Lewy 
inclusions and various aggregation conformers, ranging 
from small oligomers to amyloid fibrils, with distinct 
structural and biochemical features [5, 59, 100]. Recent 
studies provided evidence that aggregated α-synuclein 
may propagate its structural alterations and loss or gain of 
function via prion-like spreading [47, 54, 60, 106]. Simi-
larly, α-synuclein aggregates are also present in brains of 
patients suffering from multiple systems atrophy and from 
dementia with Lewy bodies (DLB), where the pathology 
also affects cortical association areas [40, 75, 101].

Structurally, α-synuclein is composed of 3 domains: 
an amphipathic N-terminal region (aa 1–60), a central 
hydrophobic domain involved in protein aggregation (non-
Abeta component (NAC) region; aa 61–95) and a highly 
acidic, proline-rich C-terminus (aa 96–140) [33]. The full-
length α-synuclein can be post-translationally modified 
by phosphorylation, ubiquitination, nitration, glycation, 
SUMOylation and truncation [4, 37, 105, 109]. C-terminal 
truncations of α-synuclein by defined protease activities, 
such as m-calpain and 20S proteasome, have been linked to 
increased aggregation, fibril formation and neurotoxicity [55, 
63, 74, 99]. In addition, N-terminally truncated α-synuclein 
fragments are generated by matrix metalloproteinases 
(MMPs) -1, -3 and -9 [61, 102]. Most importantly, limited 
proteolysis of α-synuclein by MMP-1 and MMP-3, but not 
by MMP-9, was shown to generate fragments that increase 
de novo aggregation of α-synuclein in vitro [61]. Since 
α-synuclein is cleaved by MMP-3 preferentially within the 
NAC domain, the resultant fragments do not form fibrils but 
rather oligomers that compromise cell viability [102]. One 

of the MMP-3-generated α-synuclein fragments, Gln79-α-
synuclein, possesses a glutamine residue at its N-terminus 
(Fig. 1a).

Peptides with an N-terminal glutamate or glutamine resi-
due may serve as substrates for glutaminyl cyclase (QC), 
giving rise to pyroglutamate (pGlu)-modified peptides [92, 
97]. This pGlu modification confers stability against proteo-
lytical degradation and increases the biological activity of 
neuropeptides and peptide hormones, such as orexin A, gas-
trin, gonadotropin- and thyrotropin-releasing hormones and 
neurotensin in hypothalamus and pituitary [14, 18, 29, 81].

Under pathological conditions in AD, however, QC cata-
lyzes the pGlu modification of N-truncated Aβ peptides that 
are highly pathogenic and act as seeds for Aβ oligomer and 
plaque formation [3, 23, 76, 93]. QC expression is develop-
mentally regulated [43] and highly abundant in brain struc-
tures affected by amyloid pathology in AD, such as nucleus 
basalis Meynert, locus coeruleus and Edinger–Westphal 
nucleus [73], hippocampus [42] and neocortex [72]. Phar-
macological inhibition of QC activity [93] and genetic abla-
tion of QC in experimental animal models [3, 50] reduced 
pGlu-Aβ generation and total Aβ load and ameliorated 
learning and memory deficits. It is tempting to speculate 
that QC—if expressed by dopaminergic SN neurons—may 
catalyze the pGlu79-α-synuclein formation and, thereby, 
contribute to enhanced aggregation and compromised degra-
dation of α-synuclein in human synucleinopathies (Fig. 1b).

Therefore, we here analyzed the enzymatic formation of 
pGlu79-α-synuclein by QC in vitro, its aggregation charac-
teristics and neurotoxic profile, its co-localization with QC 
and increased formation in the SN of human PD and DLB 
brains as well as in animal models for synucleinopathies. 
Together, we demonstrate the existence of a novel patho-
genic post-translational α-synuclein modification. Since this 
modification is QC-catalyzed and QC inhibitors are already 
in clinical trials for AD treatment, there might be novel ther-
apeutic options for interfering with α-synuclein aggregation 
in PD as well.

Materials and methods

QC‑catalyzed formation of pGlu79‑α‑synuclein

Peptide synthesis

The synthetic α-synuclein79–90 peptide was synthesized 
according to standard Fmoc solid phase protocols on a Tetras 
peptide synthesizer (Advanced ChemTech, Louisville, USA) 
at 60 µmol scale as C-terminal amide on Rink amide resin 
(Iris Biotech; Marktredwitz, Germany) using standard Fmoc/
tBu-protected amino acids (Iris Biotech). Coupling was done 
using O-(benzotriazol-1-yl)-N,N,N’,N′-tetramethyluronium 
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tetrafluoroborate (TBTU) and N-methylmorpholine (NMM). 
Fmoc-deprotection was carried out using 20% piperidine in 
DMF. Final cleavage and deprotection of the peptides was 
performed using TFA:EDT:H2O:TIS (50:2:2:1 v/v). After 
precipitation with cold diethylether, the peptides were puri-
fied by preparative reversed phase (RP)–HPLC (Phenom-
enex Luna C18(2) column) and eluted with an increasing 
water:acetonitrile gradient starting with 5% containing 
0.04% TFA. The identity and purity were assessed by ana-
lytical RP–HPLC and ESI MS.

Enzymatic activity assay

The kinetics of QC-catalyzed pGlu-α-synuclein79–90 for-
mation was measured by a continuous coupled spectropho-
tometric test in 50 mM Tris/HCl buffer, pH 8.0 using glu-
tamate dehydrogenase as auxiliary enzyme as described in 
detail by Schilling et al. [90, 91]. Kinetic parameters were 
calculated by non-linear regression as indicated before [95].

Mass spectrometry

The pGlu formation at the N-terminus of the synthetic 
α-synuclein79–90 peptide was monitored by mass spectro
metry. 22.6 µg of this peptide were incubated in a total vol-
ume of 200 µl 50 mM Tris/HCl buffer, pH 8.0, (100 µM) for 
10, 30 and 60 min in the absence or presence of the enzyme 
QC (0.7 µg/ml; 20 nM) with and without the QC inhibitor 
PBD150 (100 µM). The analytes were ionized by a nitrogen 
laser pulse (337 nm) and accelerated under 20 kV with a 
time-delayed extraction before entering the time-of-flight 
mass spectrometer (Voyager De Pro, Sciex). The maternal 
synthetic α-synuclein79–90 peptide was detected at the mass 
of 1130.6 Da, whereas after pGlu79 modification and lib-
eration of ammonia the molecular weight was reduced to 
1113.8 Da.

Aggregation of recombinant α‑synuclein 
and pGlu79‑α‑synuclein

Expression and purification of α‑synuclein proteins

The human full-length α-synuclein and Gln79-α-synuclein 
proteins were recombinantly expressed following pro-
cedures described recently [57]. Purification included 
Ni2+-chelating chromatography on a Streamline Chelating 
resin (Streamline Chelating, GE Healthcare Life Sciences, 
Uppsala, Sweden). Fractions containing the expression 
construct were subjected to a second purification step via 
a glutathione sepharose resin (Glutathione Sepharose 4FF, 
GE Healthcare Life Sciences). The removal of glutathione 
was achieved by overnight dialysis against buffer con-
taining 100 mM NaCl, 30 mM Tris/HCl pH 7.6, 0.1 mM 

DTT and a membrane with 6–8 kDa cutoff. Separation of 
the GST- and His-tag from the α-synuclein sequence by 
a TEV protease cleavage left an native N-terminus [53] 
followed by cyclization of Gln79-α-synuclein to pGlu79-
α-synuclein with QC overnight at room temperature. The 
fractions obtained were analyzed and subjected to reversed 
phase chromatography (Source 15 RPC, GE Healthcare 
Life Sciences), followed by lyophilization and anion 
exchange chromatography (MonoQ 5/50GL, GE Health-
care Life Sciences). The final buffer used for the experi-
ments was 20 mM Tris/HCl, pH 7.0, containing 100 mM 
NaCl. The purity of the samples was assessed by SDS 
PAGE and mass spectrometry. Protein concentrations were 
determined using UV absorption at 280 nm.

Thioflavin T assay

The thioflavin T (ThT) assay was carried out as described 
previously [94] on a FluoStar Optima (BMG Labtech, 
Ortenberg, Germany) plate reader using a 96-well plate 
(λex = 440 nm and λem = 490 nm). For monitoring the fibril-
lation process of the recombinant full-length or pGlu79-
α-synuclein, 20 µM ThT (Sigma-Aldrich) were added to 
the aggregation buffer (20 mM Tris/HCl, 100 mM NaCl, 
pH 7.0). Signals were recorded at 37 °C under continu-
ous shaking (300 rpm) with a time interval of 15 min for 
110 h. Analyses of the obtained aggregation curves were 
conducted according to [46]. For each peptide, meas-
urements were performed in six cavities of one plate. 
Obtained data were analyzed with one-way ANOVA and 
post-hoc Tukey test.

Transmission electron microscopy

Potential fibril formation from full-length α-synuclein and 
pGlu79-α-synuclein was initiated in aggregation buffer 
(20 mM Tris/HCl, 100 mM NaCl, pH 7.0) at 37 °C under 
continuous shaking (300 rpm) for 110 h. Samples (5 µl) 
were placed on a formvar carbon-coated copper grid (Plano,  
Wetzlar, Germany) for 10 min and washed three times with 
distilled water. Staining was obtained with 2% (v/v) phospho-
tungstic acid (Sigma-Aldrich) for 5 min. Grids were imaged 
with a TEM/STEM FEI-Tecnai G2 F20 (FEI Company, Hills-
boro, USA) in STEM-mode at 200 kV. The electron micro-
graphs were detected using a high-angle annular dark-field 
detector, and finally processed by contrast-inversion.

Size exclusion chromatography and dot blot analysis

To analyze the formation of oligomers by size exclusion 
chromatography (SEC), 50–120  µg of the recombinant 



402	 Acta Neuropathologica (2021) 142:399–421

1 3

full-length or pGlu79-α-synuclein, either untreated (mono-
mers) or agitated for aggregation as described in ThT assay, 
was centrifuged at 10,000×g for 60 min to remove large 
aggregated particles. Centrifuged α-synuclein samples of 

each variant were next diluted with SEC running buffer 
(50 mM Tris/HCl pH 7.2 buffer with 200 mM NaCl) to a 
total volume of 300 µl, filtered by a Whatman PVDF fil-
ter device (pore size 0.2 µm) and subsequently loaded onto 
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a Yarra SEC 3000 column (Phenomenex, Aschaffenburg, 
Germany). SEC was performed using an isocratic elution 
with the SEC running buffer at a flow rate of 0.3 ml/min on 
an ÄKTA pure 25 M system (Cytiva, Freiburg, Germany). 
A total of 30 fractions of each analysis were collected with 
0.5 ml per fraction. The eluted peaks were monitored at 215 
and 280 nm. The elution time and quantity of the monomers 
and oligomers were determined using Unicorn software 
(Cytiva). For immunodetection of the fractions contain-
ing α-synuclein, the collected fractions were applied onto a 
nitrocellulose membrane using a Minifold Dot-Blot System 
(Schleicher & Schuell) and probed with Syn1 (BD Trans-
duction Laboratories™), a monoclonal mouse antibody 
against pan α-synuclein (1:1000), or the polyclonal rabbit 
anti-pGlu79-α-synuclein antibody (described below, 1:700). 
For immunodetection, horseradish peroxidase conjugated 
anti-mouse or anti-rabbit antibody (Dianova) and chemilu-
minescent substrates (SuperSignal West Chemiluminescent 
Substrate kits, Thermo Fisher Scientific) were used.

Cell culture and toxicity assay

The toxic effect of full-length and pGlu79-α-synuclein on 
SH-SY5Y neuroblastoma cells was assessed using a WST-1 
assay (ThermoFisher, Darmstadt, Germany). SH-SY5Y cells 
were grown in DMEM medium supplemented with 10% 
FBS at 37 °C, 10% CO2. To induce differentiation towards 
a neuronal phenotype, 1.83 × 104 cells/well were seeded in 
a transparent 96-well plate and the medium was changed 
towards DMEM supplemented with 5% FBS and 10 µM all-
trans retinoic acid (ThermoFisher, Darmstadt, Germany) 
for 3 days. The medium was further exchanged to Neuroba-
sal-A medium without phenol red, supplemented with 1% 
(v/v) Glutamax, 1% (v/v) N-2 supplement (ThermoFisher, 
Darmstadt, Germany) and human BDNF (ThermoFisher, 
Darmstadt, Germany) at a concentration of 50 ng/ml (v/v) 

for additional 4 days. On day 7 of differentiation, the assay 
was carried out according to the manufacturer’s protocol. 
In brief, cells were exposed to the different peptide species 
and cultured at 37 °C in a humidified atmosphere containing 
10% CO2 for 72 h. Afterwards, 10% WST-1 was added to 
the cell medium and incubated for 30 min. The absorbance 
was determined at 440 nm using a plate reader (Tecan Sun-
rise, Switzerland). The values were normalized to the PBS 
control and directly correlated to the number of viable cells.

Mouse brain tissue

The expression of endogenous α-synuclein was analyzed in 
brains of C57Bl/6 wild-type mice (N = 4) obtained from the 
Animal Care Facility of the Medical Faculty, Leipzig Uni-
versity. α-synuclein knock-out (KO) mice (N = 2; Charles 
River; JAX strain 003692) were used to demonstrate the 
specificity of α-synuclein antibodies employed in this study. 
Two transgenic mouse lines were investigated for the for-
mation of α-synuclein aggregates: (1) mice overexpressing 
human wild-type α-synuclein under the Thy-1 promoter 
(termed ASO; N = 4) [20, 83] and (2) mice overexpress-
ing human wild-type α-synuclein from a bacterial artificial 
chromosome (termed BAC-SNCA; N = 4) [71, 108]. All 
mouse lines were on C57Bl/6 background. Animals were 
housed at 12 h day/12 h night cycles with food and water 
ad libitum in cages that contained nest building material. All 
experimental protocols were approved by Landesdirektion 
Sachsen, license number T28/16 and the local ethical board 
of the District Government of Lower Franconia, Bavaria, 
Germany (approval # 55.2-DMS 2532-2-218). All methods 
were carried out in accordance with the relevant guidelines 
and regulations.

Tissue preparation

Mice were sacrificed by CO2 inhalation and perfused trans
cardially with 0.9% saline followed by perfusion with 4% 
paraformaldehyde in phosphate buffer (0.1 M, pH 7.4). 
The brains were removed from the skull and post-fixed by 
immersion in the same fixative overnight at 4 °C. After cryo-
protection in 30% sucrose in 0.1 M phosphate buffer for 3 
days, 30 µm thick coronal sections were cut on a sliding 
microtome and collected in phosphate buffer supplemented 
with 0.025% sodium azide for storage.

Human brain tissue

Case recruitment and characterization of human brain 
tissue

Case recruitment and autopsy were performed in accordance 
with guidelines effective at the Arizona Study of Aging and 

Fig. 1   QC-catalyzed pGlu79-α-synuclein formation. a Schematic rep-
resentation of N-terminal α-synuclein truncation by MMP-3 result-
ing in the formation of N-terminal glutamine (Gln) residue at posi-
tion 79 of α-synuclein. b Schematic illustration of pGlu formation 
from N-terminal Gln under liberation of ammonia catalyzed by QC. 
c Kinetic characteristics of QC-catalyzed pGlu79-α-synuclein forma-
tion revealed by a continuous coupled spectrophotometric test. Values 
were obtained from 3 to 4 independent determinations and are dis-
played as mean ± SD. d Mass spectrometric analysis of pGlu forma-
tion at the N-terminus of the synthetic α-synuclein79–90 fragment. 
The maternal α-synuclein79–90 fragment was detected at the pre-
dicted mass of 1130.6 Da at all time points without any spontaneous 
degradation or modification. When the enzyme QC was added, a new 
peak (blue) was detected at a molecular weight of 17 g/mol below the 
maternal α-synuclein79–90 fragment, consistent with the liberation of 
ammonia during enzyme-catalyzed pGlu-formation. The conversion 
of α-synuclein to pGlu-α-synuclein79-90 was completely prevented 
by addition of the QC inhibitor PBD150

◂
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Neurodegenerative Disorders and Brain and Body Donation 
Program [10]. The required consent was obtained for all 
cases. Cases were staged for synuclein pathology using the 
Unified Staging System [2, 9]. The definite diagnosis of PD 
was based on clinical findings of 2 of 3 cardinal signs (rigid-
ity, bradykinesia and rest tremor) as well as depigmentation 
with Lewy bodies in the SN. DLB was defined as dementia 
occurring either at presentation or within 1 year of the onset 
of parkinsonism, with a brain distribution of α-synuclein 
pathology meeting DLB Consortium criteria for “intermedi-
ate” or “high” likelihood [70]. The Unified Staging System 
and McKeith criteria received good inter-rater reliability 
scores in a multi-centre comprehensive analysis defining 
consensus criteria for the evaluation of Lewy body patho
logy in post mortem brains [6]. Three out of 10 DLB cases 
were additionally diagnosed with AD, due to intermediate 
or high AD neuropathological changes according to [21].

Tissue preparation

Transverse midbrain sections (40 µm thick) comprising SN 
at the level of the red nucleus, exit of the oculomotor nerve 
and superior colliculus from 10 controls, 10 idiopathic PD 
cases and 10 DLB cases (Table 1) were used for QC and 
pGlu79-α-synuclein immunohistochemistry. Anatomical 
regions were identified on Nissl and anti-HuC/D-stained 
sections using a human brain atlas [66].

Antibody generation

Polyclonal anti-pGlu79-α-synuclein-specific antibodies were 
produced from rabbits immunized with synthetic pGlu-α-
synuclein79–90 peptide conjugated to a carrier according to 
the manufacturer’s standard protocol (Davids Biotechnology, 
Germany). Rabbits were immunized five times (days 1, 14, 
28, 42 and 56) with the optimal amount of antigen followed 
by a final bleed at day 63. After day 35, a test serum was 
taken and the ELISA titer was determined. The antiserum 
was affinity purified and characterized for specificity (Suppl. 
Figure 1, online resource).

Antibody specificity

The specificity of the rabbit antiserum against pGlu79-
α-synuclein was verified by dot blot analysis against 
recombinant human full-length α-synuclein, β-synuclein, 
γ-synuclein and the target pGlu79-α-synuclein fragment, 
spotted at descending amounts onto nitrocellulose mem-
branes (Suppl. Figure 1, online resource). After chemilumi-
nescent detection, membranes were stripped and re-probed 
with the Syn1 antibody (BD Transduction; 1:2000). In addi-
tion, immunohistochemistry was performed on wild-type, 
α-synuclein overexpressing and α-synuclein KO mouse 
brain sections, demonstrating the specificity of the pGlu79-
α-synuclein antiserum for this application (Suppl. Figure 1, 
online resource). The specificity of the goat antiserum 
directed against QC has been recently demonstrated com-
paring immunohistochemical labelling in wild type and QC 
KO mouse brain sections [41].

Immunohistochemistry

Single labelling of pGlu79‑α‑synuclein and QC in mouse 
brain sections

To detect pGlu79-α-synuclein and QC in wild type, ASO 
and BAC-SNCA mice, single labelling immunohistochem-
istry was performed on free-floating coronal brain sections. 
Brain sections were washed in 0.1 M phosphate buffer (pH 
7.4) for 5 min and endogenous peroxidases were inactivated 
by treating brain slices with 60% methanol containing 1% 
H2O2 for 60 min followed by three washing steps with Tris 
buffered saline (TBS, 0.1 M, pH 7.4) for 5 min each. After 
masking unspecific binding sites with blocking solution (5% 
normal donkey serum in TBS containing 0.3% Triton X-100) 
for 60 min, sections were incubated with the primary rabbit 
anti-pGlu79-α-synuclein (1:200) or goat anti-QC (1:200) 
antibodies for 40 h at 4 °C. Brain sections were then washed 
three times in TBS for 5 min each before being incubated 
with biotinylated secondary donkey anti-goat or donkey 
anti-rabbit antibodies (Dianova; 1:1000) in TBS containing 
2% bovine serum albumin (BSA) for 60 min. After three 

Table 1   Cocktails of primary 
antibodies used for triple 
labelling immunohistochemistry

Secondary antibodies were all from Dianova and used at a dilution of 1:200
TH tyrosine hydroxylase, QC glutaminyl cyclase

Primary antibody Dilution Host Company Secondary antibody

QC 1:100 Goat IZI Donkey anti-goat Cy2
α-Synuclein (Syn1) 1:3000 Mouse BD transduction Donkey anti-mouse Cy3
TH 1:200 Guinea pig Synaptic systems Donkey anti-guinea pig Cy5
QC 1:100 Goat IZI Donkey anti-goat Cy2
pGlu79-α-synuclein 1:100 Rabbit IZI Donkey anti-rabbit Cy3
α-Synuclein (Syn1) 1:3000 Mouse BD transduction Donkey anti-mouse Cy5
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washing steps in TBS for 5 min each, slices were incubated 
with ExtrAvidin peroxidase (Sigma; 1:2000) in TBS/2% 
BSA followed by washing steps and pre-incubation in Tris 
buffer (0.05 M, pH 7.6) for 5 min. Finally, visualization of 
peroxidase binding was performed by incubation with 4 mg 
3,3′-diaminobenzidine (DAB) and 2.5 µl 30% H2O2 per 5 ml 
Tris buffer. After washing, sections were mounted onto glass 
slides and cover slipped.

Triple immunofluorescent labellings in mouse brain

To reveal the expression of QC by tyrosine hydroxylase 
(TH)-positive dopaminergic SN neurons and its possible co-
localization with full-length α-synuclein and with pGlu79-
α-synuclein in mouse SN, the goat anti-QC antibody was 
applied in cocktails with primary guinea pig antibodies 
against TH (Synaptic Systems; #213104), mouse anti-α-
synuclein (Syn1; BD Transduction Laboratories) or rabbit 
anti-pGlu79-α-synuclein as specified in Table 1. Brain sec-
tions were incubated with cocktails of primary antibodies 
for 40 h at 4 °C. Sections were then washed three times with 
TBS followed by incubation with cocktails of Cy2-, Cy3- or 
Cy5-conjugated donkey anti-mouse, -rabbit, -guinea pig or 
-goat, respectively, antisera (1:200 each; Dianova) in TBS 
containing 2% BSA for 60 min at room temperature. After 
washing, sections were mounted onto glass slides and cover 
slipped. Switching the fluorescent labels of the secondary 
antibodies generated similar results as when following the 
procedure outlined above (not shown).

Detection of pGlu79‑α‑synuclein and QC in human SN

To reveal presence of pGlu79-α-synuclein and QC in the 
SN of post mortem human control, DLB and PD tissue, 
single labelling immunohistochemistry was performed 
on free-floating transverse midbrain sections. Sections 
were washed in phosphate buffered saline (PBS, pH 7.4) 
for 5 min and endogenous peroxidases were inactivated 
by treating brain slices with 60% methanol containing 1% 
H2O2 for 30 min followed by rinses with PBS containing 
0.02% Tween 20 (PBS-T) for 5 min each. Unspecific staining 
was then blocked in PBS-T containing 2% BSA, 0.3% milk 
powder and 0.5% normal donkey serum before incubating 
brain sections in the same solution containing the primary 
antibodies rabbit anti-pGlu79-α-synuclein (1:200) or goat 
anti-QC (1:200) in a humid chamber for 40 h at 4 °C. Sub-
sequently, sections were washed in PBS-T (three times for 
5 min) and were then incubated with secondary biotinylated 
donkey anti-rabbit or donkey anti-goat antibodies (Dianova; 
1:1,000) in a mixture of blocking solution and PBS-T (1:2) 
for 60 min at room temperature. Following washing steps, 
the ABC method was applied which comprised incubation 
with complexed streptavidin and biotinylated horseradish 

peroxidase (Sigma; 1:2000) in PBS-T. Binding of peroxidase 
was visualized by incubation with 2 mg DAB, 20 mg nickel 
ammonium sulfate and 2.5 µl 30% H2O2 per 5 ml Tris buffer 
(0.05 M; pH 8.0) for 3–4 min. DAB-Ni staining resulted in 
black visualization of pGlu79-α-synuclein and QC which 
allowed for the co-localization with brown, neuromelanin-
positive (NM+) neurons in the SN.

For all single and triple immunohistochemical labellings 
in brain sections described above, control experiments in 
the absence of primary antibodies were carried out. In each 
case, this resulted in unstained brain sections (not shown).

Microscopy

Light microscopy

Mouse and human brain tissue sections immunohistochemi-
cally stained with DAB or DAB-Ni for pGlu79-α-synuclein 
and QC expression were examined with an Axio-Scan.Z1 
slide scanner connected with a Colibri.7 light source and a 
Hitachi HV-F202SCL camera (Carl Zeiss, Göttingen, Ger-
many). High resolution images of midbrain sections con-
taining the SN were taken using a 20× objective lens with 
0.5 numerical aperture (Zeiss). Images were digitized by 
means of ZEN 2.6 software and analyzed using the ZEN 
imaging tool.

Confocal laser scanning microscopy

Laser scanning microscopy (LSM 880 Airyscan, Zeiss, 
Oberkochen, Germany) using an Axioplan2 microscope was 
performed to reveal co-localization of QC with its substrate 
pGlu79-α-synuclein, with full-length α-synuclein and with 
TH, respectively. For Cy2-labelled antigens (green fluo-
rescence), an argon laser with 488 nm excitation was used 
and emission from Cy2 was recorded at 510 nm applying a 
low-range band pass (505–550 nm). For Cy3-labelled anti-
gens (red fluorescence), a helium–neon laser with 543 nm 
excitation was applied and emission from Cy3 at 570 nm 
was detected applying high-range band pass (560–615 nm) 
and Cy5-labelled antigens (blue fluorescence) were detected 
using excitation at 650 nm and emission at 670 nm. Images 
of areas of interest were taken using a 20× objective lens 
with 0.75 numerical aperture (Zeiss). Photoshop CS2 
(Adobe Systems, CA) was used to process the images 
obtained by light and confocal laser scanning microscopy. 
Care was taken to apply the same brightness, sharpness, 
color saturation and contrast adjustments in the various 
pictures.
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Quantification of QC staining in SN of human 
midbrain

Analysis of QC expression in the SN pars compacta (SNc) 
from control subjects (CO), as well as from DLB and PD 
patients (N = 10, each; Table 2) was performed using the 
ZEN 2.6 imaging software. Transverse sections (40 µm) of 
the ventral midbrain approx. at the level of the center of Ncl. 
ruber were evaluated with respect to intra- and extracellu-
lar QC immunoreactivity. For each individual case, the area 
of the SNc was delineated at lower magnification accord-
ing to the distribution of the nigral matrix and nigrosomes, 
respectively, enclosing pigmented NM-containing neurons 
in the SNc [24]. Hereby, even at high zoom levels, orienta-
tion within the SN was assured to restrict examination of QC 
immunoreactive structures to the pars compacta subregion.

Evaluation of intracellular QC staining

Zooming from overview to high-resolution magnification in 
a given specimen, neuronal QC immunoreactivity (DAB-Ni; 
black) was assessed in each individual neuron throughout 
the medioventral to dorsolateral extent of the SNc by an 
investigator blinded to the origin of the case. The presence 
of intracellular QC, either bound to NM or independently 
distributed in the cytoplasm, was evaluated with respect 
to the presence or absence of NM (brown) and vice versa. 
Then, each neuron was assigned to one of the following three 
categories: (1) QC and NM positive (QC+/NM+), (2) QC 
positive and NM negative (QC+/NM−), or (3) QC negative 
and NM positive (QC−/NM+).

Evaluation of pathological QC‑positive structures

In addition to apparently intact neuronal cell bodies, QC 
immunoreactive, potentially pathogenic intra- and extra-
cellular structures were identified and counted in the SNc. 
These were (1) degenerating neurons larger than 10 µm in 
diameter with very strong QC-immunoreactivity, which dis-
played a clearly aberrant form and/or were fractionated; (2) 
axonal varicosities; (3) axonal bulbs and Lewy neurites; (4) 
smaller (< 5 µm); and (5) larger (> 5 µm) Lewy body-like 
structures. QC-immunoreactive morphological features were 
termed axonal or dendritic varicosities when at least three 
punctate labellings smaller than 3 µm in diameter appeared 
along a neuronal process being arranged in a typical “beads 
on a string” manner, whereas slightly larger structures 
within axonal shafts (3–5 µm in diameter) were referred to 
as axonal bulbs.
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Statistical analysis

The total number of identified neurons, as well as numbers 
of QC neurons and pathological structures in each category 
were compared between groups. Statistical analyses of the 

acquired data were performed by an unpaired t test. Differ-
ences between groups were considered statistically signifi-
cant for p values < 0.05.
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Results

The enzymatic characterization of Gln79-α-synuclein 
conversion to the pGlu variant and the mass spectromet-
ric analyses shown in Fig. 1c, d were carried out using 
a 12 amino acid peptide starting with Gln79 and termed 
α-synuclein79–90 and pGlu-α-synuclein79–90, respectively. 
The further analyses of aggregation properties and toxicity 
profiles were performed with recombinant pGlu79–140-α-
synuclein, termed pGlu79-α-synuclein.

QC‑catalyzed generation of pGlu79‑α‑synuclein

To address the question whether Gln79-α-synuclein repre-
sents a QC substrate, the N-terminal part (79–90) of this 
α-synuclein fragment was synthesised and spontaneous as 
well as QC-catalyzed pGlu modification was followed by 
enzyme kinetic analysis (Fig. 1c). The subsequent calculation 

of kinetic parameters revealed a Vmax of 0.5999 mM/h, Km of 
0.1333 mM and Kcat of 14.9/s. This is supportive for Gln79-
α-synuclein being a QC substrate and compares well with 
other enzyme-catalyzed reactions, such as the conversion of 
the known physiological QC substrates gastrin, gonadotro-
pin-releasing hormone and neurotensin [91].

Mass spectrometric analysis revealed that incuba-
tion of the α-synuclein79–90 fragment alone for up to 
60 min did not lead to spontaneous pGlu modification 
of the N-terminus (Fig.  1d). By contrast, addition of 
QC to the incubation solution resulted in rapid pGlu-α-
synuclein79–90 formation, which was already detectable 
after 10 min of incubation (Fig. 1d). By 1 h of incubation, 
the α-synuclein79–90 fragment was completely converted 
into pGlu-α-synuclein79–90. Addition of the QC inhibitor 
PBD150 prevented the pGlu modification (Fig. 1d).

Aggregation characteristics and toxicity 
of pGlu79‑α‑synuclein

The aggregation characteristics of recombinant pGlu79-α-
synuclein were compared to those of full-length wild-type 
α-synuclein by continuous agitation of the α-synuclein 
variants and simultaneous monitoring of fibril forma-
tion by ThT assay. The full-length α-synuclein displayed 
a typical sigmoidal fibril formation behaviour (Fig. 2a). 
In contrast, no fibril formation from pGlu79-α-synuclein 
was detected by ThT assay (Fig. 2a). Transmission elec-
tron microscopy substantiated fibril formation from full-
length α-synuclein and the presence of aggregates lacking 
fibrillary structures from pGlu79-α-synuclein (Fig. 2b). 
The labelled material analysed by electron microscopy 
represents most likely small oligomers, as shown for 
the maternal MMP-3-cleaved α-synuclein fragments 
[61, 102]. After 72 h of agitation, to confirm the forma-
tion of oligomers from pGlu79-α-synuclein, full-length 
and pGlu79-α-synuclein were centrifuged to remove the 
insoluble fibrils, and the supernatants were analysed by 
SEC (Fig. 2c). The chromatograms of agitated α-synuclein 
variants (Fig. 2c) were compared to the respective chro-
matograms of their monomers (Suppl. Figure 2, online 
resource). Indeed, SEC analysis of the soluble fraction 
of agitated pGlu79-α-synuclein revealed a remarkably 
increased formation of oligomers. The levels of oligomers 
formed from agitated pGlu79-α-synuclein were three times 
as high as those from full-length α-synuclein (Fig. 2c). 
Together, data from ThT assays, electron microscopy and 
SEC demonstrated that pGlu79-α-synuclein is prone to 
form oligomers, while full-length α-synuclein preferred 
forming ThT-positive amyloid fibrils (Fig. 2d).

To study the toxicity of full-length α-synuclein and 
pGlu79-α-synuclein, a WST-1 assay was performed 

Fig. 2   Aggregation characteristics of pGlu79-α-synuclein. a ThT 
assay to follow the characteristics of fibril formation from recombi-
nant full-length α-synuclein and from pGlu79-α-synuclein. Note the 
typical, sigmoid-shaped curve of fibril formation from full-length 
α-synuclein (black trace) during the 110 h agitation period. In con-
trast, no fibril formation was observed for pGlu79-α-synuclein (blue 
trace). b Electron microscopic analysis of aggregates formed from 
full-length α-synuclein and from pGlu79-α-synuclein. Note the 
absence of fibril formation from pGlu79-α-synuclein but the pres-
ence of oligomers. c SEC and dot blot analysis of oligomers from 
full length or pGlu79-α-synuclein after 72  h agitation for protein 
aggregation. Agitated full-length and pGlu79-α-synuclein were cen-
trifuged and the supernatants were analyzed by SEC. Their unagi-
tated monomeric counterparts were also analyzed for determining 
the elution times of the monomers (Suppl. Figure 2, online resource). 
Peak elution times of full-length and pGlu79-α-synuclein mono-
mers are 28.23 min and 30.74 min, respectively (see also Suppl. Fig-
ure 2, online resource). The representative chromatogram of agitated 
pGlu79-α-synuclein (right) demonstrates a remarkable increase in 
oligomers, characterized by a peak with an elution time of 29.93 min 
(indicated by O and red line), in addition to the peak for monomers 
at 31.86 min (M and black line). By contrast, the representative chro-
matogram of agitated full-length α-synuclein (left) is characterized by 
the presence of small peaks for oligomers with elution times between 
5 and 25 min, however, to a much lesser extent (highlighted in the red 
inset), when compared to the peak for monomers at 29.40 min (black 
line). Dot blot analysis of SEC fractions confirmed the specificity 
of the peaks. For immunodetection, SEC fractions were either ana-
lyzed by the Syn1 antibody or the anti-pGlu79-α-synuclein antibody 
for detection of full-length α-synuclein and of pGlu79-α-synuclein, 
respectively. Quantification of three independent aggregation and 
SEC analyses shows significantly higher oligomer levels in agitated 
pGlu79-α-synuclein than in full-length α-synuclein. Statistical sig-
nificance at **p < 0.01 defined by t test. d ThT assay and SEC, for 
analyzing fibril and oligomer formation, respectively, reveals that 
pGlu79-α-synuclein is more prone to form oligomers, however, 
is unable to form ThT-positive amyloid fibrils. e Analysis of cellu-
lar toxicity of monomers and aggregates of full-length α-synuclein 
(5 µM) and pGlu79-α-synuclein (5 µM). Cell viability was assessed 
by WST-1 assay in differentiated SH-SY5Y cells after 72 h of treat-
ment with the peptides (mean ± SD, n = 3, *p < 0.05; **p < 0.01 
defined by one-way ANOVA followed by Tukey post-hoc analysis)

◂
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using SH-SY5Y neuroblastoma cells. Monomers of both 
α-synuclein species and aggregates thereof produced by 
72 h agitation were tested at concentrations of 5 µM and 
normalized to the vehicle control PBS. Compared to the 
monomeric peptides, a significant cytotoxic potential 
of aggregates of full-length α-synuclein and pGlu79-α-
synuclein was observed (full-length α-synuclein mono-
mers: 82% viability, full-length α-synuclein aggregates: 
54% viability, pGlu79-α-synuclein monomers: 73% 
viability, pGlu79-α-synuclein aggregates: 50% viability, 
Fig. 2e).

QC expression by SN dopaminergic neurons

The co-expression of QC and full-length α-synuclein by 
dopaminergic SN neurons is a prerequisite for pGlu79-
α-synuclein formation in this brain region. Therefore, we 
first analyzed the co-expression of these proteins together 
with TH, the marker enzyme of dopaminergic neurons, 
in the SN of wild-type mouse brain sections by triple 
immunofluorescent labellings. As shown in Fig. 3a, QC 
is abundantly expressed by TH-positive neurons that also 
display α-synuclein immunoreactivity.

pGlu79‑α‑synuclein aggregates in transgenic mouse 
models

Next, we wanted to test whether pGlu79-α-synuclein 
aggregates contribute to histopathology in brains of trans-
genic ASO and BAC-SNCA mice overexpressing human 
wild-type α-synuclein. Single pGlu79-α-synuclein DAB 
labellings revealed the presence of such aggregates in 
hippocampal and subcortical structures (Fig. 3b). In hip-
pocampus, pGlu79-α-synuclein deposits were detected in 
all subregions. However, they were particularly prominent 
in CA2 stratum lacunosum moleculare, where densely 
dispersed labellings emerged in ASO mouse brain and 

where rod-shaped, neuritic structures appeared in BAC-
SNCA mice. In addition, Lewy body-like aggregates were 
detected in lateral hypothalamus and SN in ASO mouse 
brain. Brain regions affected by these deposits differed 
between experimental animal models, which might be due 
to different transgene expression patterns. In both trans-
genic animal models, there was a frequent co-localization 
of QC and pGlu79-α-synuclein in these aggregates as 
exemplarily shown for lateral hypothalamus in ASO and 
for CA2 in BAC-SNCA mouse brain (Fig. 3b).

pGlu79‑α‑synuclein aggregates in human 
substantia nigra

The main goal of our study was to reveal the presence and 
potential aggregation of pGlu79-α-synuclein in human clini-
cal conditions of PD and DLB. Therefore, well-character-
ized high quality human brain tissue of short post mortem 
delay (1.5–4.2 h) was analyzed by immunohistochemistry. 
The dopaminergic SN neurons in human brain tissue can 
be easily identified by the intracellular presence of brown 
NM. However, this excludes the possibility of simultaneous 
immunohistochemical detection of intracellular antigens by 
brown DAB labelling in these neurons. We, therefore, vis
ualized pGlu79-α-synuclein using DAB-Ni as histochemical 
substrate, resulting in black labelling.

In human control subjects, only a small proportion of 
the numerous NM-positive neurons contained pGlu79-α-
synuclein (Fig. 4). In PD and DLB cases, the number of 
NM-positive SN neurons was drastically reduced, consistent 
with the known degeneration of this cell group in the course 
of both clinical conditions (for quantification see Fig. 5). 
The remaining NM-containing neurons frequently displayed 
pGlu79-α-synuclein immunoreactivity and morphologi-
cal signs of degeneration, such as shrinkage and irregular 
shape. In addition, PD-typical features, such as Lewy bod-
ies and Lewy neuritis, were pGlu79-α-synuclein immuno-
reactive (Fig. 4). We conclude that a fraction of deposited 
α-synuclein in Lewy bodies and Lewy neurites consists of 
or contains pGlu79-α-synuclein.

QC expression by human SN neurons: relation 
to neuromelanin

In analogy to the pGlu79-α-synuclein labelling, the expres-
sion of the enzyme QC catalyzing the pGlu modification 
was evaluated in human SN of control, PD and DLB cases 
(Fig. 5). Typically, in all conditions analyzed there were 
NM-containing neurons without QC immunoreactivity 
(NM+/QC−), NM-positive neurons expressing QC (NM+/
QC+) and NM-negative neurons solely immunoreactive 
for QC (NM−/QC+) (Fig. 5a; highlighted in Fig. 5a’). As 
described above, the total number of NM-positive neurons 

Fig. 3   QC and pGlu79-α-synuclein in wild type and transgenic 
mouse brain. a QC expression by mouse TH-positive SN neurons and 
co-localization with α-synuclein. Triple immunofluorescent labell-
ings demonstrate the expression of QC (green) by dopaminergic SN 
neurons (blue) and co-expression of maternal full-length α-synuclein 
(red) in mouse brain. b In brain sections of ASO mice (top), immu-
noreactivity for pGlu79-α-synuclein is displayed in fine, disperse 
aggregates in stratum lacunosum (slm) and pyramidal cell layer (Py) 
of the CA2 and CA3 hippocampal subregions, respectively, while 
larger aggregates and Lewy body-like structures are depicted in lat-
eral hypothalamus (LH) and SN. Aggregates of pGlu79-α-synuclein 
in BAC-SNCA mice (bottom) are shown in hippocampus, either rod-
shaped in CA2-slm or finely scattered in CA1-, CA3-Py and subicu-
lum (Sub). Triple immunofluorescent labelling revealed a frequent 
co-localization of these aggregates with QC, as exemplarily shown 
for LH in ASO and for CA2 in BAC-SNCA mouse brain

◂
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(NM+) was much lower in DLB (587 ± 107 per brain sec-
tion) and in PD (425 ± 77 per brain section) as compared to 

controls (1731 ± 270 per brain section) (Fig. 5b). In con-
trast, the numbers of QC+ neurons were only reduced from 

Fig. 4   pGlu79-α-synuclein in human SN. a Typical examples of 
pGlu79-α-synuclein immunoreactivity in human SN of control sub-
jects as well as PD and DLB patients. In control subjects, neuromela-
nin-containing SN neurons only sparsely contain pGlu79-α-synuclein 
(black DAB-Ni labelling). In PD and in DLB, the density of neu-
romelanin-containing neurons is markedly reduced, consistent with 

the degeneration of dopaminergic SN neurons in these clinical con-
ditions. In addition, a high proportion of neuromelanin-positive neu-
rons contains pGlu79-α-synuclein in PD and DLB cases. b pGlu79-α-
synuclein immunoreactivity is also present in pathological structures, 
such as Lewy bodies (arrows) and Lewy neurites (asterisk) in PD and 
DLB cases
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Fig. 5   QC in human SN: Relation to neuromelanin. a Typical exam-
ples of immunohistochemical QC labellings (black) in SN of control, 
PD and DLB cases. Note the reduced numbers of neuromelanin-con-
taining neurons (brown) in PD and DLB as compared to control and 
the differential association of QC (black) with brown, neuromelanin-
containing neurons in the high magnification images (a’). b Quantifi-
cation of all neuromelanin-containing (NM+) neurons (light bars) and 
NM+ neurons expressing QC (NM+/QC+; dark bars) illustrating the 
substantial loss of NM neurons in DLB and PD and the high propor-
tion of NM+ neurons expressing QC in DLB and PD clinical condi-

tions. c Proportions of NM+ neurons expressing QC (NM+/QC+) 
versus not expressing QC (NM+/QC−). Note the higher proportion of 
NM+ neurons expressing QC in DLB and PD clinical conditions. d 
Proportions of QC-expressing neurons associated with neuromelanin 
(QC+/NM+) versus not associated with neuromelanin (QC+/NM−). 
e Pie charts illustrating the drastically low proportion of NM+ only 
neurons in PD (6.1%) and in DLB (15.1%) compared to controls 
(45.7%), whereas the proportions of QC+ only and of NM+/QC+ neu-
rons are increased in these groups. Mean ± SEM, n = 10, Statistical 
significance at *p < 0.05; **p < 0.005; ***p < 0.001 defined by t test
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964 ± 155 in controls to 580 ± 110 in DLB and to 512 ± 80 
in PD (Fig. 5b).

When calculating the proportions of NM+/QC+ and of 
NM+/QC− neurons in the various groups, controls dis-
played a 52% NM+/QC+ to 48% NM+/QC− ratio, that was 
significantly different from DLB (82.5% to 17.5%) and 
from PD (92% to 8%) (Fig. 5c). Thus, in both clinical con-
ditions a greater proportion of NM+ neurons displayed QC 
immunoreactivity.

From the perspective of all QC immunoreactive neu-
rons, 91% were associated with NM in control SN, whereas 
this proportion was reduced to 84% in DLB and to 74% 
in PD (Fig. 5d). This was accompanied by a concomitant 
increase in the proportion of QC+/NM− neurons from 9% 
in controls to 16% in DLB and 26% in PD (Fig. 5d). Out 
of these, a subgroup of morphologically degenerating and 
often shrunken or fractionated neurons stood out, which 
displayed excessive QC immunoreactivity (see below).

The summary pie charts (Fig. 5e) illustrate the dras-
tic reduction of the proportion of NM+/QC− neurons in 

DLB (15%) and in PD (6%) compared to controls (46%), 
whereas the proportions of QC+/NM+ and of QC+/
NM− neurons are increased.

QC in human SN: presence in neuropathological 
structures

QC was not only found to be associated with NM-positive 
neurons in the SN, but was additionally detected in typical 
neuropathological structures of synucleinopathies. These 
structures include degenerating neurons (Fig. 6a), axonal 
or dendritic varicosities and Lewy neurites/axonal bulbs 
(Fig. 6b), as well as Lewy body-like aggregates, smaller 
and larger than 5 µm in diameter (Fig. 6c, d). The corre-
sponding quantifications demonstrate a much higher abun-
dance of QC-immunoreactive degenerating neurons in DLB 
(4.9%) and in PD (12.1%) than in control conditions (0.9%) 
(Fig. 6a). While the numbers of QC-immunoreactive vari-
cosities did not differ between clinical groups, counts of 
QC-immunoreactive Lewy neurites/axonal bulbs in DLB 

Fig. 6   QC in human SN: presence in neuropathological structures. 
QC (labelled in black) was found to be associated with degenerat-
ing neurons (a), with varicosities (arrows) and Lewy neurites/axonal 
bulbs (asterisks) (b), as well as with small (c) and large (d) Lewy 
body-like structures. The quantification of these structures revealed a 
high association of QC with Lewy body-like aggregates in PD, but 
not in DLB (c, d) no significant differences in the number of QC-

positive varicosities between groups, but a similarly strong increase 
in the number of QC immunoreactive Lewy neurites and axonal bulbs 
in DLB and PD compared to controls (CO) (b), and a more abundant 
association of QC with degenerating neurons in PD than in DLB (a). 
Brown color arises from neuromelanin. Mean ± SEM, n = 10, Statis-
tical significance at *p < 0.05; **p < 0.01; ***p < 0.001 defined by 
t-test
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(164 ± 33) and PD (149 ± 48) were significantly higher com-
pared to controls (23 ± 6) (Fig. 6b). Interestingly, both, the 
numbers of QC-immunoreactive Lewy body-like aggregates 
of smaller and of larger size, were significantly higher in 
SN of PD, but not of DLB, subjects compared to controls 
(Fig. 6c, d). This is consistent with the more cortical pathol-
ogy of DLB as compared to the SN pathology in PD [51].

However, it should be noted that these QC-immuno-
reactive structures were also present in control subjects; 
although to a much lower extent. These aggregates, there-
fore, may represent early pathological events in clinically 
silent subjects.

Discussion

Formation of pGlu79‑α‑synuclein by QC

Post-translational modifications of α-synuclein have been 
extensively studied with respect to the regulation of its 
physiological functions and their contribution to pathologi-
cal processes in clinical conditions, such as PD and DLB 
[17, 37]. The most prominent disease-related modification is 
α-synuclein phosphorylation at serine129 [4, 32, 86], which 
could become an early peripheral diagnostic marker [1, 26, 
30, 67, 104].

In the present study, we focused on proteolytically 
cleaved fragments of α-synuclein. MMP-3 cleavage of 
α-synuclein generates a number of defined fragments with 
distinct biophysical and cell biological properties [80, 
102], for review see [13, 98]. One of the identified MMP-
3-generated α-synuclein fragments, Gln79-α-synuclein, 
possesses a glutamine residue at its N-terminus and could, 
therefore, serve as QC substrate. In cell free assays, we dem-
onstrate QC-catalyzed conversion of this fragment into the 
pGlu-modified form that follows kinetic characteristics of 
enzyme-catalyzed reactions (see Fig. 1). When we compared 
the aggregation behavior of pGlu79-α-synuclein to that of 
maternal, full-length α-synuclein applying ThT assays, we 
noticed a lack of fibril formation from pGlu79-α-synuclein. 
This is consistent with the loss of a significant part of the 
NAC domain and observations by others, analyzing the 
aggregation behavior of different α-synuclein fragments 
[33, 61, 102]. Cryo-EM structures of full-length α-synuclein 
reveal that various residues (46–95) are associated with fibril 
formation and stabilization by the generation of hydropho-
bic cores of a single protofilament and steric zippers of two 
protofilaments [39, 62]. Since most of these residues criti-
cal for fibril stabilization are absent in pGlu79-α-synuclein, 
fibrillation is most likely disabled and aggregation is lim-
ited to the oligomeric state. In addition, it is speculated 
that fibril elongation by hydrophobic interaction might be 
related to residues V74–V82, because β-synuclein lacking 

these residues is incapable of forming fibrils [36]. However, 
the lack of fibril formation does not exclude the generation 
of oligomeric α-synuclein assemblies after MMP-3 cleav-
age as established in two independent studies employing 
different analytical methods [61, 102]. Indeed, uncleaved 
α-synuclein oligomers have been shown to be a neurotoxic 
species in vivo [84, 107] and, intriguingly, α-synuclein oli-
gomers generated following processing by MMP-3 have 
also been shown to exert a more toxic effect on cultured 
cells than oligomers composed of full-length α-synuclein 
[61, 102]. Here, using ThT assay and size exclusion chro-
matography, we demonstrate distinct aggregation behaviors 
of full-length and pGlu79-α-synuclein. Under continuous 
agitation, a classic in vitro condition for fibrillization, a large 
fraction of full-length α-synuclein is converted into amy-
loid fibrils, whereas pGlu79-α-synuclein is prone to form 
soluble oligomers. The lack of formation of ThT positive 
amyloid fibrils of the latter suggests an off-pathway in the 
aggregation of this cleaved and modified α-synuclein spe-
cies. These observations are also reflected in the cytotoxicity 
assay. Although pGlu79-α-synuclein does not tend to form 
fibrils, its toxicity on neuroblastoma cells is comparable to 
aggregates of full-length α-synuclein. This is in line with 
evidence that MMP-3 knock-out mice display attenuated 
neuronal death in the MPTP mouse PD model in vivo [56]. 
Moreover, prion-like seeding of misfolded α-synuclein is 
propagated from oligomer-like species, but not from insol-
uble aggregates [11, 27, 87] and α-synuclein oligomers 
were reported to stabilize pre-existing defects in supported 
bilayers and propagate membrane damage [19]. In living 
cells, the stabilization of α-synuclein oligomers resulted in 
increased cytotoxicity, which could be rescued by Hsp70 via 
suppression of oligomer formation [77]. Thus, oligomer for-
mation from α-synuclein fragments lacking parts of the NAC 
domain is likely to lead to pathogenic protein assemblies.

Detection of pGlu79‑α‑synuclein in transgenic 
animal models

If QC-catalyzed modification of α-synuclein does occur 
in vivo, the maternal α-synuclein and QC should be co-
localized. QC is not ubiquitously distributed throughout 
the brain but is rather restricted to defined regions, such 
as hypothalamus and pituitary, where physiological sub-
strates reside [14, 43]. In addition, QC is abundant in brain 
nuclei, such as nucleus basalis Meynert, locus coeruleus and 
Edinger–Westphal nucleus, which are affected by amyloid 
pathology in AD [45, 73]. Here, we demonstrate co-expres-
sion of α-synuclein and QC by TH-positive dopaminergic 
SN neurons in brain of wild-type mice.

In addition, two transgenic mouse lines with overexpres-
sion of human α-synuclein—ASO and BAC-SNCA—were 
analyzed. Aged BAC-SNCA mice have a 2.7-fold amount of 
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endogenous α-synuclein and show highest transgene expres-
sion levels in cortex, striatum and hippocampus [108]. They 
display a high abundance of monomeric α-synuclein but also 
higher order SDS-resistant α-synuclein [71]. In ASO mice, 
Thy-1-driven transgene expression results in 1.5–3.4-fold 
overexpression of α-synuclein in many brain regions includ-
ing olfactory bulb, SN, thalamus, cortex, hippocampus and 
striatum [20]. Already in 5-month-old transgenic mice, pro-
teinase K-resistant α-synuclein aggregates are present in SN 
and oligomeric assemblies were detected by Western blot 
analysis [20]. The transgene is inserted in the X chromo-
some, which leads to diminished motor deficits in females, 
most likely due to random inactivation of the X chromosome 
carrying the mutation [20]. Therefore, only male ASO mice 
were used in the present study.

When detecting pGlu79-α-synuclein in both α-synuclein 
overexpressing mouse models, we found increased immu-
noreactivity in subcellular sites of physiological α-synuclein 
presence, such as synapses, confirming the specificity of the 
antibody. Focusing on histopathological features, we iden-
tified a co-localization of QC and pGlu79-α-synuclein in 
Lewy body-like structures predominantly in ASO mice and 
in disperse aggregates in brain tissue of both mouse mod-
els. These aggregates were found in brain structures that are 
known for the formation of α-synuclein deposits in these 
animal models but also in different hippocampal subregions, 
such as subiculum, CA1, CA3 and pronounced in the stra-
tum lacunosum sublayer of CA2. Distinct hippocampal CA2 
synuclein pathology has been associated with cholinergic 
degeneration in PD with cognitive decline [64]. Thus, there 
is co-localization of QC with α-synuclein in SN of mouse 
brain and a spatial association of both proteins in protein 
aggregates of transgenic animal models of synucleinopathies 
with relevance to the clinical condition in human patients.

Localization of QC and pGlu79‑α‑synuclein in human 
brains affected by synucleinopathies

Animal models for protein aggregation disorders do not 
always reflect the exact scenario present in human disease. 
Therefore, it is mandatory to validate observations derived 
from experimental animals in human brain tissue. Here, 
using well-characterized human brain tissue sections from 
control subjects as well as PD and DLB patients, we dem-
onstrate robust deposition of pGlu79-α-synuclein in SN 
in a disease-specific manner. The detection of pGlu79-α-
synuclein in Lewy bodies and Lewy neurites is reminiscent 
of the classical α-synuclein aggregates representing typical 
pathological hallmarks in Lewy body diseases, such as PD 
and DLB [16, 88]. The synucleinopathy typically affects 
NM-containing dopaminergic neurons of the SN complex 
[48, 69, 96]. The precise biochemical composition of Lewy 
bodies has not yet been decoded. However, in addition to 

the main component full-length α-synuclein, the presence of 
truncated fragments [110] and of pSer129-α-synuclein [4] 
has been reported. Here, we show for the first time pGlu79-
α-synuclein immunoreactivity in neuromelanin positive SN 
neurons and accumulation in Lewy bodies and Lewy neu-
rites. The post-translational α-synuclein modification pre-
sent in this fragment is catalyzed by QC, which we demo
nstrated to be associated with neuropathological structures 
in SN of PD and DLB subjects in addition to its expression 
in neuronal somata. It was not in the scope of this study to 
define the exact nature of the varieties of QC- and pGlu79-α-
synuclein-immunoreactive axonal and parenchymal neuronal 
structures with pathological appearance. Descriptions of the 
morphology and nature of small pathogenic alterations and 
even the subcellular localization of varicosities, axonal or 
dendritic, in human PD and DLB brain tissue differ consid-
erably in the literature [78, 103], for review see [38].

Interestingly, the proportion of NM-containing SN 
neurons that express QC is increased in PD and DLB (see 
Fig. 5e), indicating a contribution of QC to both disorders. 
This finding can be interpreted in two different ways. On 
the one hand one could reason that neuronal degeneration 
mainly affects the subset of NM+ neurons which is devoid 
of QC, assuming that its presence in surviving neurons is 
neuroprotective. On the other hand QC expression may be 
newly induced in a neuronal subfraction of SNc in the course 
of the disease, rendering the respective neurons more vulner-
able to the pathological process.

In PD brains, compared to the DLB or the control group, 
we observed a statistically significant increase in the actual 
number of neurons in the SNc that solely express QC with-
out containing neuromelanin. This can only be explained 
by de novo synthesis of QC in a substantial fraction of this 
neuronal category (QC+/NM−). Furthermore, the percentage 
of degenerating neurons with excessively high QC immuno-
reactivity is augmented five and twelve times, respectively, 
in DLB and PD cases in comparison to control subjects 
(Fig. 6a). Taken together, it appears most likely that QC 
expression by SNc neurons is a factor which contributes 
to neuropathology rather than to neuroprotection. However, 
while the incidence of QC-positive structures in Lewy neu-
rites and varicosities is comparable in PD and DLB, the 
association of QC with Lewy body-like structures in SN 
was more pronounced in PD than in DLB (Fig. 6), which 
is consistent with a more cortical pathology in DLB [51]. 
It would be interesting to reveal whether the same type of 
association between QC and pGlu79-α-synuclein and neu-
ropathological structures is also present in other types of 
synucleinopathies, such as multiple system atrophy or Alz-
heimer’s disease with amygdala-restricted Lewy bodies that 
were not analyzed here.

We propose that QC-catalyzed pGlu-modification of 
pathogenic proteins might be a more general mechanism in 
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human clinical conditions than previously thought. In AD, 
it is well established that the pGlu modification of Aβ pep-
tides initially described by the Saido and Roher groups [58, 
85] compromises Aβ degradation and increases its toxicity 
[76] as well as aggregation propensity in human cortex, hip-
pocampus and subcortical brain nuclei affected by amyloid 
pathology [42, 72, 73]. There are currently two independent 
therapeutic strategies being tested in preclinical studies and 
in clinical settings: (1) inhibition of QC to prevent pGlu-Aβ 
formation and (2) targeting existing amyloid assemblies by 
pGlu-Aβ-specific antibodies.

Pharmacological inhibition of QC activity and genetic 
ablation of QC in transgenic animal models reduced 
pGlu-Aβ generation and total Aβ load and ameliorated learn-
ing and memory deficits [3, 44, 50, 93]. In addition, clinical 
trials indicated safety, tolerability and efficacy of the QC 
inhibitor PQ912 in human subjects [65, 89]. For informa-
tion on ongoing clinical trials, see https://​www.​alzfo​rum.​
org/​thera​peuti​cs/​varog​lutam​stat.

Targeting pGlu-Aβ using a well-characterized monoclo-
nal antibody [79] reduced amyloid plaques and improved 
cognition in APP transgenic mice [22, 31, 49]. Using this 
specific passive immunization approach, an attenuated cog-
nitive decline was reported in people with early AD in the 
Phase 2 TRAILBLAZER-ALZ study (https://​www.​alzfo​rum.​
org/​news/​resea​rch-​news/​phase-2-​donan​emab-​curbs-​cogni​
tive-​decli​ne-​early-​alzhe​imers).

Thus, there are well-characterized tools with defined cell 
biological, pharmacological and safety properties already 
available that can be tested in cellular and animal models of 
synucleinopathies in a straightforward way, to interfere with 
pGlu79-α-synuclein generation and to test its contribution to 
motor, cognitive and histological disturbances.

Conclusions

We demonstrate the QC-catalyzed formation of pGlu79-α-
synuclein, its oligomerization and neurotoxic profiles and 
its accumulation in brain in two transgenic mouse models 
of synucleinopathy. In human brain, the presence of QC and 
pGlu79-α-synuclein is largely increased in neurons of the 
SN and associated with pathological structures in PD and 
DLB subjects. Given the resistance of pGlu-modified pro-
teins against proteolytical degradation in general and the 
high oligomer formation velocity of pGlu79-α-synuclein 
in particular, these molecules might be interesting novel 
targets for pharmacologically interfering with human 
synucleinopathies.
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