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Abstract
Growing evidence suggests overlap between Alzheimer’s disease (AD) and Parkinson’s disease (PD) pathophysiology in 
a subset of patients. Indeed, 50–80% of autopsy cases with a primary clinicopathological diagnosis of Lewy body disease 
(LBD)—most commonly manifesting during life as PD—have concomitant amyloid-beta and tau pathology, the defining 
pathologies of AD. Here we evaluated common genetic variants in genome-wide association with AD as predictors of 
concomitant AD pathology in the brains of people with a primary clinicopathological diagnosis of PD or Dementia with 
Lewy Bodies (DLB), diseases both characterized by neuronal Lewy bodies. In the first stage of our study, 127 consecutive 
autopsy-confirmed cases of PD or DLB from a single center were assessed for AD neuropathological change (ADNC), and 
these same cases were genotyped at 20 single nucleotide polymorphisms (SNPs) found by genome-wide association study 
to associate with risk for AD. In these 127 training set individuals, we developed a logistic regression model predicting 
the presence of ADNC, using backward stepwise regression for model selection and tenfold cross-validation to estimate 
performance. The best-fit model generated a risk score for ADNC (ADNC-RS) based on age at disease onset and genotype 
at three SNPs (APOE, BIN1, and SORL1 loci), with an area under the receiver operating curve (AUC) of 0.751 in our train-
ing set. In the replication stage of our study, we assessed model performance in a separate test set of the next 81 individuals 
genotyped in our center. In the test set, the AUC was 0.781, and individuals with ADNC-RS in the top quintile had four-fold 
increased likelihood of having AD pathology at autopsy compared with those in each of the lowest two quintiles. Finally, 
in the validation stage of our study, we applied our ADNC-RS model to 70 LBD individuals from 20 Alzheimer’s Disease 
Research Centers (ADRC) whose autopsy and genetic data were available in the National Alzheimer’s Coordinating Center 
(NACC) database. In this validation set, the AUC was 0.754. Thus, in patients with autopsy-confirmed PD or DLB, a simple 
model incorporating three AD-risk SNPs and age at disease onset substantially enriches for concomitant AD pathology at 
autopsy, with implications for identifying LBD patients in which targeting amyloid-beta or tau is a therapeutic strategy.
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Introduction

Alzheimer’s (AD) and Parkinson’s diseases (PD) are the 
two most common neurodegenerative disorders, together 
affecting > 6 million individuals worldwide [10, 27]. AD 
is defined neuropathologically by the presence of amyloid-
beta (Aβ) plaques and tau neurofibrillary tangles (NFT), 
while PD is defined by the presence of Lewy bodies com-
posed of alpha-synuclein (aSyn). The average age of a 
patient receiving an AD clinical diagnosis is ~ 80 years old 
[2], while the average age of a patient receiving a PD clini-
cal diagnosis is ~ 60 years old [36].

PD is not the only disease defined by aSyn Lewy bod-
ies. Rather, PD belongs to a group of “synucleinopathies” 
collectively called the Lewy body diseases (LBD). The 
LBD comprise PD, with or without dementia, dementia 
with Lewy bodies (DLB), and multiple system atrophy 
(MSA) [19], with the first two entities (PD and DLB) 
demonstrating neuronal aSyn Lewy bodies, while MSA 
shows aSyn inclusions in glia. Importantly, the distinction 
between DLB and PD with dementia (PDD) is clinical, 
based on the timing of development of dementia [31]. On 
neuropathological examination, DLB and PDD patients 
are nearly indistinguishable at the individual level. Fur-
thermore, DLB and PDD share preclinical features, and 
shared genetic variants confer an increased risk in both 
disorders [4, 14, 28].

Despite traditional separation between AD and the 
LBD, growing evidence suggests a dynamic interaction 
between their pathophysiologies. Fifty to 80% of patients 
with a primary clinicopathological diagnosis of LBD 
have concomitant Aβ and tau pathology [38]. At autopsy, 
up to 40% of PD patients exhibit enough Aβ and NFT to 
qualify for a secondary diagnosis of AD [14]. Mechanisti-
cally, in vitro and in vivo studies suggest that aSyn, tau, 
and Aβ may interact synergistically in events leading to 
disease development [5, 44]. From a practical viewpoint, 
these findings suggest that LBD patients may be at-risk 
for developing AD.

Genetic risk factors for developing AD have been 
identified through family studies and genome-wide asso-
ciation studies (GWAS). In a recent AD GWAS compar-
ing > 50,000 cases with > 100,000 controls, 25 distinct 
loci were associated with risk for AD [24]. However, the 
genetic heritability (h2) reported for this study was only 
0.071, and various genetic risk scores composed of AD 
GWAS-nominated variants have poor predictive value for 
AD in the general population [11].

We reasoned that the high prevalence of AD within the 
LBD population might enhance the ability of AD genetic 
risk variants to predict the development of AD pathology. 
Accordingly, we genotyped all common genetic variants 

reported in 2 or more AD GWAS to associate with AD 
risk in a single-center cohort of 208 consecutive cases 
with a primary clinicopathological diagnosis of either PD 
or DLB. We tested these AD risk variants for their abil-
ity to predict concomitant AD pathology in these cases, 
validating our best model in an additional 70 LBD cases 
from the multi-center National Alzheimer’s Coordinating 
Center (NACC) database.

Materials and methods

Participants

Clinical and neuropathological data from all autopsy cases 
enrolled between February 1985 and July 2019 at the Uni-
versity of Pennsylvania (Penn) Center for Neurodegenerative 
Disease Research brain bank were assessed [45]. A clinico-
pathological diagnosis was assigned to each case primarily 
determined by neuropathology and secondarily accounting 
for clinical history. We note that although some cases were 
banked decades ago, all cases have been reassessed using 
modern criteria and techniques. Those with (1) a primary 
clinicopathological diagnosis of PD, PDD, or DLB and 
(2) DNA available for genetic studies were included in the 
analysis. All cases included in this study had a clinicopatho-
logical diagnosis of DLB or PD with or without dementia; 
we excluded MSA to focus on primary neuronal synucle-
inopathies [17]. Of 1922 accessioned cases, 208 cases met 
the above criteria, with 127 cases having complete genotype 
data at the outset of our study (training set), and 81 more 
cases genotyped during the course of our study (test set).

The National Alzheimer’s Coordinating Center (NACC) 
database is a multi-center collection of clinical and neuro-
pathological data from over 42,000 de-identified individuals 
across 39 past and present Alzheimer’s Disease Research 
Centers (ADRCs), as of March 2020 [3]. Through the Alz-
heimer’s Disease Genetics Consortium (ADGC), genetic 
data are also available for some of these individuals. Indi-
viduals with (1) evidence of Lewy body neuropathology, (2) 
a presumptive etiological diagnosis of Lewy body disease, 
(3) from a non-Penn ADRC, and (4) SNP genotypes for AD 
GWAS loci available through the ADGC, were included 
in the validation stage of our analysis [22, 23]. Cases with 
genetic mutations for familial AD were excluded. Seventy 
cases from 20 ADRCs met criteria and were included in the 
analysis. Informed consent was obtained from all partici-
pants prior to death at each ADRC.

Prior to conducting these studies, approval was obtained 
from the Penn Institutional Review Board, and informed 
consent was obtained from all participants prior to death. 
All procedures in these studies adhere to the tenets of the 
Declaration of Helsinki.
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Immunohistochemistry and neuropathological 
staging

For the Penn cases, neuropathological characterization of 
defined brain regions (frontal neocortex, temporal neocortex, 
parietal neocortex, occipital neocortex, anterior cingulate 
gyrus, hippocampus including entorhinal cortex, amygdala, 
basal ganglia, thalamus, midbrain, pons, medulla, cerebel-
lum) was conducted on all cases as previously described [1, 
45]. Briefly, each brain region was assessed by hematoxylin 
and eosin stain in addition to immunohistochemical stains 
(NAB228 for Aβ generated by Dr. Trojanowski, PHF1 for 
phosphorylated tau gifted by Peter Davies, SYN303 for 
aSyn generated by Dr. Trojanowski, and 1D3 for phospho-
rylated TDP-43 gifted by Manuela Neumann and Elisabeth 
Kremmer) to assign a semi-quantitative score (none, rare, 
mild, moderate, or severe) for tau, Aβ, aSyn, and TDP-43 
pathologies. For the NACC cases, neuropathological char-
acterization of brain regions was conducted at individual 
ADRCs in accordance with established guidelines [21]. For 
all cases, an AD Neuropathologic Change (ADNC) score 
was also assigned in accordance with the National Institute 
on Aging’s guidelines for the neuropathologic assessment of 
AD. Absence of AD co-pathology was defined by an ADNC 
of None or Low, while presence of AD co-pathology was 
defined by an ADNC score of Intermediate or High [32].

Genotyping of AD risk variants

Single nucleotide polymorphisms (SNPs) in genome-wide 
association with AD risk were nominated from the litera-
ture. Three AD genome-wide association studies (GWAS) 
together examining > 70,000 AD subjects and > 380,000 
controls were used to identify candidate SNPs [16, 24, 25]. 
SNPs reaching genome-wide significance (p < 5 × 10–8) 
in at least two of these three major GWAS were included 
in our study. Twenty independent loci reached criteria for 
inclusion.

For the Penn cases, SNP genotype was determined by 
Illumina Global Screening Arrays (GSA), or TaqMan SNP 
Genotyping Assays, as previously described [7]. In some 
cases, proxy SNPs (D′ > 0.8 in the EUR reference population 
from 1000 Genomes Project Phase 3 [41] were substituted, 
as indicated in the text. For the NACC cases, SNP genotyp-
ing was completed by the Alzheimer’s Disease Genetic Con-
sortium (ADGC) via Illumina or Affymetrix high-density 
microarrays, as previously described [33].

Association of individuals risk variants with ADNC

Logistic regression models were used to test for associa-
tion between genotype at each SNP and the presence or 
absence of AD co-pathology in the Penn cohort (N = 208). 

Because the APOE locus has three alleles reported to have 
differential effects in AD [13, 39], we considered the num-
ber of APOE E2 and APOE E4 alleles separately. Addi-
tional analyses were performed with sex and age at disease 
onset as covariates in the logistic regression.

Logistic regression model predicting ADNC

Penn autopsy cases were split into training (N = 127, 61%) 
and test (N = 81, 39%) sets, which is within the range of 
optimal allocation proportions for large data sets with 
high data accuracy [8]. The training set comprised the 
first batch of 127 cases genotyped, for which data were 
available at the outset of the study, while the test set com-
prised the next 81 cases genotyped, for which genetic data 
were obtained during the subsequent replication step of 
our study. There was no overlap between training and test 
sets. Backwards stepwise regression was used to develop 
a binary classifier to predict the presence or absence of 
AD co-pathology in the training set, with age at disease 
onset and sex as covariates in the model. Comparison of 
Akaike information criterion (AIC) at each step was used 
to determine model fitness, and we estimated predictive 
performance by 10-fold cross-validation (100 iterations). 
The Hosmer and Lemeshow goodness-of-fit test [12] was 
used to evaluate the final logistic regression model devel-
oped in the training set.

Model performance at predicting AD co-pathology 
was assessed in both the Penn training and test sets using 
receiver operating characteristic (ROC) curves, generating 
an area under the curve (AUC) for both the training and 
test sets.

The best-fit model was also applied to LBD subjects from 
the NACC database, with ROC curve analyses.

Development of the ADNC‑RS

An ADNC risk score (ADNC-RS) was calculated for 
each case based on the best model developed in the 
Penn-based training set by multiplying the age at disease 
onset or the risk allele dose by the respective regres-
sion coefficient. The risk score can be used to calculate 
the probability of AD co-pathology using the formula: 
p = e∧(risk score)∕

(

1 + e∧(risk score)
)

 .  Spec i f i c a l ly, 
because our model is a logistic regression model, the output 
(risk score) is in log odds. Log odds may be converted to 
odds by taking the antilog ( e∧risk score ). The odds may then 
be converted to probability using the standard probability 
(p) formula ( p = odds∕(1 + odds) ). Scores and probabilities 
were generated using the “predict” function in the “caret” 
package in R [20] from the logistic regression model.
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Additional details regarding statistical analysis

Analyses were conducted in R (https ://www.r-proje ct.org) 
and Prism 8 (https ://www.graph pad.com/scien tific -softw 
are/prism ); R-scripts as well as Penn-based datasets are 
available in the Supplementary Methods as an Online 
Resource. The “caret” package was used for cross-val-
idation and model generation [30]. The “ROCR” and 
“pROC” packages were used for creating and analyzing 
receiver operating characteristic (ROC) curves [37, 40]. 
T test, Wilcoxon rank-sum, or Fisher’s exact tests were 
used to assess differences between clinical variables, as 
indicated by the distributions of data. For all statistical 
tests, power was set at 0.8, alpha was set to 0.05, and all 
tests were two-sided.

Results

Penn LBD cohort characteristics

Two hundred and eight participants from Penn with a pri-
mary clinicopathological diagnosis of PD or DLB were 
included in this analysis. The mean age at clinical dis-
ease onset was 64.51 years (SEM 0.70) and at death was 
77.67 years (SEM 0.55). The majority of these subjects 
[n = 163/208 (78.4%)] received clinicopathological diag-
noses of PD; 108 of these PD individuals had dementia at 
the time of death, and 55 did not. Additional diagnoses for 
this cohort, as well as clinical and demographic details, are 
shown in Tables 1 and 2.

Only 43/208 (20.67%) of this LBD cohort had no ADNC 
at autopsy, while more than one-third had intermediate or 
high levels of ADNC (Fig. 1a, Supplementary Table 1, 

Table 1  Demographic and clinical characteristics of cohort

Data represent mean (SEM) unless otherwise noted
Bold text indicates p < 0.05
a Available Data (N = 100 MMSE, N = 68 UPDRS-III)
b Comparison between none/low ADNC and intermediate/high ADNC groups

Characteristic Whole cohort None/low ADNC Intermediate/high ADNC p  valueb

N 208 129 79
Age at onset, year 64.51 (0.70) 62.52 (0.93) 67.76 (0.93) 0.000
Age at death, year 77.67 (0.55) 76.95 (0.75) 78.84 (0.79) 0.149
Disease duration, year 13.80 (0.61) 15.27 (0.85) 11.41 (0.75) 0.000
Sex, (F/M), N (%) 45(22)/163(78) 30(23)/99(77) 15(19)/64(81) 0.494
Race, N (%)
 White 199 (97.6) 122 (97.6) 77 (97.5) 0.999
 Non-white 5 (2.4) 3 (2.4) 2 (2.5)

Last  MMSEa 20.07 (0.74) 21.29 (0.92) 18.08 (1.18) 0.021
Last UPDRS-IIIa 45.47 (1.91) 43.96 (2.17) 49.10 (3.82) 0.222
Dementia diagnosis during life, (no/

yes) N (%)
55(26.4)/153(73.6) 47(36.4)/ 82(63.6) 8(10)/ 71(89.9) 0.000

Lewy body distribution, N (%)
Diffuse or neocortical 120 (58.0) 56 (43.4) 64 (82.1)
Transitional or limbic 58 (28.0) 47 (36.4) 11 (14.1) 0.000
Brainstem predominant 29 (14.0) 26 (20.2) 3 (3.8)

Table 2  Clinicopathological 
diagnosis of cohort

a Data represent N (%) of whole cohort
b Data represent N (%) of ADNC category

Clinicopathological diagnosis Whole  cohorta None/low  ADNCb Intermediate/
high  ADNCb

Parkinson’s disease 55 (26.44) 47 (85.45) 8 (14.55)
Parkinson’s disease dementia 108 (51.92) 62 (57.41) 46 (42.59)
Dementia with Lewy bodies 45 (21.63) 20 (44.44) 25 (55.55)

https://www.r-project.org
https://www.graphpad.com/scientific-software/prism
https://www.graphpad.com/scientific-software/prism
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Online Resource). Among the group with no ADNC, 16.8% 
are identified as primary age-related tauopathy (PART). In 
the Penn LBD cohort, virtually all individuals with amyloid 
plaques also demonstrated NFT; indeed, only four individu-
als had amyloid plaques without evidence of NFTs. Rep-
resentative immunohistochemical sections of anterior cin-
gulate and middle frontal cortex demonstrating Lewy body 
pathology with co-occurring Aβ and tau NFT are shown in 
Fig. 1b.

Clinical differences in PD/DLB patients with vs. 
without ADNC

Compared to PD/DLB subjects with absent or low levels of 
ADNC, subjects with intermediate-to-high levels of ADNC 
were older at disease onset (67.76 vs. 62.52 years, p < 0.001) 
and had shorter disease duration (11.41 vs. 15.27 years, 
p < 0.001). They were also more cognitively impaired, with 
lower MMSE scores (18.08 vs. 21.29, p = 0.02), and greater 
rates of clinical dementia (89.9% vs. 63.6%, p < 0.001, 
Table 1), prior to death. The mean time between the last 
MMSE and death was 2.66 years (SD 2.37).

Association of individual AD risk SNPs with ADNC 
in PD/DLB patients

Twenty genetic loci have been robustly associated with risk 
for developing AD by multiple GWAS [16, 24, 25] (Table 3). 
As shown in Table 4, the number of APOE E4 alleles asso-
ciated with increased risk for ADNC in PD/DLB (nominal 
p < 0.001). One other locus near SORL1, represented by 
rs11218343, approached but did not meet the significance 
threshold for association with ADNC (nominal p = 0.06). 
Adjusting for age at onset and sex minimally affected these 
results (Supplementary Table 2, Online Resource).

Development of a model predicting concomitant AD 
pathology in PD/DLB individuals

In a training set consisting of the first 127 PD/DLB individu-
als genotyped at Penn, we developed a logistic regression 
model to predict concomitant AD pathology (defined as 
intermediate-to-high levels of ADNC). We began by includ-
ing genotypes at all 20 AD risk SNPs [16, 24, 25] (Table 3), 
age at disease onset, and sex in the model. We then used 
backward stepwise regression, with model selection based 
on the Akaike Information Criterion (AIC). For each model, 
we also estimated predictive performance by 10-fold cross-
validation (100 iterations) within the training set (Fig. 2a).

Fig. 1  Alzheimer’s disease neuropathological change (ADNC) scores 
in N = 208 cases from Penn with a primary clinicopathological diag-
nosis of PD or DLB. a Number of subjects and % of whole cohort 
at each level of ADNC. b Representative immunohistochemical sec-
tions (160×) demonstrating Lewy body aSyn pathology alone in ante-
rior cingulate (left panel, in red), concomitant Aβ (brown) and aSyn 

(red) pathology in anterior cingulate (middle panel), and Aβ (red) and 
tau NFT (brown) pathology in middle frontal cortex (right panel). 
aSyn pathology was detected with the MJFR13 antibody against 
phosphorylated aSyn. Aβ pathology was detected with the NAB228 
antibody, and tau NFT’s were detected with the 17,028 rabbit poly-
clonal anti-tau antibody
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Our best model (by AIC) incorporated only four pre-
dictors: age at disease onset, number of APOE E4 alleles, 
and genotype at the BIN1 and SORL1 loci (Fig. 2b). The 
Hosmer–Lemeshow goodness-of-fit test for this model 
produced a χ2(8, N = 127) = 7.578, p = 0.4758, indicating 

fit. The area under the receiver operator curve (AUC) 
for this model in our training set data (ten-fold cross-
validation) was 0.751 (Fig. 3a), whereas the AUC for a 
shuffled version of our dataset in which ADNC positive 

Table 3  Genetic loci nominated 
from Alzheimer’s disease 
GWAS literature

a GRCh38
b Based on position of top SNP in reference to RefSeq assembly
c 1000 Genomes, CEU population
d Reported by Kunkle et al. (2019)
e proxy rs4844610 (D’ = 1.0)
f proxy rs10933431 (D’ = 0.84)
g proxy rs9271058 (D’ = 1.0)
h proxy rs9473117 (D’ = 1.0)
i proxy rs12539172 (D’ = 0.98)
j Previously the ZCWPW1 locus
k proxy rs10808026 (D’ = 1.0)
l proxy for rs73223431 (D’ = 1.0)
m proxy rs9331896 (D’ = 1.0)
n proxy rs7920721 (D’ = 0.95),
o proxy rs7933202 (D’ = 0.94)
p proxy rs17125924
q proxy rs12881735 (D’ = 1.0)
r proxy rs593742 (D’ = 0.88)
s proxy rs6024870 (D’ = 0.94)

Variant Chr Positiona Nearest  geneb Maj/Min MAFc Reported OR 
(95%CI) for 
 ADd

rs3818361e 1 207,611,623 CR1 G/A 0.278 1.20 (1.13–1.27)
rs6733839 2 127,135,234 BIN1 C/T 0.399 1.20 (1.17–1.23)
rs7570320f 2 233,167,045 INPP5D C/A 0.369 0.92 (0.87–0.97)
rs9271100g 6 32,608,701 HLA-DRB5/DRB1 C/T 0.273 1.11 (1.06–1.17)
rs75932628 6 41,161,514 TREM2 C/T 0.010 2.08 (1.73–2.49)
rs10948363h 6 47,520,026 CD2AP A/G 0.278 1.09 (1.06–1.12)
rs1476679i 7 100,406,823 NYAP1j C/T 0.323 0.92 (0.90–0.95)
rs11762262k 7 143,410,783 EPHA1 C/T 0.207 0.91 (0.86–0.96)
rs17057043l 8 27,362,793 PTK2B G/A 0.343 1.11 (1.06–1.16)
rs11136000m 8 27,607,002 CLU C/T 0.369 0.88 (0.85–0.90)
rs11257240n 10 11,677,075 ECHDC3 T/G 0.350 1.07 (1.02–1.12)
rs920573o 11 60,157,486 MS4A6A G/A 0.475 0.90 (0.86–0.95)
rs3851179 11 86,157,598 PICALM C/T 0.429 0.88 (0.86–0.90)
rs11218343 11 121,564,878 SORL1 T/C 0.040 0.80 (0.75–0.85)
rs17125944p 14 52,933,911 FERMT2 T/C 0.081 1.14 (1.09–1.18)
rs10498633q 14 92,460,608 SLC24A4 G/T 0.182 0.92 (0.89–0.94)
rs11854073r 15 58,680,796 ADAM10 G/A 0.308 0.93 (0.91–0.95)
rs3752246 19 1,056,493 ABCA7 C/G 0.187 1.15 (1.11–1.18)
rs7274581s 20 56,443,204 CASS4 T/C 0.091 0.88 (0.85–0.92)
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vs. negative status was permuted (null model) was 0.479 
(Supplementary Fig. 1, Online resource).

Model performance in test set

We applied the best model developed in our Penn-based 
training set to a Penn-based test set of 81 PD/DLB indi-
viduals whose data were never used to develop the predictor. 
Despite differences in the proportion of cases with concomi-
tant AD pathology in the training set (46%) vs. the test set 
(26%), our model performed equally well in the test set, with 
an AUC of 0.781 (Fig. 3b).

We additionally performed a subgroup analysis, applying 
our predictor only in the subset of our 208 Penn cases with 
a clinicopathological diagnosis of PD or PDD (N = 163), 
which minimally affected the results (AUC = 0.728, Sup-
plementary Fig. 2, Online Resource).

Development of an ADNC risk score

To develop a clinically-useful tool, we used our logistic 
regression model to generate a continuous risk score (vs. 

binary outcome predictor) for concomitant AD pathology 
(ADNC risk score, or ADNC-RS). An ADNC-RS was cal-
culated for each case using the following formula:

The distribution of ADNC-RS across both the Penn-
based training and test sets is shown in Fig. 3c. The ADNC-
RS was significantly higher for PD/DLB individuals with 
concomitant AD pathology in both the training [M 0.241 
(SEM 0.129) vs. M −0.622 (SEM 0.111), p < 0.001] and 
test sets [M 0.378 (SEM 0.139) vs. M −0.470 (SEM 0.113), 
p < 0.001], compared to those without concomitant AD 
pathology. For each case, the ADNC-RS was used to deter-
mine the probability of AD co-pathology; the distribution 
of predicted probability of AD co-pathology is shown in 
Fig. 3d. We found, importantly, that individuals with ADNC-
RS in the highest quintile were four times more likely to 
have AD pathology than individuals with ADNC-RS in the 
lowest two quintiles. This enrichment was observed in both 
the training set (Fig. 3e) and the test set (Fig. 3f) individuals.

Validation of the ADNC risk score in LBD cases 
from the National Alzheimer’s Coordinating Center 
(NACC) Database

Having demonstrated that our logistic regression predictor 
and its associated ADNC-RS performed well in Penn-based 
individuals from both our training and test sets, we sought to 
validate this predictor in a national multi-site setting.

The National Alzheimer’s Coordinating Center (NACC) 
is a national database of clinical and neuropathological data 
from over 42,000 de-identified individuals across 39 past and 
present Alzheimer’s Disease Research Centers (ADRCs), 
as of March 2020. Genetic information for some patients 
is also available through the Alzheimer’s Disease Genetics 
Consortium (ADGC). Seventy individuals from 20 non-Penn 
ADRCs with autopsy-confirmed LBD neuropathology and 
presumed clinical etiology of LBD were included in this 
analysis. The mean age at disease onset was 70.49 years 
(SEM 1.03), and mean age at death was 80.41 years (SEM 
0.98). Since many NACC patients are recruited from mem-
ory disorder clinics, this group was highly enriched for 
patients with dementia during life [n = 58/70 (82.9%)] and 
intermediate/high ADNC at autopsy [n = 62/70 (88.6%)], 
compared to the Penn-based PD and DLB cohort. Additional 
clinical and demographic details are shown in Table 5.

Despite these differences in prevalence of ADNC, apply-
ing our best Penn-derived model to the NACC Validation 
set resulted in a ROC AUC of 0.754 (Fig. 4a), indicating 

ADNC−RS = −7.97717 + 0.0636 (age at onset)

+ 1.04327(APOE E4 alleles)

+ 0.45498 (BIN1 risk alleles)

+ 1.48933(SORL1 risk alleles).

Table 4  Associations between individual genetic loci and presence of 
concomitant AD pathology

Logistic regression coefficients (β), standard error (SE), and nominal 
p values are shown. No covariates are included. TREM2 is omitted 
from analysis due to lack of genetic variation at this SNP in the train-
ing set
Bold text indicates p < 0.05
a Previously the ZCWPW1 locus

Locus Β SE Nominal p value

APOE E4 1.049 0.269 0.000
APOE E2 − 0.667 0.538 0.215
CR1 0.308 0.242 0.203
BIN1 0.191 0.206 0.354
INPP5D − 0.180 0.187 0.335
HLA-DRB5/DRB1 0.068 0.229 0.768
CD2AP 0.007 0.230 0.976
NYAP1a − 0.149 0.281 0.596
EPHA1 − 0.255 0.264 0.333
PTK2B − 0.109 0.215 0.610
CLU − 0.057 0.225 0.799
ECHDC3 − 0.147 0.217 0.499
MS4A6A 0.313 0.211 0.138
PICALM 0.009 0.212 0.967
SORL1 1.204 0.650 0.064
FERMT2 0.195 0.394 0.620
SLC24A4 − 0.022 0.302 0.942
ADAM10 0.321 0.253 0.204
ABCA7 0.040 0.252 0.875
CASS4 − 0.028 0.281 0.921
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comparable performance to that seen in our Penn-based 
training (0.751) and test sets (0.781). LBD individuals from 
the NACC database with AD co-pathology exhibited higher 
average ADNC-RS than those without AD co-pathology [M 
0.552 (SEM 0.109) vs. M −0.179 (SEM 0.244), p = 0.018)] 
(Fig. 4b). Despite the NACC database’s enrichment for 
patients with ADNC, higher ADNC-RS continued to corre-
late with a higher prevalence of AD co-pathology (Fig. 4c).

Discussion

In this study, we performed an in-depth analysis of 208 PD/
DLB cases from Penn to determine whether common genetic 
variants associated with risk for AD by GWAS might predict 
which individuals would develop concomitant AD pathol-
ogy. We first demonstrated that concomitant AD pathology 
is highly prevalent in PD/DLB patients, with over one-third 
of the Penn cohort exhibiting intermediate-to-high levels 
of ADNC. We next evaluated a set of 20 common genetic 
variants found by multiple AD GWAS to associate with risk 
for AD, examining their association with ADNC in PD/DLB 

and developing a best-fit logistic regression model predict-
ing the presence of intermediate-to-high ADNC in these pri-
mary neuronal synucleinopathies. A best-fit predictor incor-
porating only age at disease onset and genotype at 3 SNPs 
achieved moderately high performance (AUC 0.75–0.78) in 
both the training set in which it was developed and a held-
out test set. From our logistic regression model, we devel-
oped a continuous metric, the ADNC-RS, and demonstrated 
that this simple tool could identify a population of LBD 
individuals at very high risk for development of concomitant 
AD pathology. Finally, we applied our logistic regression 
model and associated ADNC-RS calculator to LBD cases 
from the national, multi-site NACC database, validating its 
performance (AUC = 0.754) in a set of 70 cases recruited 
outside of Penn.

Our findings have clinical implications. Both “proteinopa-
thies” defining ADNC—plaques composed of Aβ and NFT 
composed of tau—are targetable with drugs in clinical trials 
now, and, in clinical AD, immunological approaches target-
ing Aβ have shown enough promise to proceed to Phase III 
trials [6, 35]. However, within the clinical AD spectrum, 
the need to identify individuals ever-earlier in the course 

Fig. 2  Backward stepwise logistic regression model selection for 
predicting concomitant Alzheimer’s disease (AD) pathology in 
N = 127 cases (training set) with a clinicopathologic diagnosis of PD 
or DLB from Penn. Concomitant AD pathology is defined as an AD 
Neuropathological Change (ADNC) score of Intermediate or High. 
a Akaike information criterion (AIC, left axis) at each step dur-
ing model selection and the corresponding area under the receiver 
operating characteristics curve (AUC, right axis), estimated by ten-

fold cross-validation, within the training set are shown. Initial model 
included all AD risk SNPs, sex, and age at disease onset as predic-
tors; sequential elimination of predictors and effect on AIC and AUC 
are shown from left to right. As the training set cases showed no 
genetic variability at the TREM2 locus, this locus was not included in 
the model. b Coefficients (β), standard error (SE), and p values for the 
four predictors included in the best model (lowest AIC) for predicting 
concomitant AD in LBD cases
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of pathophysiology [43] to see benefit with these therapies 
has created considerable problems with feasibility, not to 
mention potential burden to the healthcare system should 
any of these therapeutics attain FDA approval. These prac-
tical issues have been compounded by the fact that genetic 
risk scores based on AD GWAS-nominated variants achieve 
only very modest predictive value in the general population, 
where the absolute prevalence of AD is relatively low [11]. 
The performance of such genetics-based risk scores may be 
vastly improved in a population enriched for the presence of 
AD pathology, however [9].

Patients with primary clinical diagnoses of PD during 
life (and LBD at autopsy) represent exactly such an AD 
pathology-enriched population. Indeed, the prevalence of 
concomitant AD pathology in this group has been reported 
to range from 38 to 70%, depending on the definition of AD 
pathology used, and on whether clinical diagnosis of PD or 
primary pathological diagnoses of LBD is used [38, 42]. Our 
study corroborates these findings, with ~ 38% of PD/DLB 
individuals from Penn demonstrating an intermediate to high 
degree of ADNC, and only ~ 20% showing no ADNC. As a 
consequence, in this enriched population, the logistic regres-
sion model developed here achieves an AUC of ~ 0.781.

Fig. 3  Performance charac-
teristics of the best model for 
predicting concomitant Alzhei-
mer’s disease (AD) pathol-
ogy among Penn cases with a 
clinicopathological diagnosis of 
PD or DLB. Receiver operating 
characteristics (ROC) curves 
and areas under the curve 
(AUC) of the final model (with 
age at onset, number of APOE4 
alleles, BIN1 genotype, and 
SORL1 genotype as predic-
tors) in the training (a) and test 
(b) cohorts are shown. c The 
Alzheimer’s disease neuro-
pathological change risk score 
(ADNC-RS) calculated from the 
best logistic regression model is 
shown for both the training set 
and test set cohorts. Individu-
als positive for ADNC showed 
higher average ADNC-RS. d 
The probability of concomitant 
AD pathology was calculated 
from the ADNC risk score 
for each case. Values above 
0.5 have a high probability of 
concomitant AD pathology, 
while values below 0.5 have a 
low probability of concomitant 
AD pathology. The prevalence 
of concomitant AD pathology 
at each quintile of ADNC risk 
score in the training (e) and test 
(f) cohorts demonstrates four-
fold enrichment for the presence 
of ADNC for individuals in the 
top quintile vs. individuals in 
the first two quintiles of risk. 
*p < 0.05
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More important from a practical perspective, we use the 
predictors (and associated weights) identified in our model 
to develop a risk score for ADNC (the ADNC-RS) that can 
identify those PD/DLB individuals most likely to exhibit 
ADNC at autopsy. Indeed, in both our Penn-based training 

and test sets, those individuals with ADNC-RS in the top 
20% are four times more likely to develop ADNC than LBD 
individuals with ADNC-RS in the bottom 40%, while in 
the NACC validation set, higher ADNC-RS still correlated 
with higher likelihoods of individuals having ADNC, despite 

Table 5  Demographic and clinical characteristics of NACC validation set

Data represent mean (SEM) unless otherwise noted
Bold text indicates p < 0.05
a Available data (N = 35)
b Comparison between none/low ADNC and intermediate/high ADNC groups

Characteristic Whole dataset None/low ADNC Intermediate/high ADNC p  valueb

N 70 8 62
Age at onset, year 70.49 (1.03) 69.50 (3.55) 70.61 (1.08) 0.634
Age at death, year 80.41 (0.98) 80.25 (4.03) 80.44 (0.99) 0.939
Disease duration, year 9.93 (0.54) 10.75 (1.89) 9.82 (0.56) 0.474
Sex, (F/M), N (%) 23 (32.9)/47 (67.1) 1 (12.5)/7 (87.5) 22 (37.5)/40 (62.5) 0.2572
Race, N (%)
 White 70 (100.0) 8 (100.0) 62 (100.0) > 0.999
 Non-white 0 (0.0) 0 (0.0) 0 (0.0)

Last  MMSEa 19.34 (1.377) 27.2 (0.58) 18.03 (1.47) 0.013
Dementia diagnosis during life, (no/

yes) N (%)
12 (17.1)/58 (82.9) 5 (62.5)/3 (37.5) 7 (11.3)/55 (88.7) 0.003

Lewy body distribution, N (%)
 Diffuse or neocortical 44 (62.9) 5 (62.5) 39 (62.9) 0.558
 Transitional or limbic 10 (14.3) 2 (25.0) 8 (12.9)
 Brainstem predominant 4 (5.7) 1 (12.5) 3 (4.8)
 Amygdala 11 (15.7) 0 (0.0) 11 (17.7)
 Olfactory bulb 1 (1.4) 0 (0.0) 1 (1.6)

Fig. 4  Performance characteristics of the best model for predicting 
concomitant Alzheimer’s disease (AD) pathology among non-Penn, 
NACC cases with neuropathological evidence of Lewy bodies and 
presumed clinical diagnosis of LBD. a Receiver operating character-
istic (ROC) curve and area under the curve (AUC) of the final model 
(developed in the Penn-based training set, with age at disease onset, 
number of APOE4 alleles, BIN1 genotype, and SORL1 genotype as 

predictors) are shown. b The Alzheimer’s disease neuropathologi-
cal change risk score (ADNC-RS) calculated from the final model 
is shown for LBD cases from the NACC. Individuals positive for 
ADNC showed higher average ADNC-RS. c Despite the NACC data-
base’s enrichment for ADNC-positive individuals compared to the 
Penn-based cases (training and test sets combined), the ADNC-RS 
correlated with prevalence of ADNC in both groups
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the NACC database’s bias towards individuals with ADNC. 
Because the ADNC-RS requires knowledge of only the age 
at disease onset and genotype at 3 AD risk SNPS, it can be 
easily calculated in most settings using results from a simple 
blood sample. Thus, the ADNC-RS developed here might 
serve as a screening step enriching for those PD/DLB indi-
viduals who warrant assessment for development of ADNC 
using more expensive modalities such as Aβ or tau imaging. 
Moreover, as plasma biomarkers for AD are emerging now 
[15, 18, 29, 34] future studies incorporating plasma bio-
markers with the clinico-genetic predictor described here 
may further improve accuracy.

How certain can we be of our model and associated risk 
score? While the definitive answer to this question will 
lie in future studies investigating other cohorts, several 
aspects of our current study increase confidence. First, we 
nominate candidate genetic variants for inclusion in model 
development in an unbiased manner, starting with all loci 
reported to associate with risk for AD across two or more 
major GWAS studies. Second, we use strict criteria that are 
widely accepted in the field for defining ADNC. Third, in 
the first two stages of our study, we employ a training set/
test set design in our analyses, with each group defined by 
consecutive genotyping of autopsy cases diagnosed with PD 
or DLB. Such a design guards against over-fitting, and our 
results confirm that we are not over-fitting the training set 
data, since performance in the test set is as high as in the 
training set. Indeed, because completion of our test set cases 
followed completion of our training set cases, these two sub-
groups had different levels of concomitant AD pathology 
(46% of cases with concomitant AD pathology in the train-
ing set vs. 26% in the test set), but the ADNC-RS performed 
equally well in enriching for individuals with AD co-pathol-
ogy in both subgroups. Finally, we validated our findings in 
a multi-site group of LBD individuals recruited outside of 
Penn, finding that the ADNC-RS performed equally well in 
a dataset highly enriched with concomitant AD pathology 
(88.6% of cases).

Limitations of the current study should be considered 
alongside the previously-mentioned strengths. In particular, 
although our sample sizes of 208 neuropathologically char-
acterized PD/DLB cases from Penn and 70 LBD cases from 
NACC are not small, a larger sample, across multiple cent-
ers, would be a valuable addition to the work presented here. 
In addition, further investigations of the cognitive conse-
quences of ADNC in PD or DLB patients would add clinical 
depth to our findings. Third, because the focus of this study 
was neuropathological, we defined our cohort neuropatho-
logically, rather than using a clinicopathological diagnosis 
of PD. That said, a subset analysis of the 163 individuals 
in our Penn-based LBD cohort with a clinical diagnosis of 
PD yielded near-identical results. In the future, however, a 
clinically defined study in a PD population, verifying the 

presence or absence of ADNC by imaging, could extend 
the current work. Finally, we recognize that the LBD cases 
in our NACC Validation set may differ clinically from the 
PD/DLB cases characterized at Penn, because most NACC 
participants are recruited at memory disorders clinics. That 
said, we selected for only the NACC LBD cases whose clini-
cal diagnosis was presumed to be LBD (n = 70 out of 559 
NACC cases with autopsy and genetic data). Moreover, in 
thinking about the potential clinical uses of our predictor, 
we are encouraged by its high performance in this Validation 
set, since heterogeneity is the norm rather than the exception 
in most clinical contexts.

In addition to the clinical implications discussed above, 
the biological implications of our study are also worth con-
sidering. Specifically, the genetic loci identified in our final 
model predicting ADNC in LBD individuals were APOE, 
BIN1, and SORL1. Many functions for APOE have been 
reported, but a consistent finding over many years is that the 
APOE E4 allele (included in our predictive model) encodes a 
form of this protein that binds Aβ less efficiently [46]. BIN1 
encodes a protein that functions in beta-secretase 1 traffick-
ing, which in turn can impact the production of Aβ. SORL1 
encodes the sortilin-related receptor 1, which also functions 
in intracellular trafficking, including the sorting of APP to 
the retromer pathway for degradation or to the endosome-
lysosome system, where APP is cleaved to generate Aβ. Col-
lectively, the fact that our best predictive model incorporates 
these three genetic loci underscores the importance of Aβ 
production and processing in the development of ADNC 
among LBD individuals. In addition, direct interaction 
between BIN1 and tau regulates tau phosphorylation, which 
may affect the development of AD pathology via a different 
route [26]. Interestingly, among these three genetic loci, the 
SORL1 locus exerted the strongest effect in our model, with 
a coefficient of ~ 1.5 compared to ~ 1 for the APOE locus. As 
the SNP at the SORL1 locus is relatively rare (minor allele 
frequency of 0.04), the contribution to AUC may be seen in 
only a small fraction of individuals, however. In contrast, 
in the general population, among AD common genetic risk, 
APOE has by far the largest effect size.

In summary, we present our findings from a study of 
208 PD/DLB cases at Penn, validated in 70 additional LBD 
cases from the multi-site NACC database, demonstrating 
that age at disease onset and genotype at 3 SNPs is sufficient 
to identify a subset of LBD individuals at very high risk for 
development of concomitant AD pathology. The develop-
ment of molecular tools such as the ADNC-RS reported here 
may in turn be permissive for strategies to target Aβ and tau 
accumulation in PD and other LBD.
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