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Abstract
A strong genetic predisposition (60–80% of attributable risk) is present in Alzheimer’s disease (AD). In view of this major 
genetic component, identification of the genetic risk factors has been a major objective in the AD field with the ultimate aim 
to better understand the pathological processes. In this review, we present how the genetic risk factors are involved in APP 
metabolism, β-amyloid peptide production, degradation, aggregation and toxicity, innate immunity, and Tau toxicity. In addi-
tion, on the basis of the new genetic landscape, resulting from the recent high-throughput genomic approaches and emerging 
neurobiological information, we propose an over-arching model in which the focal adhesion pathway and the related cell 
signalling are key elements in AD pathogenesis. The core of the focal adhesion pathway links the physiological functions of 
amyloid precursor protein and Tau with the pathophysiological processes they are involved in. This model includes several 
entry points, fitting with the different origins for the disease, and supports the notion that dysregulation of synaptic plasticity 
is a central node in AD. Notably, our interpretation of the latest data from genome wide association studies complements 
other hypotheses already developed in the AD field, i.e., amyloid cascade, cellular phase or propagation hypotheses. Geneti-
cally driven synaptic failure hypothesis will need to be further tested experimentally within the general AD framework.

Introduction

Alzheimer’s disease (AD) is the most common neurode-
generative disorder and constitutes a major public health 
problem worldwide (with 35.6 million sufferers). AD causes 
memory loss and cognitive impairment, which are invariant 
early signs of the disease. Hippocampal atrophy due to neu-
ronal death is one of the earliest hallmarks of AD. Preceding 
neuronal death, synaptic dysfunction and synapse loss have 
been observed in post-mortem AD brains and are correlated 
with cognitive decline [28]. AD is characterised by the coex-
istence of two main pathological lesions: (1) intraneuronal 
neurofibrillary tangles composed of abnormally modified 

Tau proteins and (2) parenchymal amyloid deposits cen-
tred around β-amyloid (Aβ) peptides. The discovery of rare 
mutations in APP, PSEN1 and PSEN2 causing autosomal 
dominant forms of the disease gave rise to the amyloid cas-
cade hypothesis, which radically changed our understanding 
of AD [46]. Systematic association of pathogenic mutations 
with altered amyloid precursor protein (APP) metabolism 
and with the overproduction of longer Aβ peptides in par-
ticular—which are believed to be more neurotoxic—suggest 
that these peptides are at the heart of the disease process. 
Overproduction of these neurotoxic peptides may lead to 
(or accentuate) the neuron-to-neuron propagation of Tau 
pathology by a still unknown mechanism [20]. However, 
since monogenic forms represent less than 1% of all AD 
cases, crucial questions can be raised: (1) is the amyloid 
cascade hypothesis central to all forms of AD? (2) Are other 
pathophysiological processes involved in late-onset non-
Mendelian forms of AD?

Within this context, understanding the genetics of the 
most common forms of AD would improve our knowledge 
of the underlying pathophysiological processes. Indeed, 
genetic risk factors account for up to 80% of attributable 
risk in these common forms [30]. One can thus argue that 
the vast majority of the AD pathophysiological pathways 
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are driven by or include genetic determinants. Accordingly, 
describing these genetic determinants should improve our 
understanding of the fundamental disease processes. In this 
review, we present the latest advances in AD genetics and in 
the post-genome wide association studies (GWASs) era, and 
discuss how these information might change our understand-
ing of the AD pathophysiological processes.

Genetic landscape of AD

Over a 16-year period (from 1993 to 2009), the Apolipopro-
tein E (APOE) gene was the only genetic risk factor identi-
fied for AD. The association of the APOE ε4 allele with 
AD risk has been repeatedly demonstrated, whereas the ε2 
allele was associated with a protective effect [71]. APOE is 
estimated to account for 20% of the AD attributable risk, and 
the APOE-associated risk is similar to those identified for 
major genes in other Mendelian diseases, such as BRCA1 in 
breast cancer [31]. Despite testing more than 500 candidate 
genes for their association with AD risk [79], we had to wait 
for the development of GWAS to advance the AD genetics 
field: since the seminal GWAS papers published in 2009 [47, 
83], more than 30 loci of interest have been identified to be 
associated with AD risk (Suppl. Table) [50, 59, 67, 76, 84, 
97, 116, 120]. Additionally, several analyses of higher com-
plexity have been developed based on these GWAS datasets, 
allowing the identification of additional genes of interest 
(Suppl. Table) [10, 41, 67, 82].

Over the same period, next generation sequencing (NGS) 
has been developed and became applicable to multifactorial 
diseases due to remarkable cost decreases. NGS allowed the 
identification of rare variants in TREM2 as major genetic 
risk factors for AD [39, 65]. In addition, these methodolo-
gies demonstrated that both SORL1 and ABCA7 genes—
already detected by GWAS—carried numerous loss-of-
function variants leading to strong increases in AD risk [9, 
98, 128]. Finally, the Alzheimer’s disease sequencing project 
(ADSP) recently published its first results based on whole 
exome sequencing analysis, encompassing more than 5000 
AD cases and controls, and reported two new candidate 
genes, IGHG3 and ZNF655 (Suppl. Table) [11].

Together, these genetic analyses have pointed out more 
than 45 genes/loci associated with the risk of developing 
AD even if it is estimated that a large part of the genetic 
component of AD is still unknown [103]. In addition, it is 
essential to keep in mind that for some loci, it is difficult—if 
not impossible—to determine the gene responsible for the 
observed association, due to the presence of multiple genes 
in the locus and the complex linkage disequilibrium pat-
terns involving the sentinel single-nucleotide polymorphism. 
Nevertheless, it is now possible to start drawing a general 
landscape of what the genetics is telling us. According to 
multiple post-genomic analyses performed in cellular and 
animal models, this landscape already appears to be highly 
complex (Fig. 1).

The post‑GWAS era and the amyloid cascade 
hypothesis

As previously mentioned, the identification of familial AD-
linked mutations in the genes for APP, PS1, and PS2, asso-
ciated with the dysregulation of Aβ peptide production has 
suggested that APP metabolism is at the heart of the dis-
ease process. Three main proteases (α-, β- and γ-secretases) 
are involved in APP processing through (1) the amyloido-
genic pathway (β- and γ-secretases), which promotes Aβ 
production, and (2) the non-amyloidogenic pathway (α- and 
γ-secretases), which prevents Aβ production by cleav-
ing APP within the Aβ sequence. In addition to secretase 
activity, APP trafficking by the secretory pathway is also an 
essential factor in APP metabolism. APP is first matured in 
the endoplasmic reticulum and the Golgi apparatus, and then 
transported to the cell surface. Alternatively, APP can end 
up in the lysosomal pathway and undergo proteolytic deg-
radation [115]. Naturally, it has been rapidly proposed that 
GWAS-defined genes may have a role in APP metabolism, 
especially since gene-set enrichment analyses performed 
on GWAS datasets identified specific pathophysiological 
pathways—among others—involved in APP processing and 
in the regulation of endocytosis, which is central for APP 
metabolism (Fig. 2) [63, 76, 81].

APP metabolism and Aβ peptide production

Very recent GWASs have strengthened the importance of 
APP metabolism by directly pointing out two of its main 
actors as AD genetic risk factors: ADAM10, which carries 
out the main α-secretase activity in the brain, and APH1B, 
which is part of the γ-secretase complex [59, 76].

Based on pathway enrichment analyses, three GWAS-
defined genes linked with endocytosis (BIN1, CD2AP and 
PICALM) have been proposed to modulate APP metabo-
lism and the subsequent increase in Aβ production: the best 

Fig. 1   Circular diagram of AD genetic risk factors. The diagram 
shows (from outside to inside): (1) genomic loci in alphabetical order; 
(2) genes therein; (3) expression profiles of these genes in different 
cell types of the brain (grayscale); and (4) the pathways/processes/
proteins to which these genes have been functionally linked (colour). 
Details of the functional studies supporting these linkages are avail-
able in Suppl. Table. Expression profiles were extracted from [155] 
(FPKM fragments per kilobase of transcript sequence per million 
mapped fragments). The circlize package of the R software (http://
www.r-proje​ct.org/) was used to generate the diagram [38]

◂
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characterised function of BIN1 is its role in endocytosis, 
where it interacts with several proteins associated with clath-
rin-coated pits and endosomal sorting [99]. BIN1 depletion 
was associated with an increase in intracellular Aβ42, poten-
tially through the regulation of the β-secretase (BACE1) 
trafficking and accumulation in early endosomes [91, 137]. 
CD2AP, which is also a regulator of endosome trafficking, 
has been reported to control Aβ production in neurons. 
CD2AP depletion leads to the trapping of APP in early 
endosomes and the subsequent increase in Aβ [137]. How-
ever, despite these effects on Aβ production in vitro, delet-
ing a single BIN1 or CD2AP allele did not modify amyloid 
deposition in mouse models of AD [2, 87]. Nevertheless, 
it is worth noting that abnormal accumulation of insoluble 
BIN1 has been detected in the vicinity of amyloid plaques 
in different mouse models [107]. Finally, PICALM, which 
is also directly involved in endocytosis, has been linked to 
APP metabolism: PICALM underexpression decreases the 
levels of several APP catabolites, such as intracellular β-C-
terminal fragment (β-CTF) and secreted sAPPβ, which has 
been attributed to its role in clathrin-mediated endocytosis 
[134]. Accordingly, PICALM underexpression results in 
reduced APP internalisation and Aβ generation [148]. As 
opposed to BIN1 and CD2AP, PICALM knockdown and 
overexpression, respectively, decreased and increased amy-
loid plaque loads in the hippocampi of 6-month-old APP/
PS1 mice [148]. Alternatively, PICALM has been pro-
posed to participate in the APP-CTF degradation through 
autophagy [135].

In addition to these three genes that are known to be 
directly involved in endocytosis, ABCA7 underexpression 
induced faster APP endocytosis, consistent with increased 
Aβ production in vitro and accelerated the amyloid pathol-
ogy in young transgenic mice [111]. Finally, ApoE4 has 
been described as a potential enhancer of amyloid peptide 
production through stimulating APP endocytosis and metab-
olism, both in vitro and in vivo [48, 49].

Apart from the genes susceptible to control APP/BACE1 
availability in early endosomes through the modulation of 
endocytosis, other GWAS-defined genes have been shown 
to modulate APP metabolism through affecting APP sorting 
from endosomes. Kindlin-2 (product of FERMT2) under-
expression has been described to promote the recycling of 
full-length, mature APP from early/late endosomes into the 
plasma membrane. This may thus favour Aβ production by 
increasing the pool of full-length APP likely to be cleaved 
by α-, β- and γ-secretases, rather than to be degraded in 
lysosomes [17]. SORL1 underexpression has also been asso-
ciated with an increase in Aβ production by blocking the 
redirection of endocytosed APP to the trans-Golgi network, 
which reduces APP processing in endosomes [113, 144, 
152]. Alternatively, it has been suggested that SORL1 loss-
of-function may decrease the degradation of intracellular Aβ 
by lysosomes [13].

In conclusion, post-GWAS analyses seem to place numer-
ous GWAS-defined genes in the APP metabolism landscape, 
deeming its importance in late-onset AD. Remarkably, while 
the dysregulation of APP metabolism is believed to mainly 

Fig. 2   Amyloid cascade hypoth-
esis and genetic risk factors 
of AD. Autosomal dominant 
mutations that cause early onset 
familial AD (in APP, PSEN1 
and PSEN2) gave rise to the 
amyloid cascade hypothesis, 
which aims to link amyloid 
plaques and neurofibrillary 
tangles, the two classical AD 
hallmarks. Involvement of the 
genetic risk factors of late-onset 
AD in APP metabolism and 
in Aβ clearance through the 
blood brain barrier or micro-
glia supports this hypothesis. 
Soluble forms of Aβ may be 
inducing neurotoxicity through 
modifying Tau metabolism, 
leading to neurofibrillary tangle 
formation and neuronal death. 
Recent GWAS-defined genes 
that modulate Tau toxicity may 
be involved in Aβ-induced neu-
rotoxicity through mechanisms 
that are yet to be identified
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occur in neurons, ADAMTS4, exclusively expressed in 
oligodendrocytes, has been recently reported to produce 
strongly aggregating Aβ forms [139]. In fact, ADAMTS4 
has been very recently reported as an AD genetic risk factor 
[59], suggesting that multiple cell types participate in Aβ 
production in AD.

Aβ peptide degradation/clearance

Beyond Aβ production, which is of course a major factor 
controlling Aβ bioavailability and potential toxicity, modu-
lation of Aβ aggregation and/or degradation/clearance has 
been proposed to be essential for Aβ toxicity. The initial 
GWAS data rapidly led to a reappraisal of the amyloid cas-
cade hypothesis based on Aβ accumulation and toxicity in 
both familial and early onset forms of AD where Aβ pep-
tides rapidly accumulate due to their accelerated overpro-
duction (e.g., associated with mutations in APP, PSEN1 and 
PSEN2), and in late-onset forms, due to a slight, insidious 
Aβ clearance impairment (associated with several GWAS-
defined genes) [80].

In this view, consistent evidence strongly suggest that 
ApoE regulates extracellular Aβ clearance in the brain [71]. 
In animal models, Aβ–ApoE2 and Aβ–ApoE3 complexes 
are cleared by the blood brain barrier (BBB) at a substan-
tially higher rate than Aβ–ApoE4 complexes [23]. ApoE 
binds to a group of structurally related proteins known as 
the low density lipoprotein receptor (LDLR) family. LDLR 
overexpression dramatically enhanced Aβ clearance from 
the brain’s extracellular fluid and reduced Aβ aggregation 
[72]. CLU, which is one of the most abundantly expressed 
apolipoproteins in the central nervous system (like ApoE) 
[106], participates in Aβ clearance, principally of the highly 
pathogenic Aβ42 peptide, from the brain across the BBB 
[24]. More recently, PICALM has been described in vitro 
and in vivo to participate to Aβ transcytosis and clearance 
at the BBB through clathrin-dependent internalisation of 
Aβ after its binding to the LDLR-related protein-1 [157]. 
ABCA7 is also potentially involved in amyloid clearance at 
the BBB [78]. Finally, a peripheral Aβ clearance mechanism 
involving CR1 in human erythrocytes has been proposed to 
be impaired in AD cases [105].

However, beyond these potential BBB and peripheral 
clearance mechanisms, microglia dysfunction has also 
been suspected to be involved in AD through modulating 
Aβ aggregation/degradation [45]. Indeed, several genomic 
analyses suggest the involvement of microglia in AD: (1) the 
first reports on pathway enrichment analyses indicated the 
involvement of innate immunity in AD [81]; (2) as previ-
ously mentioned, these analyses highlighted the regulation 
of endocytosis (which is essential for phagocytosis) [64, 
81]; (3) a large part of GWAS-define genes are expressed 
in microglia [45] (Fig. 1); and (4) a major genetic discovery 

indicated that non-synonymous variants in TREM2, ABI3 
and PLCγ2 were associated with AD risk [40, 65, 120]. In 
the brain, these three genes are almost exclusively expressed 
in microglia and participate in the same protein–protein 
interaction network [120]. In addition SPI1 carrying a com-
mon variant associated with a decreased AD risk encodes 
the PU.1 transcription factor, which is a key player in micro-
glia development [56].

Apart from ApoE [118], TREM2 is the most studied 
genetic risk factor in the context of the microglia-dependent 
pathophysiological process in AD. TREM2 has been pro-
posed to be protective, since the AD-associated mutations 
(R47H, R62H) likely impair its physiological functions at 
two levels: (1) phagocytosis and clearance of Aβ peptides 
and (2) compaction of amyloid plaques and barrier forma-
tion. In AD-like transgenic mice models, TREM2 knock-
down is associated with increased amyloid loads [60, 141]. 
TREM2-deficient microglia show reduced uptake of Aβ 
complex in vitro and less Aβ internalisation in vivo [150, 
154]. Importantly, microglial uptake of Aβ is more efficient 
when TREM2 forms complexes with lipoproteins such as 
ApoE or CLU [132, 150] and TREM2–lipoprotein interac-
tion is impaired by R47H and R62H mutations [3, 4]. Fur-
thermore, microglia have been recently suggested to form a 
protective barrier around amyloid deposits by compacting 
amyloid fibrils into a potentially less toxic form [154]. This 
protective mechanism appears to be less efficient in AD-like 
models underexpressing TREM2. In addition, in the brains 
of humans with R47H TREM2 mutation, microglia present a 
markedly reduced ability to envelop amyloid deposits [154]. 
Again, one can suspect a protective mechanism linking 
ApoE and TREM2, since ApoE is also involved in the com-
paction of the protofibrillary Aβ into dense plaques [5, 6].

Among other GWAS-defined genes, very few have been 
analysed in the microglia context, and only CD33 has been 
described to inhibit Aβ uptake by microglia [37]. In conclu-
sion, there is no longer any doubt that microglia participate 
to AD pathogenesis, potentially reinforcing the amyloid 
cascade hypothesis through Aβ peptide clearance and or/
compaction.

Aβ peptide toxicity

According to the amyloid cascade hypothesis, Aβ peptides 
are neurotoxic and supposed to lead to or accentuate neuron-
to-neuron propagation of Tau pathology—leading to neu-
ronal death—by a still unknown mechanism [20]. Beyond 
ApoE, which has been reported as a potential modulator of 
Aβ toxicity (see reviews [51, 131]), little has been done to 
determine whether other GWAS-defined genes are involved 
in Aβ toxicity. RNAi knockdown of amph-1 and unc-11 
(orthologs of BIN1 and PICALM, respectively) in transgenic 
C. elegans over-expressing Aβ42 in body wall muscle cells 
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significantly delayed paralysis due to Aβ42 toxicity [95]. 
However, no molecular mechanism has been proposed so far 
to explain these findings. CLU has also been associated with 
the regulation of Aβ toxicity, where its knockdown leads 
to reduced toxicity through the involvement of Wnt-PCP-
JNK pathway [70]. In conclusion, Aβ toxicity needs to be 
explored in the view of the new genetic landscape.

Beyond Aβ peptides and the APP 
metabolism

Although the data described above clearly support the amy-
loid cascade hypothesis, it is necessary to keep in mind that 
the biological characterization of GWAS-defined genes was 
initially done by assessing their impacts on models specifi-
cally developed for this hypothesis. There is, therefore, a 
significant bias, potentially leading to tautological reasoning 
and a priori exclusion of other, potentially important patho-
physiological pathways. This is especially true since most 
GWAS-defined genes are involved in major cell signalling 
pathways and have pleiotropic functions, which are poorly 
evaluated using in vitro and in vivo models with specific 
read-outs. In addition, the functions of these genes are often 
not fully understood, and some of these unknown functions 
may be essential for their involvement in AD pathophysi-
ology. This is also true for the most recognized actors of 
AD pathophysiology, such as APP or Tau. For instance, our 
knowledge of APP’s physiological functions are still very 
fragmented and often revolve about Aβ toxicity, while ignor-
ing the potential functions of APP other than producing Aβ. 
Furthermore, APP metabolism produces other catabolites 
with roles potentially as important as that of Aβ. Our knowl-
edge on the role of Tau in AD is also fragmented. We are 
thus unable to explain how Aβ peptides—despite being a 
part of the amyloid cascade—may participate in the neuron-
to-neuron propagation of Tau pathology [20]. In conclusion, 
the impact of GWAS-defined genes on AD pathophysiology 
has so far been mostly studied in the context of the amyloid 
cascade hypothesis. This is clearly a limitation considering 
the increasing number of new genetic risk factors, which 
may potentially lead to the identification of not only Aβ 
toxicity-dependent mechanisms, but also Aβ-independent 
mechanisms (potentially linked to Tau).

Post‑GWAS analyses and Tau

Although GWAS-defined genes have not been extensively 
studied in the context of Tau pathology, it appears that sev-
eral of them may interfere with Tau in AD. Among them, the 
largest amount of compiled evidence is on BIN1, which has 
been identified as the first AD genetic risk factor linked to 
Tau pathology. Loss- and gain-of-function of the Drosophila 

ortholog of BIN1 modified the rough eye phenotype induced 
by human Tau expression [18]. In addition, a functional risk 
variant of BIN1 has been associated with Tau loads (but not 
Aβ loads) in AD brains [18]. Furthermore, human BIN1 
directly binds Tau and this interaction in neurons depends 
on the level of BIN1 expression, as well as the phospho-
rylation statuses of both BIN1 and Tau [85, 89, 110, 124]. 
Moreover, human BIN1 overexpression in a mouse model of 
tauopathy has been shown to increase BIN1–Tau interaction 
in the neuronal network and to rescue long-term memory 
deficits and Tau somatic inclusions induced by human Tau 
overexpression [110].

The Drosophila rough eye phenotype has also been used 
to perform genetic screens to systematically test GWAS-
defined genes as potential modulators of Tau toxicity [25]. 
Beyond BIN1, this approach identified p130CAS, Fak, Eph, 
Rab3-GEF, cindr, Fit1, Aret and Rhea respective orthologs 
of CASS4, PTK2B, EPHA1, MADD, CD2AP, FERMT2, 
CELF1 and TLN2 [26, 42, 119]. Pyk2 (product of PTK2B) 
has been further shown to accumulate early in the somata 
of neurons exhibiting Tau pathology in AD patients and in 
a mouse model [26]. In addition, being a tyrosine kinase, 
Pyk2 has been shown to directly phosphorylate Tau [86]. In 
conclusion, a non-negligible part of GWAS-defined genes 
are also potentially involved in pathophysiological processes 
related to Tau.

Post‑GWAS functional screens point 
towards the core of the focal adhesion pathway

Remarkably, a large part of these GWAS-defined genes 
interacting with Tau pathology take part in the focal adhe-
sion complex, mainly downstream of integrins (Suppl. 
Table 1; Fig. 2). Pyk2 and CASS4 are members of the FAK 
and CAS families of proteins that interact physically and 
mediate cell adhesion signalling [8]. CD2AP is involved 
in cell–cell adhesion, regulates the actin cytoskeleton and 
physically interacts with p130CAS (CASS1) [61, 74]. Kind-
lin-2 is a focal adhesion (FA) protein involved in integrin 
activation [77] and is also able to directly bind filamentous 
actin (F-actin) to modulate its organisation [12]. TLN2 is a 
cytoplasmic adapter protein essential for integrin-mediated 
cell adhesion to the extracellular matrix [35]. Finally, with-
out being previously described as part of the core of the FA 
pathway, BIN1 physically interacts with FA kinase (FAK), 
which presents strong homology with Pyk2 [90]. In addi-
tion, BIN1 binds to F-actin and microtubule-binding protein 
CLIP170 in non-neuronal cells [21] and directly remodels 
actin dynamics through its BAR domain [27].

Importantly, high-content screening also identified 
numerous FA pathway members—including Kindlin-2—as 
modulators of APP metabolism, highlighting the relevance 
of the core FA proteins to the AD process [17]. Therefore, 
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despite not been considered initially, systematically screen-
ing AD risk factors for their capacity to modulate Tau tox-
icity and APP metabolism (in Drosophila and in cellular 
models) highlighted the core of the FA pathway for its 
potential involvement in the molecular mechanisms of AD 
pathogenesis (Fig. 3).

Focal adhesion pathway, GWAS‑defined genes 
and synapse dynamics

Among numerous biological functions, the FA pathway 
can modulate F-actin dynamics through regulating multi-
ple actin-binding proteins, e.g., cortactin, profilin, drebrin 
or cofilin, and controls the shape of the dendritic spine 
[125]. The integrin-dependent FA pathway has been sub-
sequently involved in synaptic density and activity through 
spine shape, stability and signalling machinery therein [54]. 
Since synaptic dysfunction and loss is one of the very early 
hallmarks of AD correlated with early cognitive decline, the 
high number of genetic determinants situated in a pathway 

that is heavily involved in synapse dynamics naturally calls 
for the assessment of the potential roles of these genes in 
synapse dynamics.

To date, only a few GWAS-defined genes have been stud-
ied in the context of synapses. Nevertheless, several lines of 
evidence seem to emerge to support their potential involve-
ment in synapse dynamics [69]. As previously mentioned, 
products of several GWAS-defined genes are already known 
to regulate the actin cytoskeleton, e.g., CD2AP, Kindlin-2 
and BIN1. Besides regulating the F-actin network, several of 
these GWAS-defined genes are directly involved in synapses 
in the physiological context. Our preliminary data concern-
ing Kindlin-2 indicate that this protein is localized in both 
pre- and post-synaptic compartments (unpublished observa-
tions). Pyk2 is also localised to synapses and decreased Pyk2 
expression in mice has recently been associated with altera-
tions in dendritic spine density and in N-methyl-d-aspartate 
receptors (NMDAR) and PSD-95 distribution in spines [33]. 
Consistently, Pyk2 was involved in long-term potentiation 
(LTP) through the regulation of Src in an activity-dependent 
fashion [57], and in long-term depression (LTD) [55, 109]. 
Finally, increased expression of BIN1 in mice has also been 
associated with alterations in dendritic spine density and in 
LTP dysregulation [22].

APP’s role in synaptic function and AD‑related 
synaptic dysfunction

A growing body of evidence also suggests a physiological 
role for APP in synaptic functions [96], potentially through 
cell adhesion. During development, APP is enriched in 
axonal growth cones and acts as a co-receptor for guid-
ance cues through its interaction with the extracellular 
matrix [122, 123]. Accordingly, APP–integrin interaction 
is required for neurite outgrowth and contact guidance [123, 
153]. After differentiation, APP acts as a synaptic adhesion 
molecule required at both presynaptic and postsynaptic 
membranes for correct synapse patterning [142]. Inhibition 
of APP shedding strongly enhances cell adhesion and synap-
togenic activity [127]. The APP intracellular domain (AICD) 
is required for normal synaptic morphology and synaptic 
plasticity, suggesting the involvement of other interactors for 
proper synapse formation [75]. Thirty-five percent decrease 
in spine density has been observed in neurons derived from 
APP−/− mice, which was partially rescued by sAPP-α con-
ditioned medium [136]. In this context, modified APP cleav-
age/degradation may modulate the membranous pool of APP 
or its metabolic products (e.g., AICD, APPs-α) and impair 
APP function in cell adhesion and synaptic plasticity [117]. 
These APP functions appear to be related to the FA pathway: 
integrin and APP share a number of interactors, including 
Fe65, a cytoplasmic adaptor protein that can simultaneously 
bind two NPXY motifs (carried by both integrins and APP) 

Fig. 3   Interactions between integrin, APP and receptor tyrosine 
kinases (RTKs) at the cell surface modulate cell adhesion. The 
GWAS-defined genes FERMT2, Cass4, PTK2B and CD2AP, recently 
identified for their roles in APP metabolism (in green) and/or Tau 
pathology (in red), are involved in the focal adhesion complex, which 
regulates several downstream cell signalling pathways as well as the 
actin cytoskeleton. This observation supports the concept that the 
focal adhesion core, together with its related downstream pathways, 
may be an important actor in the AD process
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to form tripartite complexes [108]. Accordingly, APP can 
be recruited into a multimeric complex with β1-integrin. 
Altogether, these observations imply that cell surface APP 
modulates integrin signalling by recruiting different intra-
cellular partners. Notably, targeting cell surface APP with 
antibodies induces neuronal injury through dysregulation of 
FAK and paxillin phosphorylation [149].

Beyond their impact on Aβ production (as described 
earlier), AD genetic risk factors may disrupt APP function 
and/or its interaction with the FA pathway. For example, 
Kindlin-2 expression is required for the recruitment and 
activation of FAK to trigger integrin signalling [100, 133], 
but Kindlin-2 is also a modulator of cell surface APP levels 
[17]. Interestingly, SORL1 has also been described to shuttle 
APP from early endosomes back to the Golgi apparatus and 
to subsequently impair its trafficking to the cell surface [1, 
114]. Finally, the α-secretase ADAM10 has been function-
ally associated with several integrins [62, 121]. In conclu-
sion, reports of numerous genetic risk factors involved in 
the core of the FA pathway point to a potential impairment 
of APP functions in cell adhesion and synaptic plasticity in 
AD, potentially independent of Aβ peptide production.

Aβ toxicity and synaptic dysfunction through FA

FAs have also been established as regulators of Aβ signal-
ling [15]; however, the mechanistic details of the regulatory 
mechanisms are poorly understood, as are their potential 
links to the genetic component of the AD. Integrin signal-
ling has been described to mediate Aβ-induced neurotoxicity 
in hippocampal neurons via FAK signalling [44]. Activation 
of integrin signalling by Aβ fibrils has been associated with 
enhanced NMDAR sensitivity [138] and inhibition of LTP 
[140]. In addition, aberrant activation of the FA pathway 
may mediate Aβ fibril-induced neuronal dystrophy [36]. 
Aβ fibril-induced dystrophy requires the activation of FA 
pathway and the formation of aberrant FAs, suggesting a 
mechanism of maladaptive plasticity in AD. More specifi-
cally, rapid tyrosine phosphorylation of neuronal proteins 
including Tau and FAK can be observed in response to Aβ 
exposure involving Src family kinases [143]. It has been 
also proposed that the scaffolding protein RanBP9, which 
exhibits an overall increase in AD brains, simultaneously 
promotes Aβ generation and FA disruption by accelerating 
APP and β1-integrin endocytosis [145]. RanBP9 activates/
dephosphorylates cofilin, a key regulator of actin dynamics 
[146]. Formation of cofilin–actin rods in distal dendrites is 
detrimental for synapses [7, 19] and cofilin–actin rod pathol-
ogy has been observed in the brains of post-mortem AD 
patients [101] and in animal models of AD [7]. Together, 
these results implicate the integrin–cofilin pathway to be 
critical in synaptic dysfunction in AD [36, 147]. Cumula-
tively, these studies strongly suggest that AD is accompanied 

by an impairment of the FA pathway—potentially linked 
to Aβ toxicity—leading to altered synapse dynamics and 
eventually to synapse loss.

Tau in synaptic function and AD‑related synaptic 
dysfunction

The potential involvement of GWAS-defined genes related to 
Tau toxicity in synapse dynamics and in AD synaptic pathol-
ogy would be supported if Tau itself had a role in synaptic 
function. Interestingly, several recent studies suggest that 
Tau may directly regulate synaptic function and plasticity: 
in healthy neurons, Tau is observed in the dendritic shaft as 
well as in pre- and post-synaptic structures [92, 94, 156]. 
Post-synaptic Tau has been demonstrated to be crucial for 
LTD [73]. Importantly, Tau’s role in regulating synapses 
does not appear to be redundant or functionally compensated 
in Tau knockout mice, suggesting a physiological role for 
Tau in synapses [151]. While little is known about the cel-
lular mechanisms linking Tau with synaptic function, Tau 
activity, localization and function in synapses appear to be 
phosphorylation-dependent [58].

Whereas the physiological roles of Tau in synapses have 
recently been identified (and require further investigation), 
numerous studies have already established Tau as a media-
tor of AD-related synaptic deficits (for a review see [126]). 
Indeed, Tau has been implicated in the synaptotoxicity 
induced by Aβ exposure [102]. In this context, Tau is par-
tially re-localized to the post-synaptic domain where it is 
thought to promote Aβ toxicity in pathological conditions 
by modifying NMDAR activation [53]. Aβ-induced den-
dritic spine loss [88] and neuronal death [130] depend on 
Tau phosphorylation. Aβ exposure modifies Tau’s phospho-
rylation status and prevents it from relocalizing away from 
the post-synaptic domain following synaptic activation [29]. 
Moreover, Tau–Fyn interaction in synapses has been shown 
to be required to induce pathology in mice over-expressing 
APP, where reduced Tau levels decrease excitotoxicity and 
reduced Fyn levels prevent Aβ toxicity [104].

Very few data are currently available linking GWAS-
defined genes with Tau pathology and with synapses. The 
most promising results are for Pyk2 which may be partici-
pating in the Fyn–Tau crosstalk. As mentioned earlier, we 
were able to detect a genetic interaction between Pyk2 and 
Tau [26]. Pyk2 has been reported to mediate GSK-3 activa-
tion and subsequent Tau phosphorylation [112]. In addition, 
Pyk2 is able to activate Fyn [16], which, in turn, modulates 
Pyk2 activation in mouse brains [43]. This reciprocal regula-
tion is further supported by the observation that Aβ-induced 
Fyn signalling is associated with downstream Pyk2 phos-
phorylation [68]. Finally, Pyk2 has recently been shown to 
mediate Aβ-dependent synapse loss [109]. In conclusion, 
based on the limited amount of data currently available, we 
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propose that emerging evidence supports that Tau function 
is crucial for normal synaptic physiology and it may be dys-
regulated in AD potentially through interaction with genetic 
risk factors in an Aβ-dependent or Aβ-independent manner.

From an Aβ‑centred to a synapse‑centred 
hypothesis?

Over one decade, GWASs and high-throughput sequenc-
ing approaches have fully revolutionized our knowledge 
of the genetics of AD. In this new genetic landscape, as 
mentioned earlier, AD appears as a complex, multifactorial 
disease resulting from a complex crosstalk between different 
pathophysiological processes. Importantly, the amyloid cas-
cade hypothesis appears to be supported by this new genetic 
landscape, which additionally implicates microglia to have 
a major role in common AD forms potentially through Aβ 
peptide clearance. However, these genetic data also high-
light the core FA and its related downstream pathways to 
be potentially central to AD pathophysiology. Interestingly, 
this particular pathway was not predicted by in silico gene 
ontology enrichment analyses conducted on GWAS-based 
gene lists; it rather emerged on the basis of in vivo and 
in vitro biological evidence. Notably, several functions of 
GWAS-defined genes were unknown before this evidence 
was obtained.

When placing these new genetic and biological data into 
the broader context of known AD pathogenic mechanisms, 
several general conclusions seem to emerge, allowing us 
to propose an interpretation linking the main information 
resulting from this new genetic landscape into a global 
schema (Fig. 4):

1.	 The focus is shifted towards the synapse as the subcel-
lular compartment where an important and early part of 
the pathogenesis takes place.

2.	 A genetic-dependent dysregulation of synapse dynamics 
and downstream cellular signalling through the core FA 
pathway may participate in AD processes, independently 
of Aβ toxicity.

3.	 The normal cellular functions of APP and Tau also 
appear to play central roles in synaptic plasticity, and 
their dysfunction may thus participate in the AD pathol-
ogy, independently of the known toxic properties of their 
aggregated forms.

4.	 Synaptic dysfunction may thus simply link APP and Tau 
in the same subcellular compartment and APP functions 
may be also dependent on the FA pathway.

5.	 Aβ toxicity may, however, participate in several of these 
harmful dysfunctions, for instance through integrin over-
activation. Under pathophysiological conditions, these 
dysfunctions might be either induced by massive Aβ 

peptide overproduction or accentuated by insidious Aβ 
accumulation through degradation/clearance failure. 
In monogenic forms of AD, Aβ would still be respon-
sible for the pathogenesis, whereas in sporadic forms, 
Aβ would be a somewhat important accelerator of the 
pathological process.

6.	 Finally, genetic-dependent microglia dysfunction may 
take place in this synapse-centred model at two distinct 
levels: through Aβ clearance failure and/or synapse 
pruning. Aβ clearance failure may of course increase 
Aβ toxicity in the vicinity of synapses. It is also sus-
pected that perturbations in homeostatic microglia func-
tions at synapses may lead to early synapse loss in an 
Aβ-dependent or potentially independent manner [52, 
93].

Within this background, dysregulation of at least one of 
these functions/processes (and/or of the crosstalk between 
them) may be sufficient to establish a vicious cycle lead-
ing to synaptic failure with multiple entry points (Fig. 5). 
This interpretation of the GWAS data does not exclude other 
hypotheses developed in the AD field:

1.	 Even if our interpretation implies the need to reappraise 
the amyloid cascade hypothesis from a linear model to 
an over-arching circular model, one could argue that our 
proposition is a reorganization of the various compo-
nents of the amyloid cascade hypothesis and thus does 
not disqualify it. However, it is important to note that, 
since the model is no longer linear, Aβ peptides may be 
sufficient but not necessary to develop AD.

2.	 Similarly, the cellular phase hypothesis has recently 
been described to consist of “a long and complex phase 
consisting of feedback and feedforward responses of 
astrocytes, microglia and vasculature” [129]. These 
initially compensatory processes become subsequently 
irreversible and deleterious, leading to a progressive 
neurodegeneration. A synapse-centred hypothesis is not 
in contradiction with the latter since synapse homeosta-
sis is strongly dependent on the interaction of multiple 
cell types in the brain. Genetic susceptibility may thus 
potentiate specific compensatory processes—particu-
larly in the synapse—which become deleterious and lead 
to synapse loss. In addition, feedback and feedforward 
responses may be modified by genetic factors promot-
ing or demoting synaptic failure. For instance, little is 
known about how AD genetic risk factors may modulate 
astrocyte functions in AD, and this aspect deserves to be 
studied, considering that a large part of the focal adhe-
sion genes are also expressed in this cell type.

3.	 A synapse-centred hypothesis also does not preclude the 
spreading hypothesis [34, 66], which could be either a 
downstream pathological event or a potential trigger 
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of Tau-related excitotoxicity and synaptic failure. One 
can argue that spreading of an AD-specific Tau strain 
[32] may be involved in one of the entry points of the 
vicious cycle, leading to synaptic failure. Notably, BIN1 
has been reported to potentially modulate the spread-

ing of Tau aggregates through their internalization via 
endocytosis and endosomal trafficking [14].

Fig. 4   Genetic risk factors and synapse dysfunction in AD pathogen-
esis. Regulation of the focal adhesion pathway plays central roles in 
synaptic plasticity (synaptic maintenance, actin cytoskeleton remod-
elling, vesicle, and receptor cycling). Dysfunction of downstream 
cellular signalling pathways involving APP and/or Tau may thus par-
ticipate in synapse loss. Additionally, dysregulation of the core FA 

pathway could modulate APP and Tau metabolisms, leading to an 
exacerbation of synaptotoxicity through Aβ overproduction and Tau-
modulated excitotoxicity. Finally, Aβ availability at the synapses is 
dependent on its clearance through the blood brain barrier and/or by 
microglial cells
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Conclusions

Therapeutic approaches based on the classical amyloid 
cascade hypothesis have mostly failed, suggesting that 
our understanding of AD is far from being complete. The 
proportion of risk attributable to genetic susceptibility fac-
tors for AD has been estimated to be between 60 and 80% 
[30], which is exceptionally high for a common, multi-
factorial aging-related disease. The identification of this 
genetic variability and of the genes that carry it is, there-
fore, decisive for characterising the key pathophysiological 
elements in AD and for improving our understanding of its 
mechanisms and targets of interest. We thus hypothesized 
that exhaustive knowledge of the genetic determinants of 
AD and integration of their potential physiological and 
pathological functions would help better understand AD 
processes. This was made possible with the development 
of high-throughput genomic methodologies, e.g., GWAS 
and sequencing, potentially leading to an exhaustive over-
view of the AD genetic component in the medium-term. 
To date, more than 45 loci/genes have been characterised, 
and—keeping in mind the significant bias and tautological 
reasoning—numerous AD genetic risk factors appeared to 
support the amyloid cascade hypothesis through Aβ pro-
duction or clearance. However, this strong genetic compo-
nent also indicates—as suggested by other AD fields, e.g., 
imaging, biomarkers, disease models—that this hypothesis 
has to be reformulated to clearly describe AD and to take 
these recent advances into account. We thus propose an 
over-arching model that could help better define and target 
relevant pathophysiological processes. This approach led 
to the proposition that synaptic failure in AD may be one 
of the main pathophysiological events driven by genet-
ics, and that the core of the FA pathway is a central node 
of this deleterious process. This model implies a vicious 
cycle that integrates the main actors of AD—APP and 
Tau—with the genetic risk factors identified for AD. This 
model also suggests that treatment options would depend 

on both the entry point into the vicious cycle and the 
interplay between different pathophysiological actors. 
For instance, therapies targeting Aβ peptides may not be 
effective if this entry point is relatively unimportant for a 
particular patient. It thus would be necessary to develop 
multiple therapies targeting different entry points. Once a 
range of treatment options become available, an individu-
alized model of AD pathology would be feasible, such that 
polytherapies and personalised medicine approaches can 
be developed.
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