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Abstract
Late-onset Alzheimer’s disease (AD) is a complex age-related neurodegenerative disorder that likely involves epigenetic 
factors. To better understand the epigenetic state associated with AD, we surveyed 420,852 DNA methylation (DNAm) sites 
from neurotypical controls (N = 49) and late-onset AD patients (N = 24) across four brain regions (hippocampus, entorhinal 
cortex, dorsolateral prefrontal cortex and cerebellum). We identified 858 sites with robust differential methylation collec-
tively annotated to 772 possible genes (FDR < 5%, within 10 kb). These sites were overrepresented in AD genetic risk loci 
(p = 0.00655) and were enriched for changes during normal aging (p < 2.2 × 10−16), and nearby genes were enriched for 
processes related to cell-adhesion, immunity, and calcium homeostasis (FDR < 5%). To functionally validate these associa-
tions, we generated and analyzed corresponding transcriptome data to prioritize 130 genes within 10 kb of the differentially 
methylated sites. These 130 genes were differentially expressed between AD cases and controls and their expression was 
associated with nearby DNAm (p < 0.05). This integrated analysis implicates novel genes in Alzheimer’s disease, such as 
ANKRD30B. These results highlight DNAm differences in Alzheimer’s disease that have gene expression correlates, further 
implicating DNAm as an epigenetic mechanism underlying pathological molecular changes associated with AD. Furthermore, 
our framework illustrates the value of integrating epigenetic and transcriptomic data for understanding complex disease.

Keywords DNA methylation · Alzheimer’s disease · RNA sequencing · Postmortem human brain tissue · Human brain 
genomics

Introduction

Alzheimer’s disease (AD) is an age-related neurodegen-
erative disease of complex etiology and is characterized by 
a progressive decline of memory and cognitive faculties. 

Although late-onset AD risk has a strong genetic com-
ponent including the APOE locus [10] and several other 
loci identified through genome-wide association studies 
(GWAS) [32], disease risk is also influenced by lifestyle 
and environmental factors such as diet [61], sleep [35], 
education and literacy [29], history of head trauma [14], 
and level of physical activity [53]. Epigenetic marks such 
as DNA methylation (DNAm) represent molecular regula-
tory mechanisms through which environmental and lifestyle 
factors may modulate AD risk, including through interac-
tion with underlying genetic risk. A better understanding 
of the epigenetic regulation of gene expression in late-onset 
Alzheimer’s disease (LOAD) could facilitate the discovery 
of more viable preventive and therapeutic strategies for this 
devastating disease.

While previous studies have identified global DNAm 
alterations in Alzheimer’s disease [6, 9, 44], recent 
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landmark epigenome-wide association studies (EWAS) 
[3, 12, 40] have identified DNAm changes around specific 
genes. In a study using postmortem brain tissue from the 
dorsolateral prefrontal cortex (DLPFC), DNAm is robustly 
associated with AD neuropathology at 71 genome-wide 
sites, ultimately implicating seven genes within 50 kb 
with dysregulated expression: CDH23, DIP2A, RHBDF2, 
RPL13, SERPINF1, SERPINF2, and ANK1 [12]. A parallel 
study found that DNAm of a region near ANK1 strongly 
correlated with neuropathological measures in three cor-
tical brain regions (entorhinal cortex, superior temporal 
gyrus, and prefrontal cortex), but not cerebellum, suggest-
ing that some epigenetic perturbations in AD occur across 
multiple cortical regions [40]. Likewise, a 48 kb region 
within the HOXA gene cluster was differentially methyl-
ated in AD across multiple cortical regions [65]. Subse-
quent studies [59, 62, 64, 66, 69] have integrated DNAm 
and genetic evidence to highlight AD relevant genes. Thus 
far, however, these approaches have implicated only a few 
genes associated with DNAm variation in AD.

While these previous studies have successfully iden-
tified DNAm differences associated with AD, they have 
been limited in their ability to connect these epigenetic 
differences to corresponding gene expression changes. 
Previous analyses often used targeted qPCR for a small 
number of transcripts and did not comprehensively sur-
vey gene expression changes among all implicated DNAm 
loci. Moreover, the relationship between DNAm and gene 
expression has remained unclear from earlier studies 
because each data type originated from non-overlapping 
subjects. Integrating DNAm with an unbiased method for 
surveying the transcriptome—RNA sequencing (RNA-
seq)—may therefore offer deeper insight into [20] epige-
netically mediated transcription dysregulation associated 
with AD.

We, therefore, performed multi-stage analyses incorpo-
rating paired DNA methylation and gene expression data. 
Given the unique cellular composition and potentially dis-
tinct susceptibilities to AD neuropathology of different brain 
regions, we chose to study four regions from each brain 
donor: dorsolateral prefrontal cortex (DLPFC), entorhinal 
cortex (ERC), hippocampus (HIPPO) all three previously 
implicated in AD; and the cerebellar cortex (CRB). In our 
first stage, we compared the DNAm landscape of neurotypi-
cal controls to late-onset AD, with the Illumina’s Human 
Methylation 450k (HM450k) array. Then, for genes adjacent 
to DNAm loci identified from this analysis, we analyzed 
RNA-seq data for differential expression between AD cases 
and controls, as well as for correlation between DNAm and 
gene expression levels. This undertaking represents one 
of the most comprehensive integrations of epigenetic and 
transcriptomic data for late-onset AD in postmortem human 
brain tissue to date.

Results

Clinical characteristics of postmortem brain donors

The dataset used for our epigenome-wide scan consisted 
of 73 postmortem brain donors with DNA methylation 
(DNAm) data generated from four brain regions: entorhi-
nal cortex (ERC), dorsolateral prefrontal cortex (DLPFC), 
hippocampus (HIPPO), and cerebellum (CRB) (Table S1). 
Our discovery cohort includes 49 neurotypical controls 
and 24 AD donors with a neuropathological diagnosis (see 
“Methods”) as estimated by standard Braak staging and 
CERAD scoring. Compared to controls, AD donors were 
older (p = 2.95 × 10−8, ttwo-tailed = 7.67) and had reduced 
overall brain mass (p = 9.33 × 10−6, ttwo-tailed = 5.24, Figure 
S1). APOE risk, defined here as the number of ε4 alleles, 
is a strong genetic factor underlying AD clinical risk [13, 
38] and was indeed more common in our AD samples than 
our control samples (p = 2.99 × 10−5, Fisher’s Exact Test). 
Alzheimer’s disease was not significantly associated with 
differences in DNAm-estimated NeuN+ (neuronal) com-
position in any of the four brain regions in our sample 
(p > 0.05, Results S1, Figure S2a), in line with previous 
large epigenome-wide association studies [12]. These 
DNAm cell-type composition estimates are reflective of 
the majority of variance (principal component 1 ~ 67%) 
in the dataset (Pearson’s r = − 0.833, p < 2.2 × 10–16, Fig. 
S2b). Unlike DNAm-derived estimates, those based upon 
our transcriptome data showed reduced neuronal propor-
tions in the ERC and HIPPO regions in AD samples com-
pared to controls (Fig. S2c). Overall, there was moder-
ate correlation between cell-type estimates derived from 
DNAm data with those derived from transcriptomic data 
(r = 0.283, p = 2.88 × 10−6, Fig. S2d). There was no sig-
nificant association between epigenetic age acceleration 
and AD in any of the brain regions (p > 0.05 Results S2, 
Fig. S3a, b).

CpG‑site DNAm differences between AD subjects 
and unaffected controls

To identify differentially methylated sites with “shared 
effects” across multiple brain regions [40, 65], we adopted 
a powerful cross-brain region strategy (Results S3, Fig. 
S4, Table S2–S3, see “Methods”) where we analyzed all 
of our samples in conjunction (N = 269 total DNAm sam-
ples; Table S1). With this cross-region analysis, we iden-
tified 858 DNAm sites differentially methylated between 
AD and controls (FDR < 5%, Table  S4). Collectively, 
these sites were within 10 kb of 1156 Gencode-annotated 
genes (v25), had a small median absolute difference in 
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DNAm of 3.98%, and were relatively more methylated in 
subjects with AD compared to controls (N = 491, 57.2%, 
p = 2.30 × 10−5, Fig. 1a). The most prominent association 
between AD and DNAm within 10 kb of a protein-coding 
gene was with cg23703062 near ANKRD30B, a gene not 
previously implicated in AD (Fig. 1b). Other highly sig-
nificant methylation sites replicated previously reported 

associations with cg19803550 (within 10 kb of WDR81 
and SERPINF2, p = 3.48 × 10−1, 4th most significant) and 
cg05066959 (ANK1, p = 9.52 × 10−11), among several 
others suggesting that DNAm alterations in AD are rep-
licable [12, 40]. However, the majority of our findings 
were novel associations (830 DNAm sites not presented 
in either of the landmark studies) indicating that there are 
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Fig. 1  a Histogram of effect sizes for significant differentially meth-
ylated probes (DMPs). 858 DNAm sites are significantly differen-
tially methylated with the cross-region model (at false discovery 
rate, FDR < 5%). Of these 858 sites, 367 are less methylated (hypo-
methylated) and 491 are more methylated (hypermethylated) in AD 
patients compared to the unaffected controls. The greater number 
of hypermethylated sites constitutes statistically significant enrich-
ment (p = 2.30 × 10−5). b ANKRD30B differentially methylated probe 
(DMP) hypermethylation. Black points represent unaffected control 
samples and red points represent samples with a diagnosis of symp-
tomatic Alzheimer’s disease (AD). Under the cross-region model, a 
DNAm site near ANKRD30B (cg23703062) was significantly more 
methylated in AD samples (red) than unaffected controls (black). 
Plotted beta values were adjusted for age, sex, ancestry, and estimates 
of technical variation using a linear model with logit transformation. 

c Heatmap of cross-region differentially methylated probes (DMPs). 
We adjusted beta-values of 858 differentially methylated probes iden-
tified by the cross-region model by regressing out covariates (age, 
sex, ancestry and estimates technical variance), then Z scaling the 
columns (DNAm sites). For hierarchical clustering and visualization 
purposes, Z values less than the 1st percentile or greater than the 99th 
percentile were set equal to these percentile Z values (i.e., thresh-
olded) to limit the effect of extreme values. Brain samples (rows) and 
DNAm sites (columns) were clustered using Euclidean distance (den-
drogram not shown for columns). d ANKRD30B differentially meth-
ylated region (DMR). A series of neighboring probes overlapping 
the transcription start site (TSS) of ANKRD30B are more methyl-
ated in Alzheimer’s disease (red) than in unaffected controls (black). 
ANKRD30B ankyrin repeat domain 30B
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several more DNAm loci associated with AD beyond those 
previously identified (Fig. S5). When we hierarchically 
clustered adjusted beta values of these 858 significant 
DMPs for all of our samples (N = 269), we found that sam-
ples clustered primarily by cerebellar vs. non-cerebellar 
brain region, then secondarily by AD diagnosis (Fig. 1c). 
Post hoc region-specific statistics were highly correlated 
across all four brain regions at these sites, confirming our 
expectation that AD has similar associations with DNAm 
at many of these sites across the different brain regions 
(Fig. S6).

We assessed the robustness of these findings using a 
series of sensitivity analyses. We found little effect of 
DNAm-estimated neuronal composition on these results, as 
adjusting for the estimated proportion of neurons resulted in 
almost all DNAm sites (sensitivity model 1, 842/858, 98.1%) 
remaining FDR significant with highly correlated global t 
statistics between both models (r = 0.954, p < 2.2 × 10−16, 
Fig. S7a). However, these results were somewhat expected 
given the lack of association between estimated neuronal 
composition estimates and diagnosis (p > 0.068) in our data-
set. Furthermore, differential DNAm does not appear to be 
driven by the greater burden of APOE risk in our AD sam-
ples: t statistics were highly correlated with a model adjust-
ing for APOE ε4 dosage (sensitivity model 2, r = 0.910, 
p < 2.2 × 10−16, Fig. S7b). Moreover, a slightly greater pro-
portion of previously reported DMPs were consistent with 
the cross-region model than with the region-specific models 
of AD (Table S5). These analyses suggest that cross-region 
DMP findings from our discovery model are not confounded 
by cell-type composition or APOE risk burden differences 
and previously reported DMPs are reasonably consistent.

Regional DNAm differences between AD subjects 
and unaffected controls

Next, we tested for regional differences in DNAm that could 
relate to additional regulatory mechanisms [24] via differ-
entially methylated regions (DMRs) using a bump hunting 
strategy that jointly tests neighboring DNAm sites for dif-
ferential methylation [26]. We found four DMRs between 
AD cases and controls under a cross-region model (at 
family-wise error rate, FWER < 0.05, Table S6). The most 
significant DMR was a hypermethylated region 1136 base 
pairs (bp) long that overlapped an exon 57 bp downstream 
from the DUSP22 transcription start site (TSS) and spans 
nine probes (FWER = 0, Fig. S8a). Post hoc region-spe-
cific analyses revealed DUSP22 hypermethylation in ERC 
(FWER = 0.053), HIPPO (FWER = 0.08), and DLPFC 
(FWER = 0.088) but not in CRB (FWER = 0.455). Another 
DMR overlaps the TSS of ANKRD30B (FWER = 0.027, 
511 bp, nine contiguous probes, Fig. 1d). The third most 
significant region was hypomethylated and overlaps the 

promoter of JRK (384 bp from TSS, FWER = 0.029, 5 bp 
long, two contiguous probes, Fig. S8b) and the fourth DMR 
overlaps NAPRT (FWER = 0.047, 615 bp long, seven con-
tiguous probes, Fig. S8c). These results suggest a more lim-
ited role of regional changes in DNAm associated with AD.

Brain region‑dependent differential methylation

Given that some brain regions, such as cerebellar cortex, 
are putatively less susceptible to AD pathology than other 
brain regions, we next assessed whether Alzheimer’s dis-
ease is associated with DNAm in a brain region-dependent 
manner (i.e., an interaction model, brain region by diagno-
sis). We found 11,518 DNAm sites with region-dependent 
AD effects (at FDR < 5%, Table S7, Fig. S9). The most sig-
nificant region-dependent effect is seen for a DNAm site 
near ANK1, which is more methylated in AD subjects for 
DLPFC, ERC, and HIPPO but less methylated for CRB 
(cg11823178, p = 3.41 × 10−21, Fig. 2a). Another example 
of a region-dependent effect can be seen for a CpG near 
CSNK1G2 (cg01335597, p = 3.04 × 10−15, Fig. 2b). Region-
dependent sites were mostly distinct from the cross-region 
DMPs identified above, though a subset of 130 sites was sig-
nificant in both models (Fig. 2c). These results demonstrate 
the power of combining data across multiple brain regions 
into joint statistical models and help further partition DNAm 
differences in AD by brain region.

Normal aging vs. AD‑associated DNAm changes

Older age is a strong risk factor for Alzheimer’s disease 
[36] and indeed our AD donors were older than our con-
trols (p = 2.95 × 10−8). We, therefore, sought to disentangle 
the effects of normal aging on DNAm from the effects 
of AD on DNAm by assessing the association between 
DNAm and age in the subset of neurotypical controls 
(N = 187, age range 52–83 years) and comparing these 
age-related associations with AD associations. Cross-
region AD t statistics were significantly associated with 
age-related t statistics, but the absolute correlation was 
weak (Pearson’s r = 0.089, Fig. S10a), suggesting that on 
the genome-wide scale, cross-region DNAm differences 
in AD are generally distinct from the DNAm signature of 
normal aging, suggesting some Alzheimer’s disease spe-
cific epigenetic mechanisms. Nevertheless, 18.1% of 
the significant AD-associated DNAm sites (154/858) 
exhibited similar age-related changes in unaffected con-
trols compared to only 1.66% of DNAm sites not asso-
ciated with AD (6967/419,994; at p < 1×10−3 and same 
directionality; Odds Ratio OR = 13.0, p < 2.2 × 10−16). 
DNAm changes in normal aging, therefore, further sup-
port the biological relevance of some of the most prom-
ising DNAm association, including CpG sites near the 
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genes: WDR81 (cg19803550, paging = 1.31 × 10−13), 
ANK1 (cg05066959, paging = 4.85 × 10−13), MYO1C 
(cg14462670, paging = 4.39 × 10−4), and BIN1 (cg22883290, 
paging = 1.00 × 10−10). In contrast, p values from the region-
dependent model were highly correlated on a global scale 
with p values from a region-dependent normal aging 
model (r = 0.752, p < 2.2 × 10−16, Fig. S10b). We, there-
fore, focused further analyses on cross-region differen-
tial methylation, which appeared to be less susceptible to 
confounding by age (see Results S4 for additional region-
dependent analyses).

Biological relevance of genes near differential 
DNAm

We sought to better characterize the genomic and biologi-
cal correlates of the DNAm changes identified under our 
cross-region model. Differentially methylated sites were 
enriched for CpG shelves and shores (Fig. S11), suggesting 
that these genomic features may be more dynamic in AD. 
Then, we tested whether genes near differentially methyl-
ated sites were enriched in known pathways and ontologies 
while accounting for the biased distribution of CpGs per 
gene. Overall, DMPs were preferentially in close proxim-
ity to genes involved in processes related to cell adhesion, 
immunity, and calcium binding (at FDR < 5%, Table S8a). 
Further analysis suggests that hypermethylated DNAm sites 
are driving these enrichments rather than hypomethylated 
sites, which did not appear to be enriched in any particular 
process (Tables S8b, c). Thus, the gain of DNA methylation 

at these cross-region sites implicates genes involved in cell 
adhesion, immunity, and calcium binding in AD.

AD genetic risk loci are enriched for differential 
methylation

Given that AD risk has a strong genetic component, we 
investigated whether differential methylation was located 
preferentially within AD risk loci from a large GWAS 
meta-analysis [32]. While only a small number of differen-
tially methylated sites were present in AD risk loci (5/858, 
0.58%), it represents statistically significant enrichment 
when compared to the background overlap with risk loci 
(562/419,432, 0.13%; OR = 4.37, p = 0.00655, Fisher’s exact 
test, Table S9). This enrichment was fully driven by hyper-
methylated sites (N = 5, OR = 7.74, p = 0.000588). When we 
relaxed our stringency for differential methylation (nominal 
p < 0.01), the enrichment in GWAS loci remained statisti-
cally significant (OR = 1.90, p = 0.00423). Of note, probes 
within AD risk loci were more often dropped during qual-
ity control than those outside the loci (192 probes dropped, 
OR = 2.21, p < 2.2 × 10−16; see Appendix for more details). 
Dropped probes were located mostly within the HLA-DRB5 
locus (index SNP: rs9271192;131/192, 68.2%) that was 
previously reported [69] to be differentially methylated, so 
our analysis may underestimate the relative enrichment in 
GWAS loci. These results indicate that differentially methyl-
ated probes overlap putative AD genetic risk loci more than 
expected, which can hopefully be expanded upon and further 
refined through larger GWAS efforts in AD.

Fig. 2  a Example region-dependent DMP at cg11823178. Black 
points represent unaffected control samples and red points represent 
samples with a diagnosis of symptomatic Alzheimer’s disease (AD). 
The DNAm site cg11823178 is within 10 kb of protein-coding gene 
ANK1. The effect of Alzheimer’s disease (AD) upon DNAm at this 
site is brain region dependent, with cortical brain regions, DLPFC, 
hippocampus (HIPPO), and entorhinal cortex (ERC), having a large 
difference between AD cases and unaffected controls, whereas lit-

tle difference is observed in cerebellum (CRB). ANK1 ankyrin 1. b 
Example region-dependent DMP at cg01335597. The DNAm site 
cg01335597 is within 10 kb of CSNK1G2, and is less methylated in 
CRB but more methylated in DLPFC, HIPPO, and ERC, in AD cases 
relative to unaffected controls. CSNK1G2 casein kinase 1 gamma 2. c 
Venn diagram of cross-region and region-dependent sites. The num-
ber of overlapping and distinct cross-region and region-dependent 
DNAm sites is shown (at FDR < 5%)
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Replication with an independent cohort

To assess the replicability of these cross-region DNAm dif-
ferences, we re-analyzed processed, public AD DNAm data 
from four brain regions, DLPFC, ERC, CRB, and superior 
temporal gyrus (STG), under a similar model (Ncontrol = 94 
samples, NAD = 239 samples from Lunnon et al. [40]; see 
“Methods” for further details). We found 28.0% of cross-
region differentially methylated sites were consistent in this 
independent dataset (with p < 0.05 and the same direction 
of effect; 240/858, OR = 3.84, p < 2.2 × 10−16, Table S10a). 
Notably, a site near ANKRD30B was more methylated in AD 
samples than controls (cg23703062, Preplication = 0.000355). 
These moderate replication rates are similar to those we 
observed previously (Table S5), suggesting reasonable con-
cordance between AD DNAm differences from different 
brain cohorts.

Using gene expression to functionally validate 
differential methylation

We aimed to functionally validate differences in DNAm 
associated with AD and, therefore, tested for AD case–con-
trol gene expression differences. We generated transcrip-
tome data for mostly the same samples used in the DNAm 
analysis, from the same brain regions: HIPPO, DLPFC, 
ERC and CRB (Ndonors: 50 controls, 26 AD cases; Nsamples: 
196 controls, 92 AD cases). Then, we investigated expres-
sion of genes near differentially methylated sites (i.e., 645 
DNAm sites corresponding to 772 genes within 10 kb; 
218 DNAm sites were not within 10 kb of a Gencode v25 
annotated gene and were not considered for this analysis). 
The majority of these genes were nominally differentially 
expressed between AD cases and controls in at least one 
brain region (p < 0.05, 52.7% of genes, 407/772, Table S11). 
The significance of only two genes, PLEC and CNPY2, 
survived stringent correction for multiple testing (thresh-
old pbonferroni = 1.62 × 10−5, Ntests = 772 × 4 = 3088), but at 
a slightly less conservative threshold, six additional genes 
remained significant: ANKRD30B, ATP9B, SYTL2, PCD-
HGB1, ENSG00000242687.2, and ADAMTS2 (thresh-
old pbonferroni = 6.48 × 10−5, Ntests = 772). Interestingly 
ANKRD30B, which was hypermethylated in AD at both 
spatial resolutions (DMP and DMR), was under-expressed in 
AD patients compared to controls in ERC  (log2 fold change, 
LFC = − 1.50, p = 3.71 × 10−5) and HIPPO (LFC = − 1.70, 
p = 0.00242) but not DLPFC (LFC = − 0.434, p = 0.198) or 
CRB (LFC = − 0.304, p = 0.665; Fig. 3a). Other genes such 
as WDR81 and MYO1C that were previously [12] implicated 
via differential DNAm were differentially expressed here 
(Fig. 3b, c).

To further assess the functional link between DNAm 
and gene expression, we directly tested whether DNAm 

associates with gene expression for the subset of our sam-
ples that had both DNAm and RNA-seq data (Ndonors: 49 
controls, 24 AD; Nsamples: 182 controls, 82 AD). We focused 
on the 407 genes with a nearby cross-region DMP and evi-
dence of possible differential expression. We found DNAm 
associated with expression levels of 130 genes in at least 
one brain region (31.9%, at nominal p < 0.05, Table S12). 
This integrated approach refined our list of candidate 
genes implicated by a nearby differentially methylated site 
(within 10 kb), improving the biological resolution of our 
epigenome-wide scan (before: 39.1% of CpGs with mul-
tiple genes, after: 8.23% of CpGs with multiple genes; 
χ2 = 55.069, non-parametric p value = 1.6 × 10−8, 1 × 109 
bootstraps). Overall, DNAm was inversely correlated with 
gene expression (79/130, 60.8%, p = 0.01406; using the 
strongest CpG-gene association), in line with the promoter-
focused design of this microarray platform. Of note, hyper-
methylation of a site corresponding to ANKRD30B was asso-
ciated with reduced gene expression in ERC, HIPPO, and 
DLPFC but not CRB (Fig. 3d). Other associations between 
DNAm probes and local expression of MYO1C (Fig. S12a) 
and DUSP22 (Fig. S12b) illustrate the heterogenous patterns 
of gene expression associated with DNAm and suggest addi-
tional brain region-specific factors contribute to gene expres-
sion regulation. Together, these findings further implicate 
DNAm as a potential mechanism underlying dysregulated 
gene expression in AD.

Discussion

DNA methylation (DNAm) is an epigenetic factor that is 
disrupted in Alzheimer’s disease (AD), and the effects of 
this epigenetic disruption have already been linked to sev-
eral genes. To further validate previously reported genes and 
identify novel AD-relevant genes, we undertook a cross-
brain region analysis of DNAm in Alzheimer’s disease (AD). 
Differential methylation analysis implicated biological pro-
cesses previously hypothesized to underlie AD pathology—
cell adhesion [39] and calcium ion homeostasis [41]—and 
were enriched for AD genetic risk loci [32]. Then, by linking 
DNAm data with corresponding transcriptome data, we were 
able to prioritize 130 genes that were differentially expressed 
between cases and controls and for which DNAm associated 
with expression. Together these findings further validate sev-
eral previous, prominent DNAm associations such as those 
with ANK1 [12, 40] and DUSP22 [56] (Discussion S1), and 
implicate novel epigenetically dysregulated genes.

One promising gene implicated by our DNAm and gene 
expression evidence is ANKRD30B. Although little is 
known about the function of this protein-coding gene, it is 
expressed most strongly in breast, testis, and brain tissue. 
Furthermore, ANKRD30B is expressed in several cortical 
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tissues affected by AD (DLPFC, ERC, HIPPO), and not cer-
ebellum. Thus, while ANKRD30B is hypermethylated in all 
four brain regions, its expression is associated with DNAm 
and was reduced only in cortical regions and not cerebellum. 
The ANKRD30B protein product is predicted to contain an 
ankyrin repeat domain, a motif important for protein–protein 
interactions [27]. Interestingly, other genes previously impli-
cated by DNAm evidence also encode proteins that contain 
ankyrin repeat domains (ANK1, ANKRD11).

Studying multiple brain regions is crucial to convert 
knowledge of epigenetic changes into insight of molecular 
risk mechanisms, because each region has a distinct cellular 
composition and regulatory landscape that contributes to 
neurophysiological function [11, 19, 25, 47, 57]. By study-
ing the epigenome and transcriptome of four brain regions 

in parallel, three cortical regions susceptible to AD, and 
cerebellum, a region that is relatively protected, we were 
able to cast a wide net to capture AD-related differences. 
While we focused upon “cross-region” differential methyla-
tion—changes concordant across multiple brain regions—
we also identified and characterized a large number of 
region-dependent differentially methylated sites. Moreover, 
even if differential methylation is shared across cerebellar 
and cortical brain regions, the gene expression correlates 
may not be. By studying the unique epigenetic profiles and 
their transcriptional correlates of multiple brain regions, we 
may glean deeper insight into the molecular mechanisms 
underlying differential susceptibility of brain regions to AD 
neuropathology. However, our study has several limitations. 
First and foremost, we cannot distinguish DNAm and gene 

(a) (b)

(c) (d)

Fig. 3  a ANKRD30B differential expression. ANKRD30B is signifi-
cantly less expressed in AD samples compared to controls in hip-
pocampus and entorhinal cortex brain regions (ERC: p = 3.71 × 10−5, 
LFC = − 1.50; HIPPO: p = 0.00242, LFC = − 1.70), but not DLPFC 
or cerebellum (DLPFC: p = 0.198; LFC = − 0.434; CRB: p = 0.665, 
LFC = − 0.304). ANKRD30B ankyrin repeat domain 30B. b WDR81 
differential expression. WDR81 is significantly more expressed in 
AD cases than in unaffected controls within ERC (CRB: p = 0.915, 
LFC = 0.0148; DLPFC: p = 0.111, LFC = 0.215; ERC: p = 0.00754, 
LFC = 0.295; HIPPO: p = 0.101, LFC = 0.293). WDR81 WD 
repeat domain 81. c MYO1C differential expression. MYO1C is 

significantly more expressed in AD cases than in unaffected con-
trols within cortical brain regions (CRB: p = 0.826, LFC = 0.0299; 
DLPFC: p = 0.00836, LFC = 0.503; ERC: p = 0.0448, LFC = 0.382; 
HIPPO: p = 0.0324, LFC = 0.628). MYO1C myosin IC. d Greater 
DNAm at cg23703062 associates with reduced ANKRD30B expres-
sion in DLPFC, ERC, and HIPPO. Hypermethylation of DNAm site 
cg23703062, annotated to protein-coding gene ANKRD30B, asso-
ciates with reduced gene expression in DLPFC, ERC, and HIPPO 
but not in CRB (CRB: p = 0.910, β = 0.00755; DLPFC: p = 0.0710, 
β = − 0.719; ERC: p = 0.0233, β = − 1.25; HIPPO: p = 0.101, 
β = − 0.792). ANKRD30B ankyrin repeat domain 30B



564 Acta Neuropathologica (2019) 137:557–569

1 3

expression differences that are causal in AD from those that 
relate to epiphenomena and secondary disease processes, 
such as neurodegeneration (Discussion S2). Indeed, the 
DNAm signature of other neurodegenerative diseases such 
as Lewy body dementia and Parkinson’s disease resembles 
that of Alzheimer’s disease at both the genome-wide [60] 
and single-gene level [63]. Nevertheless, some of the DNAm 
differences reported here may relate to AD etiology, because 
a subset of the differences was enriched within known late-
onset AD genetic risk loci and correlated with gene expres-
sion changes. Further mechanistic studies to better untan-
gle the timing of the co-occurring DNAm and expression 
changes are necessary to more confidently determine which 
of these DNAm changes are causative versus an epiphenom-
enon in the brains of patients with AD.

In a similar vein, these DNAm changes can be regulated by 
other components of the genome and epigenome. For exam-
ple, DNAm differences in AD can reflect underlying genetic 
risk, as was the case with a differentially methylated region 
overlapping the PM20D1 promoter [59]. Likewise, DNAm 
changes may interact with other epigenetic factors that regulate 
gene expression [31]. Current human brain epigenome data-
sets now include post-translational histone modifications and 
higher order chromatin interactions, which have been shown to 
significantly alter gene expression both, within specific genetic 
loci and across the genome in human postmortem brain tissue 
[4, 50, 67]. Recent studies implicate widespread changes in 
the distribution of histone modifications in AD [16, 17]. While 
in some cases histone modifications may act independently 
of DNAm changes to generate AD risk [43], in other scenar-
ios there is likely epigenetic cross-talk between DNAm and 
histone modifications [58]. Intriguingly, whereas a study of 
H4K16 acetylation, an active chromatin associated modifica-
tion, identified AD-related differences weakly inversely associ-
ated with age-related changes [49], we observed the opposite 
correlation with DNAm, albeit the association was weak. The 
canonical roles of DNAm as a transcriptionally repressive epi-
genetic mark and histone acetylation as an activating one may 
reconcile these conflicting patterns. Disruption of multiple 
epigenetic factors may converge via regulating transcriptional 
networks [46, 48, 70] that are disrupted in AD. Our study sug-
gests that disrupted DNAm plays a role within this complex 
gene regulatory framework. We identified 130 genes that had 
evidence of differential expression between cases and con-
trols and for which expression associated with nearby DNAm 
that differed in AD. These differentially expressed genes may 
involve cell type-specific dysregulation. For instance, a recent 
study of cell-sorted cortical tissue found DNAm differences 
existed in both neurons and glia that associated with AD neu-
ropathology (Braak stage) [15]. Likewise, a study of laser cap-
tured brain tissue suggests that microglia are responsible for 
differential expression of the epigenetically dysregulated gene, 
ANK1 [45]. Understanding the transcriptional output of these 

epigenetic changes in AD across multiple brain regions, which 
have different susceptibilities to AD neuropathology, will be 
a challenging, but rewarding endeavor. Our publicly available 
dataset contributes unique matched RNA-seq and DNAm data 
that can be used for development of genomic integration sta-
tistical methods.

The concordance between prior differential methylation 
studies and ours was modest (~ 28%), albeit similar to pre-
vious levels of concordance among epigenome-wide asso-
ciation studies. One factor potentially limiting concordance 
with prior studies is our use of neuropathological diagno-
sis as an outcome, as opposed Braak staging and CERAD 
scores. Additionally, our study used a modest number of 
AD cases (N = 24), as it included four brain regions and 
corresponding RNA-sequencing data. Aside from increas-
ing sample sizes through additional data collection, jointly 
analyzing data from multiple existing studies via a meta-
analysis framework may yield new, robust clues into the epi-
genetic fingerprint of AD. Meta-analyses of other genomic 
data types have offered valuable insights into the genetic 
[28, 32, 42] and transcriptional [51] correlates of Alzhei-
mer’s disease. Likewise, a meta-analysis of DNAm studies 
would improve power to detect DNAm differences associ-
ated with AD and may also help reveal factors underlying 
study heterogeneity.

Although our study provides novel evidence supporting 
the role of DNAm in gene dysregulation, the extent to which 
DNAm contributes to AD pathogenesis remains unclear. 
While the DNAm array used here (HM450k) offers base-
level resolution of DNAm differences, it is a biased sample 
of the human methylome and focuses on CpG DNAm in a 
promoter context. Indeed, DNAm in non-CpG contexts has 
been recently suggested to be more dynamic than DNAm in 
CpG contexts within human brain tissue and is likely rel-
evant to neuropsychiatric diseases [52, 55]. Furthermore, we 
found that CpGs differentially methylated between AD cases 
and controls were preferentially located within regions of the 
genome sparsely sampled in the HM450k array. Thus, fur-
ther studies with complementary methodologies (e.g., whole 
genome bisulfite sequencing) and meta-analysis of existing 
publicly available HM450k data will better resolve the rela-
tive contribution of DNAm to AD pathogenesis.

In summary, we used paired DNAm and transcriptome 
data from four brain regions to link methylation differences 
in AD to local gene dysregulation. These results support the 
role of DNAm as an epigenetic mechanism underlying gene 
dysregulation and support novel genes involved in AD. More 
generally, they illustrate the value of integrating epigenetic 
and transcriptomic data to study complex disease.
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Methods

Postmortem brain tissue dissections

DLPFC (Brodmann areas 9 and 46), hippocampal formation, 
entorhinal cortex at the level of the anterior hippocampus 
and cerebellar cortex were dissected from frozen postmor-
tem brains using a hand-held visually guided dental drill 
(Cat #UP500-UG33, Brasseler, Savannah, GA) as previously 
reported [37]. In addition to demographic matching between 
AD control subjects, the subjects included in the control 
group had no clinical or neurological history, or history of 
alcohol or substance abuse, or positive toxicology screens 
for illicit substances.

Alzheimer’s neuropathology diagnosis

All postmortem brains of subjects (controls and AD) have 
been sampled for neuropathology and specific Alzheimer’s 
lesions: beta-amyloid plaques, neurofibrillary tangles and 
tau-positive neurites. Samples were also genotyped for the 
apolipoprotein E gene (APOE). The sampled tissue sections 
were fixed in 10% buffered formalin and paraffin embed-
ded into blocks for microscopic analysis (10 micron thick-
ness). Sections included the superior frontal gyrus, middle 
and superior temporal gyri, inferior parietal cortex, occipi-
tal cortex, amygdala, hippocampus and entorhinal cortex, 
anterior thalamus, midbrain, pons, medulla, and cerebellum 
(including cerebellar cortex and deep cerebellar nuclei). 
Sections were silver-stained using the Hirano method [68] 
and immune stained using antibodies against ubiquitin, 
phosphorylated anti-tau (PHF-1) and beta-amyloid protein 
(6E10). Microscopic preparations were examined using 
conventional light microscopy. Alzheimer’s neuropathol-
ogy ratings include the Braak [5] staging schema evaluating 
tau neurofibrillary tangle burden, and the CERAD scoring 
system as a measure of senile plaque burden (neuritic and 
diffuse). An Alzheimer’s likelihood diagnosis was then per-
formed based on the published consensus recommendations 
for postmortem diagnosis of Alzheimer’s disease [23] as in 
prior publications [8].

Processing DNA methylation (DNAm) data

Human Methylation 450k (HM450k) arrays were run as 
specified by the manufacturer upon DNA extracted from 
each brain region. After generating array data for 398 
postmortem brain tissue samples, resulting idat files were 
imported and then rigorously preprocessed with minfi [2]. 
We did not observe batch effects with several different 
quality control metrics. After removing low-quality sam-
ples (N = 5), we normalized the data with stratified quantile 

normalization [2]. We removed 64,660 probes that met one 
or more of the following exclusion criteria: (a) poor qual-
ity, (b) cross-reactive, (c) included common genetic vari-
ants, (d) mapped to a sex chromosome, and (e) did not map 
to hg38. We dropped 13 samples for one or more of the 
following reasons: (i) DNAm-predicted sex did not match 
phenotypic sex, (ii) 450k genotype clustered inappropriately, 
(iii) 450k genotype did not match SNP-chip genotype, and 
(iv) clustered inappropriately on principal component analy-
sis. After these conservative quality control steps, 420,852 
high-quality probes available for 377 samples remained for 
further analysis. Postmortem donors not meeting our diag-
nostic criterion for controls or AD were not included for 
analysis, leaving 269 tissue samples (Ndonors: 24 AD, 49 con-
trols). We estimated DNAm cell-type compositions using 
a deconvolution algorithm [22] with a flow-sorted DLPFC 
reference [18] and estimated age acceleration with Horvath’s 
clock[21]. For additional details about DNAm processing, 
see Supplemental Methods (Figs. S13–S18).

Brain‑region stratified analyses

We tested for differences between AD cases and controls in 
predicted neuronal proportion and age acceleration, strati-
fied by brain region, with linear models. We included age, 
sex, and ancestry as covariates in these models. Likewise, 
we tested for case-control differences in RNA-seq estimated 
neuronal proportions using a seperate linear model for each 
brain region while adjusting for age, sex, race, mitochondrial 
mapping rate, gene assignment rate, and RIN.

Cross‑region differential methylation analysis

In our “cross-region” model for AD case–control differ-
ences (N = 269 samples), we tested beta values from 420,852 
probes for differential methylation between Alzheimer’s dis-
ease cases and controls using limma [54] with the model:

for DNAm site i and donor j and binary disease status 
 Diagnosisj adjusting for brain region, age, sex, the first mul-
tidimensional scaling (MDS) component of genotype data 
(ancestry), and the first two negative control principal com-
ponents (PCs). Afterward, we tested an interaction model, 
i.e., an F test of the estimated AD effect from each brain 
region, while adjusting for the same covariates as above. 
Both of these models incorporated multiple brain regions 
from each donor, and thus repeated measures, so we used 
the generalized least squares technique to estimate statistical 
parameters to appropriately account for the repeated bio-
logical measures. We estimated a consensus correlation with 

DNAmij = �i + �i Diagnosisj + �i Regionj

+ �i Agej + �i Sexj + �i MDSj + �i negControlPCsj + �ij
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limma’s duplicateCorrelation function in which donors are 
blocks and different brain regions are repeated observations. 
Then, we incorporated this consensus correlation while esti-
mating statistics for each DNAm site using the generalized 
least squares technique via limma’s lmFit function. We per-
formed sensitivity analyses to assess how robust our results 
were to potential confounds (see Supplemental Methods for 
additional details).

Differential methylated region analysis

To assess whether regions of the genome were differentially 
methylated between Alzheimer’s disease cases and controls, 
we used bumphunter with the same models as above [26]. 
We implemented the bumphunter method with the minfi 
Bioconductor package’s bumphunter function using 1000 
bootstrap iterations, a cutoff of 0.05 for defining continu-
ous probes, smoothing done with the locfitByCluster func-
tion, and otherwise default parameters [2]. We controlled for 
multiple testing using the family wise error rate (FWER) to 
determine statistical significance.

Processing RNA sequencing (RNA‑seq) data

RNA sequencing was performed with protocols described 
at [7]. In summary, TruSeq Stranded Total RNA Library 
Preparation kit with Ribo-Zero ribosomal RNA depletion 
(Illumina) libraries were generated and sequenced on an 
Illumina HiSeq 2000 at the LIBD Sequencing Facility, pro-
ducing a mean of 130.6 million 100-bp paired-end reads per 
sample. Raw sequencing reads were quality checked with 
FastQC [1]. Quality checked reads were mapped to the hg38/
GRCh38 human reference genome with splice-aware aligner 
HISAT2 version 2.0.4 [30]. Gene-level quantification based 
on GENCODE release 25 (GRCh38.p7) annotation was 
run on aligned reads using featureCounts (subread version 
1.5.0-p3) [34] with a mean 34.9% (SD = 4.6%) of mapped 
reads assigned to genes. Quality controls metrics such as 
gene assignment rate, mitochondrial mapping rate, and RNA 
integrity number (RIN) were significantly associated with 
brain region and case–control status (Fig. S19a–c). These 
quality control metrics were, therefore, included as covari-
ates in downstream analyses (see below).

Differential expression of differentially methylated 
genes and association with DNAm

DNAm sites were annotated to all Gencode v25 genes within 
10 kb upstream or downstream (20 kb region) using the 
GenomicRanges Bioconductor package [33]. These genes 
were then tested for corresponding AD-case–control dif-
ferential gene expression. Analyses were stratified by brain 
region and used 196 control and 92 AD RNA-seq samples 

processed as described in the previous section. We normal-
ized counts for 25,587 Gencode annotated genes that were 
expressed in at least one brain region with limma’s voom 
function then tested for AD case–control differences under 
an empirical Bayesian framework [54] while adjusting for 
RNA Integrity Number (RIN), age, sex, race, mitochondrial 
mapping rate, and gene assignment rate.

We tested then the association between DNAm at each 
differentially methylated site and log-transformed, normal-
ized gene expression  (log2[RPKM + 1]) for all Gencode 
(v25) annotated genes within 10 kb with at least partial 
evidence of differential expression (nominal p < 0.05 in at 
least one brain region). This analysis used 182 control and 
82 AD samples with matching DNAm and RNA-seq data. 
We tested for these associations in R using a linear model 
(lm function) that adjusted for the covariates above and was 
stratified by brain region.
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