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Abstract
Pediatric low-grade gliomas (PLGGs) consist of a number of entities with overlapping histological features. PLGGs have 
much better  prognosis than the adult counterparts, but a significant proportion of PLGGs suffers from tumor progression and 
recurrence. It has been shown that pediatric and adult low-grade gliomas are molecularly distinct. Yet the clinical significance 
of some of newer biomarkers discovered by genomic studies has not been fully investigated. In this study, we evaluated in a 
large cohort of 289 PLGGs a list of biomarkers and examined their clinical relevance. TERT promoter (TERTp), H3F3A and 
BRAF V600E mutations were detected by direct sequencing. ATRX nuclear loss was examined by immunohistochemistry. 
CDKN2A deletion, KIAA1549-BRAF fusion, and MYB amplification were determined by fluorescence in situ hybridization 
(FISH). TERTp, H3F3A, and BRAF V600E mutations were identified in 2.5, 6.4, and 7.4% of PLGGs, respectively. ATRX 
loss was found in 4.9% of PLGGs. CDKN2A deletion, KIAA1549-BRAF fusion and MYB amplification were detected in 
8.8, 32.0 and 10.6% of PLGGs, respectively. Survival analysis revealed that TERTp mutation, H3F3A mutation, and ATRX 
loss were significantly associated with poor PFS (p < 0.0001, p < 0.0001, and p = 0.0002) and OS (p < 0.0001, p < 0.0001, 
and p < 0.0001). BRAF V600E was associated with shorter PFS (p = 0.011) and OS (p = 0.032) in a subset of PLGGs. 
KIAA1549-BRAF fusion was a good prognostic marker for longer PFS (p = 0.0017) and OS (p = 0.0029). MYB amplifica-
tion was also a favorable marker for a longer PFS (p = 0.040). Importantly, we showed that these molecular biomarkers can 
be used to stratify PLGGs into low- (KIAA1549-BRAF fusion or MYB amplification), intermediate-I (BRAF V600E and/
or CDKN2A deletion), intermediate-II (no biomarker), and high-risk (TERTp or H3F3A mutation or ATRX loss) groups 
with distinct PFS (p < 0.0001) and OS (p < 0.0001). This scheme should aid in clinical decision-making.
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Introduction

Pediatric low-grade gliomas (PLGGs) are a heterogeneous 
group [34], and while the WHO 2016 classification did not 
specify a classification specific for PLGGs, the following 

histological groups which can occur in the young age group 
are included in WHO 2016: pilocytic astrocytoma (Grade I), 
diffuse astrocytoma (Grade II), oligodendroglioma (Grade 
II), oligoastrocytoma (Grade II), pleomorphic xanthoastro-
cytoma (Grade II), dysembryoplastic neuroepithelial tumor 
(Grade I), neuronal–glial tumor (Grades I and II) and a few 
others [31]. Pilocytic astrocytoma and diffuse astrocytoma 
are the two commonest PLGGs [50]. In diagnostic situa-
tions, there can be overlap in histological features between 
the groups. Clinically, PLGGs are often regarded as a sin-
gle group, characterized by good survival and chronicity [3, 
35, 54]. Surgical resection is the mainstay of treatment, but 
adjuvant chemotherapy and radiotherapy are other treatment 
modalities when tumors are infiltrative or tumors are inac-
cessible or incompletely resected [2, 60]. However, despite 
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a relatively good long-term survival, 30% of PLGGs still 
experience progression or recurrence [26, 40].

It has long been known that key molecular pathological 
changes seen in adult low-grade gliomas, like IDH muta-
tion and 1p19q codeletion, are not applicable to PLGGs [52, 
62]. In fact, recent studies have shown PLGGs possess their 
own molecular pathological feature distinct from adults’ [35, 
54]. In children, pilocytic astrocytoma is characterized by 
aberrations of the mitogen-activated protein kinase (MAPK) 
pathway, and BRAF, an intracellular serine/threonine kinase 
component of the MAPK pathway, is often activated either 
by gene rearrangement or mutation [31]. The KIAA1549-
BRAF fusions are caused by tandem duplication and rear-
rangement at chromosome 7q34 between BRAF and a gene 
centromeric to BRAF, KIAA1549 [5, 23, 38, 51]. The fusion 
genes have been detected in about 70% of pilocytic astro-
cytoma and 18–67% of all other PLGGs, such as diffuse 
astrocytoma, pleomorphic xanthoastrocytoma, pilomyxoid 
astrocytoma, and ganglioglioma [9, 12, 16, 20]. The most 
common point mutation in PLGGs occurs at codon 600, 
and results in an amino acid substitution from valine (V) 
to glutamic acid (E) [43]. BRAF V600E mutation has been 
described in 6–17% of PLGGs [14, 29, 38]. CDKN2A is a 
tumor suppressor gene found on chromosome 9p21 that neg-
atively regulates the cell cycle progression [44]. CDKN2A 
is deleted in about 20% PLGGs [29] and can be also found 
in adult gliomas [6, 37, 46, 47]. Analysis of patient-matched 
low- and high-grade gliomas showed 100% BRAF V600E 
and 80% of CDKN2A alterations could be traced back to 
their PLGG counterparts, indicating that BRAF V600E and 
CDKN2A deletion are early events in PLGGs undergoing 
transformation [33].

Recent genomic studies also identified v-myb avian mye-
loblastosis viral oncogene homolog (MYB) and v-myb avian 
myeloblastosis viral oncogene homolog-like 1 (MYBL1) as 
novel genetic aberrations in PLGGs [41, 63]. MYB altera-
tion in PLGGs was initially reported by Tatevossian et al. 
[58] showing the identification of novel MYB amplifications 
in pediatric diffuse gliomas. In addition to MYB amplifica-
tion, subsequent studies identified recurrent MYB/MYBL 
rearrangements and MYB-QKI rearrangements in a small 
fraction of PLGGs [4, 41, 58]. MYB and MYBL1 abnormal-
ities can be found in about 10% of PLGGs [63]. However, 
the clinical significance of these new biomarkers for PLGGs 
has not been examined.

In this study, we investigated the prevalence of TERTp, 
H3F3A, BRAF V600E mutations, ATRX loss, KIAA1549-
BRAF fusion, CDKN2A deletion, and MYB amplification in 
a large series of PLGGs. TERTp mutation, H3F3A mutation, 
and ATRX loss are molecular changes usually linked with 
high-grade tumors, and these alterations in the occasional 
PLGGs have not previously been studied [27, 32, 61]. We 
showed that these biomarkers are not only clinically relevant 

in PLGGs on their own, but they also enabled us to establish 
a risk stratification model for PLGGs. Our results highlight 
the importance of the incorporation of multiple molecular 
biomarkers in clinical management for PLGGs.

Materials and methods

Patients and tissue samples

Between years 1998 and 2016, a total of 372 cases of PLGGs 
(WHO Grade I and Grade II) were diagnosed at Prince of 
Wales Hospital, Hong Kong, the Huashan Hospital, Shang-
hai, and the First Affiliated Hospital of Zhengzhou Univer-
sity, Zhengzhou. Formalin-fixed and paraffin-embedded tis-
sues (FFPE) of 289 (289/372; 77.7%) PLGGs were recruited 
when cases were retrievable and included in this study. All 
patients were aged 18 or below at the time of diagnosis. 
Histological diagnoses were reviewed by three pathologists 
(HKN, HC, AKC). The clinicopathological characteristics 
of the cohort are summarized in Suppl. Table 1 (Online 
Resource 1).

Data on patient demographics and therapeutic treatment 
were obtained from paper and electronic medical records 
at the institutions. Survival data were ascertained from 
records of follow-up visits in clinics, or by direct contact 
with patients or close relatives by telephone. This study was 
approved by The Joint Chinese University of Hong Kong—
New Territories East Cluster Clinical Research Ethics Com-
mittee, Ethics Committees of Huashan Hospital, Shanghai, 
and First Affiliated Hospital of Zhengzhou University, 
Zhengzhou.

Detection of TERTp, H3F3A, BRAF, FGFR1, 
and IDH1/2 mutations

DNA for mutational analysis was obtained from FFPE 
tissues according to previous reported procedures [30]. 
PCR and Sanger sequencing were conducted to exam-
ine hotspot mutations at promoter regions (− 228 and 
− 250) of TERT, codons 27 and 34 of H3F3A, codon 600 
of BRAF, codons 546 and 656 of FGFR1, codon 132 of 
IDH1, and codon 172 of IDH2 as described previously 
[1]. PCR was performed in a 10 μl contained 0.5 μl cell 
lysate, 1 × KAPA2G Robust HotStart ReadyMix (Sigma) 
or 1 × KAPA HiFi HotStart ReadyMix (Sigma), 0.5 μM of 
forward and reverse primers. Amplification was conducted 
under the conditions of 95 °C for 3 min, followed by 45 
cycles of 95 °C for 15 s, 60 °C for 15 s, and 72 °C for 
30 s on Veriti® 96-well Thermal Cycler (Applied Biosys-
tems). PCR products were cleaned by spin column-based 
nucleic acid purification kit (iNtRON Biotechnology), and 
sequenced with BigDye Terminator Cycle Sequencing kit 
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v1.1 (Life Technologies). The products were resolved 
in 3130xl Genetic Analysis. Primer sequences are listed 
in Suppl. Table 2 (Online Resource 2). Representative 
sequence electropherograms for mutations in TERTp, 
H3F3A, BRAF, FGFR1, and IDH1 are shown in Suppl. 
Figure 1 (Online Resource 3).

Fluorescence in situ hybridization (FISH) analysis

KIAA1549-BRAF fusion, MYB amplification, and 
CDKN2A deletion were evaluated by FISH as described 
[1, 20]. In KIAA1549-BRAF fusion detection, 3 clones 
of P1-derived artificial chromosomes spanning the entire 
BRAF gene (RP4-726N20, RP5-839B19, and RP4-813F11) 
and a centromeric enumeration probe for chromosome 7 
(CEP7) were employed. A commercially available probe was 
employed for MYB amplification (Cytocell) detection. Vysis 
LSI CDKN2A SpectrumOrange/CEP 9 SpectrumGreen 
Probes (Vysis) was employed to investigate CDKN2A dele-
tion. At least 100 non-overlapping signals were counted and 
analyzed in each case. KIAA1549-BRAF fusion was defined 
when BRAF:CEP7 ratio was ≥ 1.15 and more than 20% of 
tumor cells showed relative BRAF gain [19]. MYB amplifi-
cation was considered when > 5% of cells displayed clusters 
or a ratio of target (red) to reference (green) signal > 2 [1]. 
CDKN2A homozygous deletion was considered when > 20% 
of tumor cells showed loss of two signals [20]. Representa-
tive photos showing tumors positive for KIAA1549-BRAF 
fusion, MYB amplification, and CDKN2A deletion are 
shown in Suppl. Figure 2 (Online Resource 4).

Immunohistochemical detection of ATRX and p53

Expression for ATRX and p53 proteins was determined by 
immunohistochemistry (IHC) as previously used by this 
group [30]. Briefly, FFPE tissues of 4 µm thickness were 
de-waxed in xylene and rehydrated in graded alcohols. Sec-
tions were then treated with citrate buffer (pH 6.0) in micro-
wave for antigen retrieval. Immunohistochemical staining 
was done in BenchMark ULTRA automated tissue staining 
systems (Ventana Medical Systems, Tucson, AZ, USA). The 
primary antibodies were anti-ATRX (Sigma HPA001906, 
1:400) and anti-p53 (Dako DO-7, 1:100).

For ATRX staining, a tumor was considered ATRX 
positive when > 10% of tumor nuclei showed the presence 
of ATRX expression [59]. Endothelial cells and infiltrat-
ing inflammatory cells served as internal positive controls. 
Cases were classified as failed/non-informative when inter-
nal control cells were not immunopositive (n = 20 cases). A 
tumor was scored as p53 positive if > 10% of tumor nuclei 
showed strong nuclear staining [56, 57].

RNA extraction

Total RNA was isolated from 5-µm-thick FFPE tissues with 
RNeasy FFPE kit (Qiagen). RNA quantity and quality was 
determined using NanoDrop 2000 instrument (ThermoFisher 
Scientific). Samples with a ratio A260/280 between 1.9 and 
2.1 were taken to fusion/duplication detection by NanoString-
based platform.

NanoString‑based fusion/duplication detection

In an attempt to uncover other genetic alterations in our series 
of PLGGs that did not exhibit molecular alterations in our 
list of biomarkers, we employed NanoString nCounter sys-
tem to detect 33 reported fusion/duplication events in PLGGs. 
The information of probes for detection of 31 fusion genes 
and 2 gene duplications in pediatric gliomas was kindly pro-
vided by Dr. Cynthia Hawkins at SickKids, Canada [45, 46] 
[Suppl. Table 3 (Online Resource 5)]. A total of 500 ng RNA 
was added to the nCounter Elements TagSet in hybridization 
buffer and incubated at 67 °C for 20 h. Samples were then 
processed on the nCounter Preparation Station and cartridges 
were scanned at 555 fields of view on the nCounter Digital 
Analyzer. Raw NanoString counts were subjected to normali-
zation using counts obtained for positive control probe sets. 
The normalized data was then subjected to background noise 
subtraction. A statistical outlier detection method was used to 
detect the presence of fusion/duplication events. Data were 
viewed using a box plot. A fusion or duplication transcript was 
considered when the raw count was above the average of the 
internal positive control raw counts plus 3xIQR.

Statistical analysis

Statistical analysis was conducted using IBM SPSS software 
v20 (IBM Corporation, NY, USA). Chi-squared test (χ2-test) 
was used to examine the correlation between molecular mark-
ers and clinical parameters. Progression-free survival (PFS) 
was defined as time from tumor diagnosis to recurrence or 
progression. Overall survival (OS) was defined as time from 
diagnosis to death or last follow-up. Survival curves were per-
formed by Kaplan–Meier method. Univariate and multivariate 
analyses using Cox’s proportional hazards regression model 
were used to determine molecular biomarkers and clinical fea-
tures associated with patient survival. All hazard ratios were 
reported with 95% CIs. P < 0.05 (two-sided) was considered 
statistically significant.
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Results

Clinical characteristics of PLGGs

A total of 289 PLGGs diagnosed between years 1988 to 
2016 were recruited in this study. The mean and median 
ages at diagnosis were 11 and 12 years old (range 1–18), 
respectively. The hemispheres were the most preva-
lent tumor location, accounting for 42.2% (122/289) of 
the cohort. The distribution of hemispheric tumors was 
as follows: frontal (n = 50), parietal (n = 38), temporal 
(n = 28), and occipital (n = 6) lobes. Midline origins, 
including third and fourth ventricles (n = 41), brain stem 
(n = 18), thalamus (n = 16), spinal cord (n = 12), sellar 
region (n = 10), and pineal region (n = 4), were found in 
one hundred and one (34.9%) tumors [53]. The remaining 
around one-fifth of tumors were found in the cerebellum. 
Survival data were available in 219 patients (75.8%). The 
average follow-up period of this study was 5.48 years, 

and 51.1% of cases with survival data were followed for 
> 5 years (112 cases). Suppl. Table 1 (Online Resource 1) 
summarized the clinicopathological characteristics of the 
cohort. Suppl. Figure 3 (Online Resource 6) summarized 
the molecular features of all 289 PLGGs.

Univariate Cox proportional hazards analyses were 
performed, and grading (p = 0.041), histological type 
(p = 0.011), and extent of resection (p < 0.0001) were highly 
associated with PFS (Table 1). Grading (p = 0.011), histo-
logical type (p = 0.0008), location (p = 0.004) and extent of 
resection (p < 0.0001) were associated with OS (Table 1). 
Age, gender, chemotherapy, and radiotherapy were not a fac-
tor contributing to PFS and OS (Table 1).

TERT promoter mutation is a rare negative 
prognostic marker in PLGGs

TERTp mutation was identified in a small number (7/278 
or 2.5%) of tumors, including three C228T and four C250T. 
Most of the TERTp-mutant tumors were diffuse astrocytoma 

Table 1   Univariate Cox 
proportional hazards regression 
models of clinical features

n number of cases with data available

Variables PFS OS

HR (95% CI) P value HR (95% CI) P value

Age 0.996 (0.936–1.059) 0.893 1.050(0.968–1.139) 0.238
Gender
 Male 1 1
 Female 0.884 (0.481–1.624) 0.691 0.842 (0.385–1.841) 0.667

Grade
 Grade I 1 1
 Grade II 1.904 (1.027–3.530) 0.041 3.059 (1.291–7.247) 0.011

Histological type
 Pilocytic astrocytoma 1 0.011 1 0.0008
 Diffuse astrocytoma 2.455 (1.239–4.864) 0.010 4.659 (1.821–11.921) 0.001
 Others 0.974 (0.432–2.194) 0.949 1.143 (0.349–3.748) 0.825

Location
 Cerebellum 1 0.078 1 0.004
 Midline 2.437 (1.059–5.606) 0.036 8.088 (1.833–35.699) 0.006
 Hemisphere 1.446 (0.615–3.398) 0.398 3.055 (0.649–14.371) 0.158

Extent of resection
 Total resection 1 1
 Non-total resection 4.755 (2.291–9.870) < 0.0001 6.908 (2.721–17.534) < 0.0001

Radiotherapy
 Yes 1 1
 No 1.462 (0.723–2.957) 0.290 1.183 (0.515–2.717) 0.692

Chemotherapy
 Yes 1 1
 No 0.929 (0.461–1.872) 0.836 0.764 (0.334–1.747) 0.524

Chemo-radiotherapy
 Yes 1 1
 No 1.090 (0.506–2.348) 0.826 0.919 (0.378–2.236) 0.852



645Acta Neuropathologica (2018) 136:641–655	

1 3

[Suppl. Table 1 (Online Resource 1)]. Four TERTp-mutant 
tumors were located in midline structure (two third and 
fourth ventricles, one brainstem, and one thalamus). The 
other TERTp-mutant tumors were found in hemisphere 
(n = 2) and cerebellum (n = 1). Representative cases were 

shown in Suppl. Figure 4 (Online Resource 7). The patients 
with TERTp mutation were associated with older age 
(p = 0.03).

Kaplan–Meier survival analysis revealed TERTp muta-
tion was markedly associated with shorter PFS (p < 0.0001) 

a b

c d

e f

Wild type 
(n=205)

TERT promoter 
mutant (n=6)

p<0.0001 p<0.0001 

TERT promoter 
mutant (n=6)

Wild type 
(n=205)

Wild type
(n=197)

Wild type
(n=197)

H3F3A mutant
(n=15) 

H3F3A mutant
(n=15) 

p<0.0001 p<0.0001 

No ATRX loss
(n=175)

No ATRX loss
(n=175)

ATRX loss
(n=10)

ATRX loss
(n=10)

p<0.0001 p=0.0002

Fig. 1   Kaplan–Meier survival analysis of TERTp, H3F3A, and 
ATRX. TERTp mutation was strongly associated with a shorter a 
PFS (p < 0.0001) and b OS (p < 0.0001) in PLGGs. H3F3A muta-

tion was associated with unfavorable c PFS (p < 0.0001) and d OS 
(p < 0.0001). ATRX loss was associated with poor e PFS (p = 0.0002) 
and f OS (p < 0.0001)



646	 Acta Neuropathologica (2018) 136:641–655

1 3

and OS (p < 0.0001) (Fig. 1a, b). After adjustment by age, 
grade, histology, tumor location, and extent of resection in 
multivariate analysis, the association of TERTp mutation 
with PFS and OS did no longer reach statistical significance.

We then examined if these TERTp-mutated-PLGGs har-
bored 1p19q codeletion, PTEN loss, EGFR amplification, 
PDGFRA amplification, ATRX loss, and p53 nuclear accu-
mulation, which are common molecular changes found in 
adult gliomas. We did not detect 1p19q codeletion, PTEN 
loss, and PDGFRA amplification by FISH analyses in any 
of these TERTp-mutant tumors (data not shown). By immu-
nohistochemistry, none of these tumors demonstrated ATRX 
loss or p53 nuclear accumulation. Nevertheless, EGFR 
amplification was observed in 2/7 (28.6%) of TERTp-mutant 
tumors. The results suggest PLGGs with TERTp mutation 
infrequently show the common genetic abnormalities found 
in adult gliomas.

H3F3A mutation is marker for poor prognosis 
in PLGGs

H3F3A mutation was detected in a small number (18/280 or 
6.4%) of PLGGs, with 13 tumors harbored K27M mutation 
and 5 tumors harbored G34R mutation. Over half of H3F3A 
mutations (10/18) were found in diffuse astrocytoma, and 
accounted for 14.7% (10/68) of this entity [Suppl. Table 1 
(Online Resource 1), Suppl. Figure 3 (Online Resource 6)]. 
Most tumors with H3F3A mutation were located in the mid-
line structure (n = 9; three brain stem, three spinal cord, two 
thalamus, and one pineal region). H3F3A mutation was also 
found in tumors located in hemisphere (n = 7) and cerebel-
lum (n = 2). Our finding is in line with previous report show-
ing the presence of H3F3A mutation in pediatric low-grade 
and high-grade gliomas [11, 21, 55, 61]. Representative 
cases are shown in Suppl. Figure 5 (Online Resource 8).

Around 60% of K27M mutation (8/13 cases) were found 
in the tumors in the midline structures, including three in 
brainstem, three in spinal cord, and two in thalamus. More-
over, 80% of G34R mutation in H3F3A (4/5 cases) were 
located in tumors from the hemispheres. Although we did 
not detect a correlation between tumor location and mutation 
type, our finding is in line with previous reports showing a 
predilection of G34R to the hemispheres, and K27M to mid-
line locations, respectively, in pediatric high-grade gliomas 
[8, 55]. H3F3A mutation has no relationship with the age of 
onset of disease in this series (p = 0.20). Mutation of H3F3A 
was mutually exclusive with TERTp mutation.

Kaplan–Meier survival analysis indicated that H3F3A 
mutation was significantly associated with adverse PFS 
(p < 0.0001) and OS (p < 0.0001) (Fig. 1c, d). We applied 
multivariate analysis using Cox proportional hazards model 
with age and variables with p < 0.05 in univariate analysis 
as covariates. H3F3A mutation remained an independent 

poor prognosticator for PFS [HR 2.76 (95% CI 1.10–6.94); 
p = 0.031] and OS [HR 3.96 (95% CI 1.36–11.53); p = 0.012] 
after adjustment for age, grade, histology, tumor location, 
and extent of resection.

ATRX loss is associated with poor PFS and OS

Immunohistochemical detection of ATRX was performed 
in 267 cases. Nuclear loss was identified in 12/247 (4.9%) 
PLGGs. The result of 20 cases was not informative. Greater 
than 50% of the ATRX loss-tumors were diffuse astrocy-
tomas [Suppl. Table 1 (Online Resource 1)]. There was a 
single tumor (diffuse astrocytoma) with a co-occurrence of 
H3F3A mutation and ATRX loss [Suppl. Figure 3 (Online 
Resource 6)]. Representative cases can be found in Suppl. 
Figure 6 (Online Resource 9).

Survival analysis indicated that ATRX loss was mark-
edly associated with shorter PFS (p = 0.0002) and OS 
(p < 0.0001) (Fig. 1e, f). Upon adjustment for age, grade, 
histology, tumor location, and extent of resection, mul-
tivariate analysis revealed that ATRX loss remained as 
an independent prognosticator for PFS [HR 3.85 (95% 
CI 1.27–11.65); p = 0.017], and OS [HR 3.53 (95% CI 
1.02–12.24); p = 0.047].

BRAF V600E is associated with poor outcomes 
in a subset of PLGGs

BRAF V600E mutation was found in 21 of 285 (7.4%) 
tumors [Suppl. Table 1 (Online Resource 1)]. Interestingly, 
BRAF V600E was enriched in Grade II tumors (p = 0.0030) 
and were more common in females [p = 0.022; Suppl. 
Table 1 (Online Resource 1)]. Moreover, BRAF V600E 
was enriched in hemispheric tumors [p = 0.007; Suppl. Fig-
ure 7 (Online Resource 10)]. Except in two cases, TERTp, 
H3F3A, and BRAF V600E mutation was mutually exclusive 
[Suppl. Figure 3 (Online Resource 6)]. None of the BRAF 
V600E tumors demonstrated ATRX loss. BRAF V600E 
mutation was mutually exclusive with BRAF fusion or 
MYB amplification in this series [see below; Suppl. Figure 3 
(Online Resource 6)].

After removal of tumors with TERTp mutation or H3F3A 
mutation or ATRX loss, Kaplan–Meier survival analysis 
revealed that BRAF V600E was associated with a shorter 
PFS (p = 0.011; Fig. 2a) and OS (p = 0.032; Fig. 2b). In mul-
tivariate analysis, in which age, grade, histology, tumor loca-
tion, and extent of resection were included, BRAF V600E 
was significantly correlated with PFS [HR 4.28 (95% CI 
1.32–13.90); p = 0.016], suggesting that BRAF V600E had 
an independent impact on tumor progression. The signifi-
cance for OS [HR 3.32 (95% CI 0.70–15.82); p = 0.132] was 
not achieved.



647Acta Neuropathologica (2018) 136:641–655	

1 3

Interestingly, BRAF V600E appeared to be more com-
monly found in infants (0–3 years old). More than 20% (4/19) 
of infants aged 3 or below displayed BRAF V600E mutation, 
whereas only 6.4% (17/266) of children (aged > 3–18) bore 
this mutation [p = 0.041; Suppl. Table 4 (Online Resource 
11)]. BRAF V600E had a significantly negative impact 
on PFS in the infantile group too [p = 0.0027; Suppl. Fig-
ure 8a (Online Resource 12)] although it did not affect OS 
(p = 0.081). Strikingly, in infant, BRAF V600E was more 
powerful in predicting PFS as compared to histology and 
grading [Suppl. Figures 8b-c (Online Resource 12)]. We 
recognize that our infant cohort is small (n = 15).

CDKN2A deletion in PLGGs

FISH analysis showed CDKN2A deletion in 24/273 
(8.8%), a frequency which was consistent with the lit-
erature [20, 41, 47]. A strong association between BRAF 
V600E and CDKN2A deletion was detected [p = 0.0001; 
Suppl. Table 5 (Online Resource 13)] [29, 47]. None of the 

CDKN2A-deleted tumors carried H3F3A mutation, TERTp 
mutation, ATRX loss, KIAA1549-BRAF fusion, or MYB 
amplification [Suppl. Figure 3 (Online Resource 6)].

Over 60% (5/8) of tumors carrying BRAF V600E and 
CDKN2A were pleomorphic xanthoastrocytoma [Suppl. 
Figure 3 (Online Resource 6)]. Interestingly, patients with 
pleomorphic xanthoastrocytoma carrying 2-hits (BRAF 
V600E and CDKN2A deletion) was markedly younger com-
pared to the rest of pleomorphic xanthoastrocytoma patients 
without 2-hits (p < 0.0001; 8.0 ± 1.48 vs 15.5 ± 0.67 years). 
Given that the number of pleomorphic xanthoastrocytoma in 
this cohort is small, one must interpret the result carefully.

Upon the removal of samples carrying unfavora-
ble prognostic markers (TERTp, H3F3A, and ATRX), a 
trend towards shorter PFS (p = 0.086) and OS (p = 0.059) 
was identified in CDKN2A-deleted tumors. Furthermore, 
survival analysis by tumor location revealed a shorter 
PFS in CDKN2A-deleted tumors located in hemispheres 
(p = 0.0073; Fig. 2c) although OS was not significantly dif-
ferent (p = 0.50; Fig. 2d). The prognostic value of CDKN2A 

a b

c d

Wild type 
(n=166)

p=0.011

BRAF V600E
(n=18)

Wild type 
(n=166)

No CDKN2A
deletion
(n=59)

CDKN2A deletion
(n=10) 

p=0.0073 p=0.50

p=0.032

BRAF V600E
(n=18)

CDKN2A deletion
(n=10) 

No CDKN2A deletion (n=59)

Tumors in hemispheres Tumors in hemispheres

Fig. 2   Kaplan–Meier survival analysis of BRAF V600E and CDKN2A deletion. BRAF V600E was associated with reduced a PFS (p = 0.011) 
and b OS (p = 0.032). CDKN2A deletion in hemispheric tumors was associated with reduced c PFS (p = 0.0073) but not with d OS (p = 0.50)
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deletion specifically to hemisphere tumors has been previ-
ously reported [20]. In multivariate analysis after adjust-
ing for age, grading, histology, and resection, CDKN2A 
deletion remained as an independent prognostic factor for 
PFS [HR 4.38 (95% CI 1.05–18.23); p = 0.043). CDKN2A 
deletion was not a prognostic marker in tumors of midline 
or cerebellum.

KIAA1549‑BRAF fusion confers a good prognosis

KIAA1549-BRAF fusion gene was identified in 87/272 
(32.0%) [Suppl. Table 1 (Online Resource 1); Suppl. Fig-
ure 3 (Online Resource 6)]. Majority of the fusion gene was 
identified in pilocytic astrocytoma, accounting for 55.5% 
(66/119) of the entity. Our finding is in concordance with 
the literature showing high prevalence of KIAA1549-
BRAF fusion in pilocytic astrocytoma [18]. KIAA1549-
BRAF fusion was enriched in Grade I tumors [p = 0.0001; 
Suppl. Table 1 (Online Resource 1)]. KIAA1549-BRAF 

fusion was also associated with tumor location [p < 0.0001; 
Suppl. Table 1 (Online Resource 1)], and almost 60% cer-
ebellar PLGGs carried the fusion gene. BRAF V600E and 
KIAA1549-BRAF fusion occurred in a mutually exclusive 
fashion, and none of the KIAA1549-BRAF fusion-positive 
tumors was positive for TERTp or H3F3A mutation, ATRX 
loss, and CDKN2A deletion.

As illustrated in Fig.  3a, b, Kaplan–Meier survival 
curve indicated that KIAA1549-BRAF fusion was strongly 
associated with a better PFS (p = 0.0017), and a better OS 
(p = 0.0029). KIAA1549-BRAF fusion was not an independ-
ent prognostic factor in multivariate analysis.

MYB amplification is a favorable prognosticator 
in PLGGs

MYB amplification was identified in 28/263 (10.6%) 
tumors, and was found in all histological entities examined 
in this study [Suppl. Table 1 (Online Resource 1); Suppl. 

a b

c d

BRAF fusion
positive (n=64)

BRAF fusion
negative (n=141)

BRAF fusion
negative (n=141)

BRAF fusion
positive (n=64)

p=0.0017 p=0.0029

MYB amplified 
(n=19)

MYB amplified 
(n=19)

Non-MYB amplified
(n=177)

Non-MYB amplified
(n=177)

p=0.040 p=0.13

Fig. 3   Kaplan–Meier survival analysis of KIAA1549-BRAF fusion 
and MYB amplification in PLGGs. Patients with KIAA1549-BRAF 
fusion had a longer a PFS (p = 0.0017) and b OS (p = 0.0029) com-
pared to patients without KIAA1549-BRAF fusion. Patients with 

MYB amplification had a significantly longer c PFS (p = 0.040). 
No significant difference in d OS (p = 0.13) was observed between 
patients with and without MYB amplification
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Figure 3 (Online Resource 6)]. Other than a case showing 
both KIAA1549-BRAF fusion and MYB amplification, 
KIAA1549-BRAF fusion and MYB amplification occurred 
in a mutually exclusive fashion [Suppl. Figure 3 (Online 
Resource 6)]. Furthermore, none of MYB-amplified cases 
carried TERTp, H3F3A, or BRAF V600E mutation, ATRX 
loss, or CDKN2A deletion.

Survival analysis using Kaplan–Meier survival curves 
revealed a longer PFS in patients with MYB amplifica-
tion as compared to patients without MYB amplification 
(p = 0.040; Fig. 3c). However, MYB amplification did not 
independently impact on PFS as shown by multivariate 
analysis. MYB amplification was also not prognostically 
relevant in OS (p = 0.13; Fig. 3d).

FGFR1 mutation and IDH1/2 mutation

Two hotspot mutations in the residues N546 and K656 of 
the kinase domain of FGFR1 leading to constitutive acti-
vation of the growth cascade have previously been identi-
fied in the literature in PLGGs [15, 22]. Out of 271 PLGGs 
with tissue available for mutational analysis, we observed 
only an oligodendroglial from a 16-year-old girl harbored 
a mutation at codon K656 of FGFR1 which resulted in a 
change in amino acid from lysine to glutamic acid. This 
tumor showed no molecular alteration in TERTp, H3F3A, 
CDKN2A, BRAF, or MYB.

Mutations of IDH1 or, less frequently, IDH2 have been 
identified in the majority of adult low-grade gliomas and 
secondary glioblastoma [62], and it is well established 
that IDH1/2 mutation is associated with a good clinical 
outcomes in adult gliomas. In our cohort, IDH1 mutation 
was found only in 2/260 (0.77%) of cases. Co-occurrence 
of IDH1 mutation and KIAA1549-BRAF fusion was noted 
only in one case, an 18-year-old boy with a hemispheric 
tumor. The other IDH1-mutant tumor showed loss of 
ATRX expression. No IDH2 mutation was identified. Our 
data supported previous observations that IDH1/2 muta-
tion is a very rare event in PLGGs [62].

Immunohistochemical detection of p53

We tried to carry out immunohistochemistry to detect p53 
expression in 104 tumors that were negative for TERTp, 
H3F3A, ATRX, BRAF, CDKN2A or MYB, but only 97 
cases possessed sufficient tissues for immunostaining. 
Intense nuclear p53 expression was found in 4/97 (4.1%) 
of tumors. No significance was detected between p53 
immunostaining and age, tumor location, and histology.

NanoString assay analysis

To further explore other genetic alterations in our cohort 
of PLGGs showing no changes in TERTp, H3F3A, ATRX, 
BRAF, CDKN2A or MYB, we employed NanoString 
nCounter system to detect 33 reported fusion/duplication 
events in PLGGs.

A total of 104 cases were negative for molecular markers 
examined. Out of these samples, 39/104 (37.5%) samples 
had sufficient tissue for RNA extraction and were success-
fully studied. The presence of fusion/duplication events was 
identified in 6/39 (15.4%) samples. Out of these six tumors, 
two cases demonstrated FGFR1 duplication [Suppl. Figure 9 
(Online Resource 14)]. One pilocytic astrocytomas carried 
fusion transcript for FGFR1 (exon 17)–TACC1 (exon 7) 
[Suppl. Figure 9 (Online Resource 14)]. Fusion transcript 
of ETV6 (exon 1)–NTRK3 (exon 18) was found in 2 dif-
fuse astrocytomas and 1 tumor of other entities. None of the 
examined cases demonstrated BRAF fusion, confirming our 
FISH analyses. A prognostic association was not found for 
any of these genetic abnormalities.

Combined molecular risk stratification of pediatric 
low‑grade gliomas

Next, we evaluated if an integrative analysis of TERTp, 
H3F3A, ATRX, BRAF V600E, CDKN2A deletion, BRAF 
fusion, and MYB amplification could improve prognostic 
stratification. As shown in Fig. 4, we divided the tumors 
(n = 263) into four groups: low- (n = 114), intermedi-
ate-I- (n = 35), intermediate-II- (n = 78), and high-risk 
(n = 36). Patients with BRAF fusion or MYB amplification 
belonged to low-risk group. Patients with BRAF V600E 
and/or CDKN2A deletion belonged to intermediate-I-risk 
group. Patients without alteration in any of these biomark-
ers belonged to intermediate-II-risk group. And patients 
with TERTp mutation or H3F3A mutation or ATRX loss 
belonged to high-risk group. We found these four risk groups 
were associated with differential clinical features [Suppl. 
Table 6 (Online Resource 15)].

The high-risk group represented 13.7% (36/263) of 
PLGGs. Male/female ratio was 2.6:1. All tumors of the high-
risk group were aged above 3. The age of high-risk group 
patients was older compared to those in the intermediate-
I- and low-risk groups (p = 0.011). Notably, patients com-
prising this risk group were mostly Grade II tumors and of 
diffuse astrocytoma [Suppl. Table 6 (Online Resource 15), 
p < 0.0001]. Furthermore, > 50% of high-risk PLGGs were 
located in the midline [Suppl. Table 6 (Online Resource 15), 
p = 0.0003].

The intermediate-I-risk group comprised 13.3% (35/263) 
of PLGGs. Similar to the high-risk group, a high propor-
tional of intermediate-I-risk group tumors were of Grade 
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II. Furthermore, majority cases of intermediate-I-risk group 
were located in the hemispheres [Suppl. Table 6 (Online 
Resource 15)]. The intermediate-II-risk group accounted for 
29.7% (78/263) of PLGGs. In this group, similar frequencies 
of Grade I (51.3%) and II (48.7%) were found. Around half 
of the tumors (52.6%) in this risk group were located in the 
hemispheres.

The low-risk group comprised about 43.3% (114/263) of 
PLGGs. More than 60% of low-risk group was histologi-
cally pilocytic astrocytoma, accounting for 62.6% of this 
entity. Tumor location was relatively equally distributed in 
this group [Suppl. Table 6 (Online Resource 15)].

We then compared PFS and OS among risk groups for 
patients with available clinical data (n = 198). We showed 
these four risk groups exhibited distinct clinical outcomes 
(Fig. 5a, b, p < 0.0001). Of 198 tumors analyzed with uni-
variate Cox regression model, tumor grade, histology, 
tumor location, extent of resection, and risk group were 
significantly associated with PFS and OS [Suppl. Table 7 
(Online Resource 16)]. In Kaplan–Meier survival analy-
sis, patients of high-risk group exhibited the worst PFS 
(p < 0.0001; Fig. 5a) and OS (p < 0.0001; Fig. 5b). Patients 
of intermediate-I-risk group showed improved PFS and OS 
compared to those in high-risk group (Fig. 5a, b). Patients 
of intermediate-II-risk group exhibited similar PFS and OS 

compared to those of intermediate-I-risk group, and they 
in comparison to high-risk patients demonstrated better 
survival outcomes (Fig. 5a, b). Patients of low-risk group 
had the most favorable clinical outcomes (Fig. 5a, b). These 
patients showed excellent survival, and tumor progression 
was rarely reported. After adjustment of covariates including 
age, tumor grade, histology, tumor location, and extent of 
resection in multivariate Cox proportional hazards model, 
molecular-based risk groups remained independent prognos-
ticators for PFS (p = 0.0002; Table 2) and OS (p = 0.007; 
Table 2).

Discussion

Pediatric low-grade gliomas are generally associated with 
a good long-term survival. While pilocytic astrocytoma 
is Grade I, even Grade II diffuse gliomas in the pediatric 
group are associated with a better survival than adults [3, 
24, 46]. Yet in spite of the excellent outcome overall, some 
patients have reduced PFS and OS due to tumor recurrence 
[3]. Although surgical resection remains the mainstay of 
treatment, about 30% of pediatric low-grade gliomas are 
incompletely resected due to the infiltrative nature of tumors 
or tumors involving critical or inaccessible locations and 
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Fig. 4   Summary of clinical data and molecular characteristics of 
low-, intermediate-I-, intermediate-II-, and high-risk groups. PLGGs 
were divided into four groups according to molecular markers, 
TERTp, H3F3A, ATRX, BRAF, CDKN2A, and MYB. The low-risk 
group (n = 114) demonstrated either KIAA1549-BRAF fusion and/or 

MYB amplification. The intermediate-I- risk group (n = 35) carried 
BRAF V600E mutation and/or CDKN2A deletion. The intermediate-
II- risk group (n = 78) did not exhibit alterations in this panel of bio-
markers. The high-risk group (n = 36) was characterized by the pres-
ence of TERTp or H3F3A mutation or ATRX loss
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they may require adjuvant chemo-radiation [2, 60]. The 
WHO 2016 classification did not separate adult and pedi-
atric tumors overall, but a large number of WHO tumor 
entities have association with the pediatric age group [31]. 
These histological groups have overlapping features and in 

small-volume histological samples, are not always clearly 
distinguishable from one another.

In this study of a large cohort of PLGGs, we are the first 
group to show that pediatric low-grade gliomas can be sepa-
rated into low-risk (BRAF fusion or MYB amplification), 
intermediate-I-risk (BRAF V600E and/or CDKN2A dele-
tion), intermediate-II-risk (no alteration in these biomark-
ers), and high-risk (TERTp mutation, H3F3A mutation, or 
ATRX loss) groups with distinct clinical behavior using 
techniques available in most diagnostic laboratories. We do 
recognize that the average follow-up is comparatively short 
(5.48 years) in view of the long survival especially with 
respect to the low-risk group, and we look forward to seeing 
similar studies with longer follow-up.

The incidence of ganglioglioma and DNET in our cohort 
was low compared to the literatures [29, 63]. The former also 
contributed to an overall lower incidence of BRAF V600E 
compared to other studies [29, 63]. In our three institutions, 
we attempted to study FFPE blocks and slides of all retriev-
able PLGG cases. One possible reason for the fewer gan-
glioglioma and DNET cases in our cohort is that epileptic 
surgery for chronic seizure was not part of the service until 
recently. Our cases were operated on predominantly due to 
the presence of mass lesions. That might also explain our 
higher incidence of Grade II tumors and their predominance 
over the BRAF V600E-positive cases. It is also possible that 
there is a racial difference in the incidence of these histologi-
cal types.

TERTp mutation is well known for characterizing both 
glioblastomas and oligodendrogliomas [27]. It has not pre-
viously been reported in pediatric low-grade gliomas. In 
our cohort, a very small percentage (2.5%) of PLGGs dis-
played TERTp mutation, and the mutation was associated 
with a poor prognosis. We further carried out NanoString-
based assay to determine if these TERTp-mutated-PLGGs 
expressed the signature of 33 known fusion/duplication 
events, such as NTRK, RAF1, and FGFR1/3 fusion genes 
[Supp. Table 3 (Online Resource 5)]. Four out of the seven 
tumors had sufficient tissues for the assay. We did not detect 
fusion/duplication events in any of the four tumors.

H3F3A K27M mutations now characterizing the renamed 
H3K27M midline glioma with very poor prognosis by the 
WHO [31], not all of which were midline, have been found 
in gliomas of various grades [53]. In this large cohort of 
PLGGs, the number of cases with H3F3A mutations, similar 
to those with TERTp, is small (6.4%).

Somatic mutations and loss of expression of alpha-thalas-
semia/mental retardation syndrome X-linked (ATRX) have 
been detected in 30% of pediatric glioblastomas [49] and 
7% of adult glioblastomas [17]. Recently, comprehensive 
genomic profiling revealed ATRX mutation in a small frac-
tion of PLGGs [21]. The clinical significance of ATRX 
alteration has not yet elucidated. Our study showed loss of 
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Fig. 5   Risk stratification of PLGGs based on molecular biomarkers. 
a Top and b bottom illustrate Kaplan–Meier survival curves of PFS 
and OS for four risk groups. Green lines indicate survival curves for 
low-risk group, which had the most favorable PFS and OS. Blue lines 
represent survival curves for intermediate-I-risk group. Orange lines 
indicate survival curves for intermediate-II-risk group. Red lines rep-
resent survival curves for high-risk group, which showed the worst 
PFS and OS. The risk groups demonstrated distinct PFS (p < 0.0001) 
and OS (p < 0.0001)
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ATRX expression in a low percentage (4.9%) of PLGGs and 
these tumors behaved poorly. Possession of TERTp mutation 
or H3F3A mutation or ATRX loss predicts poor prognosis 
in PLGGs.

BRAF V600E is known to occur in pleomorphic xan-
thoastrocytoma and ganglioglioma, and also in a small frac-
tion of pilocytic astrocytomas [48, 51]. Compared to Lassal-
etta et al. study illustrating BRAF V600E mutation in 17.0% 
of PLGGs, the frequency of BRAF V600E in our cohort is 
relatively low (7.4%). The difference is likely contributed by 
the percentage of ganglioglioma in the cohort. In Lassaletta 
et al. [29] study, 13% of the samples were of ganglioglioma 
samples and nearly half of them showed BRAF V600E. In 
contrast, gangliogliomas made up 4.5% of our cohort. We 
did not feel the bias in ganglioglioma incidence was deliber-
ate. The vast majority of tumors were resected as primarily 
mass lesions (see cases illustrated), and only until recently, 
the three hospitals did not carry out brain operations for 
chronic seizures when small gangliogliomas, DNETs, etc., 
can be incidental histological findings. There might even be 
a real ethnic difference in the incidence of ganglioglioma.

BRAF V600E point mutation has been associated with 
a more aggressive behavior in PLGGs [10, 20, 25, 29, 33]. 
Lassaletta et al. and Mistry et al. showed that BRAF V600E 
is a poor prognostic indicator in PLGGs, especially when 
associated with CDKN2A deletion [29, 33]. Consistent with 

previously studies, we also found PLGGs harboring BRAF 
V600E mutations likely display an increased propensity for 
progression. Interestingly, the phenomenon seems to occur 
more commonly among infants (see under “Results”) in our 
series.

CDKN2A deletion is often found in adult high-grade gli-
omas and pediatric high-grade gliomas, albeit at lower prev-
alence [6, 36, 37]. In PLGGs, the incidence of CDKN2A 
deletion varies from a few percents to around 20% [7, 13, 
42, 47], and the frequency in this study does fall within the 
reported ones. It was found that a subset of pediatric diffuse 
astrocytomas was characterized by both CDKN2A dele-
tion and BRAF V600E [47]. Moreover, this combination 
characterized a subset of pediatric low-grade gliomas which 
transformed to high-grade gliomas [33]. We confirmed a 
significant association between BRAF V600E and CDKN2A 
deletion. Presence of BRAF V600E and/or CDKN2A dele-
tion placed tumors into an intermediate-I-risk group.

KIAA1549-BRAF fusion was found in 32.0% of this 
large cohort. In our cohort, 55.5% of pilocytic astrocy-
toma demonstrated fusion gene. Horbinski also reported 
high incidence of KIAA1549-BRAF fusion in pilocytic 
astrocytoma [19]. Irrespective of the histological designa-
tions, 59.1% of our cerebellar tumors demonstrated BRAF 
fusion [Suppl. Table 1 (Online Resource 1)]. In other stud-
ies, cerebellar tumors were shown to carry BRAF fusion at 

Table 2   Multivariate Cox 
proportional hazards regression 
models of clinical features and 
risk groups

n number of cases with data available
*The hazard ratio did not have significance

Variables PFS OS

HR (95% CI) P value HR (95% CI) P value

Age 0.968 (0.900–1.041) 0.382 1.002 (0.911–1.101) 0.974
Grade
 Grade I 1 1
 Grade II 1.195 (0.234-6.096) 0.830 0.560 (0.052–6.015) 0.632

Histological type
 Pilocytic astrocytoma 1 0.837 1 0.336
 Diffuse astrocytoma 1.096 (0.189–6.366) 0.919 2.765 (0.218–35.138) 0.433
 Others 0.831 (0.171–4.100) 0.831 1.070 (0.112–10.250) 0.954

Location
 Cerebellum 1 0.899 1 0.320
 Midline 1.096 (0.386–3.107) 0.864 2.053 (0.370–11.408) 0.411
 Hemisphere 0.911 (0.299–2.776) 0.870 1.024 (0.168–6.250) 0.980

Extent of resection
 Total resection 1 1
 Non-total resection 2.520 (1.095–5.802) 0.030 2.223 (0.729–6.779) 0.160

Risk group
 Intermediate-I-risk group 1 0.0002 1 0.007
 High-risk group 3.126 (1.284–7.607) 0.012 3.816 (1.236–11.787) 0.020
 Low-risk group 0.132 (0.027–0.656) 0.013 0.000014* 0.907
 Intermediate-II-risk group 1.046 (0.420–2.609) 0.923 0.573 (0.145–2.263) 0.427
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higher frequency (74.2–89.7%) [19, 21, 63]. There might 
be a minor racial difference between our series compared 
to Western series.

There is still debate over the clinical relevance of fusion 
status. Two studies demonstrated an improved outcome in 
PLGGs carried KIAA1549-BRAF fusion genes [17, 21]. 
On the other hand, other reports did not identify the sur-
vival benefit of fusion gene [9, 20, 24]. In our study, the 
presence of KIAA1549-BRAF fusion positive compared to 
fusion negative was associated with favorable PFS and OS 
in PLGGs.

MYB alterations including amplifications and rearrange-
ments resulting in elevated MYB protein expression were 
found in Tatevossian et al.’s [58] series of PLGGs. Whole 
genome sequencing has also identified 25% of diffuse cer-
ebral gliomas carried abnormalities in MYB and MYBL1 
[63]. However, the prognostic values of MYB or MYBL1 
alterations have not been explored [28, 39, 63]. In our 
cohort, MYB amplification was found in ~ 10% of PLGGs, 
and was associated with a longer PFS. The presence of MYB 
amplification or KIAA1549-BRAF fusion puts PLGGs into 
low-risk group.

Further studies by NanoString-based assay, Sanger 
sequencing, and immunohistochemistry to detect reported 
fusion/duplication events, FGFR1/IDH mutation, and p53 
protein expression have not contributed to the risk scheme. 
In this series, 78 cases did not demonstrate molecular 
changes in our biomarkers. These tumors behaved in an 
intermediate manner between the high- and low-risk groups, 
and were placed into intermediate-II-risk group.

Given that the molecular biomarkers examined in this 
study mostly appeared in mutually exclusion fashion, we 
here propose a diagnostic algorithm for risk stratification 
of PLGGs as shown in Suppl. Figure 10 (Online Resource 
17). First, a tumor should be examined for BRAF fusion and 
MYB amplification, which are the most common alterations 
found in this study. The presence of BRAF fusion or MYB 
amplification puts it into low-risk group. Examination of 
BRAF V600E and CDKN2A deletion should be proceeded 
with if the tumor is negative for the two markers. Either 
BRAF V600E or CDKN2A deletion places the tumor into 
intermediate-I-risk group. Finally, TERTp mutation, H3F3A 
mutation, and ATRX loss are determined to separate the 
intermediate-II-risk and high-risk groups. Assessment of 
these molecular biomarkers can be achieved in routine clini-
cal laboratory. This panel should aid the clinical manage-
ment of patients with pediatric low-grade gliomas.
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