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underlying biological mechanisms. Genetic studies using 
intermediate quantitative traits such as biomarkers, or 
endophenotypes, benefit from increased statistical power 
to identify variants that may not pass the stringent mul-
tiple test correction in case–control studies. Endopheno-
types also contain additional information helpful for iden-
tifying variants and genes associated with other aspects of 
disease, such as rate of progression or onset, and provide 
context to interpret the results from genome-wide asso-
ciation studies (GWAS). We conducted GWAS of amy-
loid beta (Aβ42), tau, and phosphorylated tau (ptau181) 
levels in cerebrospinal fluid (CSF) from 3146 participants 
across nine studies to identify novel variants associated 
with AD. Five genome-wide significant loci (two novel) 
were associated with ptau181, including loci that have 
also been associated with AD risk or brain-related phe-
notypes. Two novel loci associated with Aβ42 near GLIS1 
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on 1p32.3 (β = −0.059, P =  2.08 ×  10−8) and within 
SERPINB1 on 6p25 (β  =  −0.025, P  =  1.72  ×  10−8) 
were also associated with AD risk (GLIS1: OR = 1.105, 
P  =  3.43  ×  10−2), disease progression (GLIS1: 
β =  0.277, P =  1.92 ×  10−2), and age at onset (SER-
PINB1: β  =  0.043, P  =  4.62  ×  10−3). Bioinformatics 
indicate that the intronic SERPINB1 variant (rs316341) 
affects expression of SERPINB1 in various tissues, includ-
ing the hippocampus, suggesting that SERPINB1 influ-
ences AD through an Aβ-associated mechanism. Analyses 
of known AD risk loci suggest CLU and FERMT2 may 
influence CSF Aβ42 (P =  0.001 and P =  0.009, respec-
tively) and the INPP5D locus may affect ptau181 levels 
(P =  0.009); larger studies are necessary to verify these 
results. Together the findings from this study can be used 
to inform future AD studies.

Keywords  Alzheimer’s disease · Endophenotype · 
Cerebrospinal fluid biomarkers · Genome-wide association 
study

Introduction

More than five million Americans suffer with Alzheimer’s 
disease (AD), the most common neurodegenerative disease 
leading to progressive cognitive decline, and this number 
continues to increase as there are currently no effective 
methods to treat or prevent disease. Several genome-wide 
association studies (GWAS) have identified at least 24 loci 
containing common variants associated with AD risk [37, 
39, 48, 56]. AD is a complex disease that is highly herit-
able, with an estimated heritability as high as 79% in twin 
studies [31] and genetic variance analyses estimate >53% 
of the variance in AD status can be explained by common 
variants (minor allele frequency, MAF  >  1%) [64]. Poly-
genic studies have illustrated the genetic complexity under-
lying AD; recent studies using polygenic risk scores (PRS) 
calculated by combining the small effects of independent 
SNPs associated with AD risk (P < 0.5) provided AD risk 
prediction accuracy, as measured by area under the receiver 
operating curve (AUC) > 0.74, which is near the maximum 
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AUC (0.82) [22, 23]. These studies indicate many genetic 
loci combine to increase risk for AD, most of the genetic 
risk loci are tagged by common variants (MAF > 1%), and 
that these loci, individually, have small effects on disease. 
These findings reveal that most AD risk variants have not 
passed the strict significance threshold required for multi-
ple-test correction in GWAS, even in large studies such as 
the landmark study by the International Genomics of Alz-
heimer’s Project (IGAP), involving more than 74,000 total 
individuals, which identified 11 novel loci associated with 
AD risk [48]. It is also important to note that most AD sus-
ceptibility loci identified in these GWAS are gene-dense 
regions and many significantly associated SNPs are non-
coding (intronic or intergenic), making it difficult to deter-
mine which genes are involved or how identified variants 
influence these genes. Studies integrating alternative phe-
notypes, gene expression, and other omics data are impor-
tant for understanding the underlying biology of AD.

There is significant evidence that AD pathology is pre-
sent several years before the onset of clinical symptoms [25, 
26, 41, 55]. Consequently, AD case–control GWAS can be 
confounded by the presence of preclinical “controls”. Case–
control-based GWAS are also limited to identifying genetic 
associations for disease risk; results from these studies do 
not provide information about other aspects of disease such 
as age at onset (AAO) or disease progression, or information 
about underlying biological mechanisms involved in patho-
genesis. Endophenotypes are quantitative traits strongly 
associated with disease that also share genetic architecture 
with disease; therefore, genetic studies of endophenotypes 
are a powerful approach to identify loci associated with 

complex traits without many of the limitations of case–con-
trol studies. Cerebrospinal fluid (CSF) amyloid-beta1-42 
(Aβ42) and phosphorylated tau (ptau181) are well-estab-
lished AD endophenotypes [7, 13–15]. CSF ptau181 levels 
are elevated in AD cases and positively correlate with the 
number of neurofibrillary tangles, while CSF Aβ42 levels are 
lower in cases and correlate negatively with plaque load [43, 
59, 72]. Increased CSF ptau181 is predictive for cognitive 
decline and progression from mild cognitive impairment to 
AD [2, 16]. Some genetic variants associated with AD also 
influence CSF levels of ptau181, Aβ42, or both [13, 44]. We 
previously performed GWAS of CSF tau, ptau181, and Aβ42 
on 1269 participants (591 cases, 687 controls) and identified 
four genome-wide significant loci associated with tau and 
ptau181, including a novel locus that also associated with AD 
risk, tangle pathology, and cognitive decline [13]. This study 
has been expanded more than twofold to 3146 participants 
across nine cohorts with CSF and genome-wide genotype 
data (Table 1), providing additional power to identify more 
novel loci associated with ptau181, Aβ42, and AD.

Methods

Ethics statement

The Institutional Review Boards of all participating 
institutions approved the study and research was carried 
out in accordance with the approved protocols. Written 
informed consent was obtained from participants or their 
family members.

Table 1   Cohort demographics

Aβ42, ptau181, and tau levels are reported as mean ± standard deviation in pg/mL

Knight ADRC Charles F and Joanne Knight Alzheimer’s Disease Research Center, ADNI Alzheimer’s Disease Neuroimaging Initiative, BIO-
CARD Predictors of Cognitive Decline Among Normal Individuals, HB Saarland University in Homburg/Saar, Germany, MAYO Mayo Clinic. 
SWEDEN Sahlgren’s University Hospital, Sweden, UPENN Perelman School of Medicine at the University of Pennsylvania, UW University of 
Washington, CDR clinical dementia rating

Knight ADRC ADNI1 ADNI2 BIOCARD HB MAYO SWEDEN UPENN UW

n = 3146 805 390 397 184 105 433 293 164 375

Previous 
study [13]

(501) (390) (–) (–) (–) (–) (–) (51) (323)

Age (years) 70.39 ± 9.12 77.89 ± 6.89 73.28 ± 7.47 62.10 ± 9.46 67.52 ± 9.24 78.73 ± 6.35 75.15 ± 7.63 71.60 ± 8.98 62.35 ± 16

Age range 37–91 58–93 55–92 23–86 45–84 50–95 50–88 50–94 21–88

% Male 46.09 60 54.91 41.53 54.29 60.51 37.54 41.46 50.67

% APOE 
ε4+

40.75 50 38.29 34.43 54.29 27.5 76.11 55.56 43.28

% CDR > 0 29.34 71.28 71.03 5.43 – 22.17 100 62.8 33.33

Aβ42 levels 650.40 ± 305.59 169.83 ± 56.00 179.98 ± 51.31 386.90 ± 89.93 77.59 ± 23.30 331.00 ± 122.21 262.43 ± 72.77 163.55 ± 53.54 141.90 ± 41.42

ptau181 
levels

64.94 ± 34.26 34.13 ± 18.52 38.63 ± 21.21 38.94 ± 12.30 – 23.16 ± 10.55 105.76 ± 41.82 36.96 ± 26.80 56.56 ± 29.32

Tau levels 372.40 ± 235.41 97.26 ± 52.03 79.69 ± 47.79 66.56 ± 26.60 84.27 ± 36.79 104.29 ± 58.06 782.20 ± 301.68 93.66 ± 54.29 61.64 ± 42.77
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Cohort descriptions

CSF tau, ptau, and Aβ42 were measured in 3146 individu-
als from nine different studies. There were 805 individu-
als (29.34% cases) enrolled in studies at the Charles F. 
and Joanne Knight Alzheimer’s Disease Research Center 
(Knight ADRC), 787 individuals (more than 71% cases) 
from Alzheimer’s Disease Neuroimaging Initiative 
(ADNI; 390 from ADNI1 and 397 from ADNI2), 184 
individuals (5.43% cases) from BIOCARD: Predictors 
of Cognitive Decline Among Normal Individuals (BIO-
CARD), 105 individuals (no AD status) from Saarland 
University in Homburg/Saar, Germany (HB), 433 indi-
viduals (22.17% cases) from Mayo Clinic (MAYO), 293 
individuals (all cases) from Skåne University Hospital, 
Sweden (SWEDEN), 164 (62.8% cases) from studies at 
Perelman School of Medicine at the University of Penn-
sylvania (UPENN), and 375 (33.33% cases) from studies 
at the University of Washington (UW). Table 1 shows the 
demographic data for each study. Clinical assessments, 
CSF collection, and proteins were measured by each site. 
Clinical dementia rating (CDR) was available for 86% of 
the total data set. The CDR is a five-point scale used to 
describe the overall dementia severity for each individual 
(no dementia =  0, very mild =  0.5, mild =  1, moder-
ate = 2, and severe = 3). Individuals with CDR = 0 were 
categorized as controls, cases were defined as individuals 
with CDR > 0.

Genotyping and imputation

Samples were genotyped with the Illumina 610 or Omni-
express chip. Stringent quality control (QC) criteria were 
applied to each genotyping array separately before com-
bining genotype data. The minimum call rate for single 
nucleotide polymorphisms (SNPs) and individuals was 
98% and autosomal SNPs not in Hardy–Weinberg equi-
librium (P  <  1  ×  10−6) were excluded. X-chromosome 
SNPs were analyzed to verify sex identification. Unan-
ticipated duplicates and cryptic relatedness (Pihat ≥ 0.25) 
among samples were tested by pairwise genome-wide esti-
mates of proportion identity-by-descent, and when a pair 
of identical or related samples was identified, the sample 
from Knight ADRC or with a higher number of variants 
that passed QC was prioritized. EIGENSTRAT [61] was 
used to calculate principal components. APOE ε2, ε3, and 
ε4 isoforms were determined by genotyping rs7412 and 
rs429358 using Taqman genotyping technology as previ-
ously described [14, 15, 44]. The 1000 Genomes Project 
Phase 3 data (October 2014), SHAPEIT v2.790 [18], and 
IMPUTE2 v2.3.2 [40] were used for phasing and imputa-
tion. Individual genotypes imputed with probability <0.90 
were set to missing and imputed genotypes with probability 

≥0.90 were analyzed as fully observed. Genotyped and 
imputed variants with MAF < 0.02 or IMPUTE2 informa-
tion score <0.30 were excluded, leaving 7,358,575 variants 
for analyses.

Data normalization for statistical analyses

Prior to combining data for analyses, CSF levels of tau, 
ptau, and Aβ42 were log10-transformed to approximate a 
normal distribution and the mean from each data set was 
standardized to zero to account for the different platforms 
used by different studies to measure protein levels. There 
were no significant differences in the transformed and 
standardized values for the different studies. Study, age, 
sex, and the first two principal components were identified 
as confounding factors by stepwise regression analyses for 
each protein and corrected for in applicable analyses.

Experimental design and data modeling

Studies by our group, and others, have demonstrated that 
when there is GWAS data available for all samples, a 
one-stage GWAS of combined data from both stages of a 
two-stage GWAS provides more power to identify genetic 
association than analyzing the groups separately, despite 
the fact that the one-stage GWAS requires a more strin-
gent threshold to determine significance [13–15, 19, 70]. 
To maximize the power in our analyses, we performed a 
one-stage joint-GWAS. The CSF levels were measured 
with different platforms and at different sites, conse-
quently the raw values could not be combined. Instead, 
the raw values were log10-transformed to approximate a 
normal distribution within each separate study and cen-
tralized by each study mean. We have used this approach 
in previous studies and demonstrated that it is an effec-
tive way to correct for study differences [13, 19]. We also 
performed analyses to ensure the results were not con-
founded by any study bias; to determine if the top hits 
were being driven by any individual study, we analyzed 
each dataset separately and performed meta analyses. The 
directions of effect for the genome-wide significant sig-
nals for Aβ42 and ptau181 were consistent across studies 
when analyzed separately and results from meta-analyses 
of the individual studies were consistent with the joint 
results even after removing cohort from previous study 
(Supplementary Figs. 1–3).

Alternative mixed model method to normalize Aβ42

Since CSF levels of Aβ42 are lower in AD cases than con-
trols, begin decreasing prior to clinical symptom onset [25, 
26, 43, 59, 72], and the studies in this dataset varied in 
proportion of cases to controls, we wondered if a mixture 
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modeling approach would be more appropriate for stand-
ardizing the data between studies instead of centering on 
the mean of each study. This method was successfully used 
previously to classify AD cases in two independent cohorts 
with at least 94% sensitivity [17]. Mixture modeling is a 
statistical method for estimating subpopulations within an 
overall group; in this case we assumed two normally dis-
tributed subgroups within each dataset representing indi-
viduals with low Aβ42, therefore likely to be AD cases or 
preclinical, and with high Aβ42, likely to be cognitively 
normal controls. Using an expectation–maximization algo-
rithm, we calculated estimated means, standard deviations, 
and subgroup proportions for each study. Based on the 
assumption of two univariate normal distributions within 
each study we obtained two estimated means (μ1 and μ2), 
two estimated standard deviations (σ1 and σ2), and two 
estimated mixing proportions (λ1 and λ2). We used these 
results to calculate the intersection of the estimated Gauss-
ian curves using the following formula (Eq. 1):

analyte, including study, age, sex, and the first two prin-
cipal components as covariates in the default model [11]. 
The genomic inflation factor was λ = 1.02 for ptau181 and 
λ = 1.03 for tau and Aβ42 (Supplementary Fig. 7). There 
were no novel genetic associations identified for CSF tau 
levels (Supplementary Fig. 8 and Supplementary Table 2) 
but we did identify novel associations for ptau181 and Aβ42 
(Figs.  1, 2; Table  2; Supplementary Tables  3, 4). Condi-
tional analyses were conducted to identify additional inde-
pendent signals in a locus by adding the SNP with the 
smallest P value as a covariate into the default regression 
model and testing all remaining regional SNPs for associa-
tion (Supplementary Figs. 9, 10). AD status, CDR, APOE 
alleles, APOE ε4 carrier status, Aβ42, or ptau181 levels were 
corrected for in additional analyses to determine the effects 
of these phenotypes on the genetic associations (Supple-
mentary Fig. 11 and Supplementary Tables 5–8). The com-
bined dataset was stratified by AD status and cases and 
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then centered the log10-transformed Aβ42 levels to the inter-
section of the curves instead of the means for each study 
(Supplementary Table  1). CSF Aβ42 thresholds have been 
determined previously for both ADNI (192 pg/mL) [69] and 
ADRC (500 pg/mL) [25]; the calculated intersects were com-
parable to these values (182 and 548  pg/mL, respectively, 
Supplementary Table 1). The density plots of the estimated 
subpopulations for each study fit the overall distributions rea-
sonably well, but after accounting for AD status the model 
did not appear significantly different than standardizing to the 
overall mean (Supplementary Figs. 4, 5). There was no differ-
ence between the two methods in a single variant analysis of 
the mixed model standardized CSF Aβ42 levels and the levels 
centered at the study mean (Supplementary Fig. 6).

The intersect was log10-transformed and subtracted 
from the log10-transformed values of Aβ42 (Supplementary 
Figs.  4, 5 and Supplementary Table  1). When the single-
variant analysis was repeated using these normalized val-
ues for Aβ42, the results were comparable to those from the 
mean normalized values (Supplementary Fig.  6). There-
fore, to be consistent, we used the mean normalized values 
in all analyses.

Association testing

The additive linear regression model in PLINK v1.9 
[11] was used for single-variant analyses for each 

controls were analyzed separately for single-variant asso-
ciations (Supplementary Table  8). Statistical significance 
for the single-variant analyses was based on the commonly 
used threshold from Bonferroni correction of the likely 
number of independent tests in genome-wide analyses 
(P < 5 × 10−8). Manhattan plots and regional association 
plots were created using the R package qqman v0.1.2 [74] 
and LocusZoom v1.3 [62], respectively.  

Meta‑analyses

To test for potential systematic differences between the data-
sets, each study was analyzed separately for the most signifi-
cant SNPs from the joint analyses. Covariates were age, sex, 
and the first two principal components. Meta-analyses of 
the results from the separate datasets were performed using 
METAL (version released 2011-03-25) [80]. The METAL 
default analysis scheme was used with sample size and beta 
for each SNP taken into account when combining P values 
across studies. For the genome-wide significant signals, 
the nine studies showed consistent direction of effect indi-
vidually, and meta-analysis results were consistent with the 
joint results (Supplementary Figs. 1, 2). After removing the 
samples that comprised the previously published study [13], 
the meta-analysis results remained consistent with the joint 
results (Supplementary Fig. 3). Forest plots were generated 
using the R package rmeta v2.16.
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Association with AD risk, progression, AAO

Results from independent analyses of different cohorts for 
AD risk [48], AAO (personal communication: Huang & 
Goate), and disease progression were analyzed to deter-
mine whether loci associated with CSF tau, ptau181, and 
Aβ42 were also associated with other AD phenotypes. 
Results for the most significantly associated SNPs for CSF 
tau, ptau181, and Aβ42 are reported here from the largest 

previously published two-stage meta-analysis of GWAS 
for AD risk consisting of a total 25,580 cases and 48,466 
controls [48], and a recently published genome-wide sur-
vival analysis of AAO consisting of 39,855 individuals 
(personal communication: Huang & Goate). To determine 
disease progression in an independent cohort of 1530 indi-
viduals, we utilized the CDR Sum of Boxes (CDR-SB) 
which has been demonstrated to accurately stage dementia 
severity [57, 58]. Overall CDR is derived from scores in 
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Fig. 1   Association plots from single variant analyses of CSF ptau181 
levels. a Manhattan plot shows negative log10-transformed P values 
from the joint analysis of ptau181. The horizontal lines represent the 
genome-wide significance threshold, P = 5 × 10−8 (red) and sugges-
tive threshold, P = 1 × 10−5 (blue). Red arrows point to novel loci. 
The y-axis is truncated, the lowest P value on chromosome 19 was 
5.30 × 10−33. b, c Regional association plots of novel loci are shown 

for SNPs associated with ptau181 near PCDH8 (a) and between 
NFATC1 and CTDP1 (b). The SNPs labeled on each regional plot had 
the lowest P value at each locus and are represented by a purple dia-
mond. Each dot represents a SNP and dot colors indicate LD with 
the labeled SNP. Blue vertical lines show recombination rate marked 
on the right-hand y-axis of each regional plot. Plots for previously 
reported loci are in Supplementary Fig. 7
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six individual categories (boxes) of memory, orientation, 
problem solving, community involvement, involvement in 
home and hobbies, and personal care; CDR-SB is a sum 
of the six boxes which provides a semi-continuous meas-
ure of symptomatic AD dementia from 0 (cognitively nor-
mal) to 18 (the most severe dementia). Disease progression 
from longitudinal studies at ADNI (n = 728) and Knight 

ADRC (n = 802) was modeled as the change in CDR-SB 
per year, adjusting for age, sex, baseline CDR, follow-
up time, level of education, site, and PCs (Supplemen-
tary Table 9). Samples with ≥3 clinical assessments over 
1.5 years after being diagnosed with AD were selected for 
the analysis and a mixed-model repeated measure frame-
work was used to account for correlation between repeated 
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Fig. 2   Association plots from single variant analyses of CSF Aβ42. 
a Manhattan plot shows negative log10-transformed P values from 
the joint analysis of Aβ42. The horizontal lines represent the genome-
wide significance threshold, P  =  5  ×  10−8 (red) and suggestive 
threshold, P  =  1  ×  10−5 (blue). Red arrows point to novel loci. 
The y-axis is truncated, the lowest P value on chromosome 19 was 
4.78 × 10−94. b, c Regional association plots of novel loci are shown 

for SNPs associated with Aβ42 near GLIS1 (b) and within SERPINB1 
(c). The SNPs labeled on each regional plot had the lowest P value 
at each locus and are represented by a purple diamond. Each dot 
represents a SNP and dot colors indicate LD with the labeled SNP. 
Blue vertical lines show recombination rate marked on the right-hand 
y-axis of each regional plot. Plots for previously reported loci are in 
Supplementary Fig. 7
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measures in the same individual. We selected the appropri-
ate optimal variance–covariance structure that minimizes 
the Akaike Information Criterion for testing the null model 
AR1 [14].

Functional annotation

All SNPs below the suggestive significance threshold 
(P = 1 × 10−5) were taken forward for functional anno-
tation using ANNOVAR version 2015-06-17 [77] and 
examined for potential regulatory functions using Regu-
lomeDB v1.1 [8] and HaploReg v4.1 [78]. The search 
tools on the Genotype-Tissue Expression (GTEx) Analy-
sis Release V6, dbGaP Accession phs000424.v6.p1 portal 
[33], data from the Brain eQTL Almanac (Braineac) [73] 
analyzed with the R package MatrixEQTL [68], and the 
Blood eQTL browser [79] were utilized to determine if 
genome-wide significant SNPs were reported eQTLs. The 
Brain RNA-Seq database (http://web.stanford.edu/group/
barres_lab/brainseqMariko/brainseq2.html) was mined to 
determine if genes of interest were expressed in the brain 
and in which cell types [84].

Summary data‑based mendelian randomization

To prioritize the putative causal variant from the ptau181 
and Aβ42 associated variants, we used the Summary data-
based Mendelian Randomization (SMR) method which 
tests the functional association between gene expression 
levels (measured by probes) and a trait (such as CSF 
protein levels) through the regression of estimated effect 
sizes [85]. Based on the assumptions of Mendelian ran-
domization, any gene–trait association identified in this 
analysis should be free of confounding from non-genetic 
factors. To distinguish causality of a single variant on 
both gene expression and the trait vs linkage of two dis-
tinct genetic variants in LD with one affecting expression 
and one affecting the trait, the SMR method uses a heter-
ogeneity (HEIDI) test. For the SMR analysis, we utilized 
the estimates of SNP effects on gene expression from 
summary data of a large-scale eQTL study with gene 
expression measured in peripheral blood (Blood eQTL 
browser) [79] and gene expression data from Cardio-
genics measured in macrophages [35]. There were 3000 
SNPs present in both the blood eQTL data and the GWAS 
results so the statistical significance threshold was defined 
(based on Bonferroni correction) as P < 1.67 × 10−5 for 
the associations between eQTL in blood and CSF GWAS 
loci. Focusing on the SERPINB1 gene region (from the 
6p terminal to 10  Mb after the defined SERPINB1 tran-
scription region) in the macrophage eQTL data, there 
were 4336 SNPs; therefore, the statistical significance Ta
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threshold was defined as P  <  1.15 ×  10−5. The HEIDI 
threshold was set at P > 0.05 to be conservative; since the 
null hypothesis is that there is only one causal variant, a 
P > 0.05 indicates the variant that passed the SMR test is 
the causal variant.

Genetic variance estimation

The Genome-wide Complex Trait Analysis (GCTA) 
v1.25.2 tool [82] was used to estimate the propor-
tion of phenotypic variance explained by the common 
(MAF  >  0.02) imputed and genotyped autosomal vari-
ants. The restricted maximum likelihood (REML) anal-
ysis was performed on the log10-transformed standard-
ized analyte values adjusted for age and gender with the 
first two principal components as covariates. Results are 
reported in Supplementary Table 10.

Since it was reported that estimated h2 may be biased if 
causal variants are enriched in areas with lower or higher 
LD than average [81], we also used GCTA to calculate 
segment-based LD scores (segment length = 200 kb) for 
all SNPs in the REML analysis and plotted the number of 
SNPs from the single-variant analyses of Aβ42 and ptau181 
with P  <  1 ×  10−5 (Supplementary Fig.  12). Since the 
most significantly associated SNPs showed LD heteroge-
neity, and the method can be applied to imputed GWAS 
data, we used the LD- and MAF-stratified genomic-REML 
(GREML-LDMS) method [81] in GCTA to estimate h2 for 
each LD quartile and calculate a total h2 estimate (Sup-
plementary Table  10). The GCTA-GREML power calcu-
lator (http://cnsgenomics.com/shiny/gctaPower) [76] was 
used to calculate the power of the REML and GREML-
LDMS analyses with the actual sample sizes, estimated 
h2, α = 0.05, and genetic variance = 2 × 10−5 as param-
eters (Supplementary Table 10).

Polygenic risk score

PRS were calculated using a weighted sum of the AD risk 
alleles reported by IGAP [48]. Weights for SNPs outside 
the APOE region were calculated by transforming the 
reported odds ratios by a base-2 logarithm. Proxy SNPs 
were utilized if the reported SNPs were unavailable in 
our data or did not pass QC; proxies were selected with 
the highest R2 and D′ values to the reported IGAP SNP in 
our genetic data and in 1000 Genomes. Since APOE has a 
large effect on AD risk and CSF protein levels, we calcu-
lated a default PRS without APOE. The effects of APOE 
genotype on AD risk are not additive, so APOE genotypes 
were weighted by the effects reported previously for 
each genotype (ε2/ε2 OR = 0.6, ε2/ε3 OR = 0.6, ε2/ε4 
OR = 2.6, ε3/ε4 OR = 3.2, ε4/ε4 OR = 14.9) [29]. The 

SNPs that composed the PRS are listed in Supplemen-
tary Table 11. The PRS were calculated (with and with-
out APOE genotype) using the score function in PLINK 
v1.90b3.42 [11], including the no-mean-imputation 
option to ensure scores would not be imputed for miss-
ing genetic data. The resulting mean score per allele was 
multiplied by the allele count to generate a total PRS.

Results

Reproduction of previously reported associations 
with CSF Aβ42, tau, and ptau181

As reported previously, the most significant variant associ-
ated with CSF levels of Aβ42, tau, and ptau181 was a proxy 
SNP for APOE ε4 (r2  =  0.726, D′  =  1), rs769449[A] 
(Aβ42 β  =  −0.117, P  =  9.02  ×  10−47; tau β  =  0.082, 
P = 1.95 × 10−16; ptau181 β = 0.091, P = 2.56 × 10−18) 
[13]. In the current analyses, the effects were similar 
to what was previously reported with more significant P 
values due to the larger sample size (Aβ42 β = −0.101, 
P  =  4.78  ×  10−94; tau β  =  0.078, P  =  4.05  ×  10−29; 
ptau181 β = 0.081, P = 9.51 × 10−35). While there were no 
other loci associated with Aβ42 in the previous GWAS, two 
loci outside the APOE locus were identified to be associ-
ated with CSF tau and ptau181 [13]. We also replicated the 
previously reported loci for ptau 181 on 3q28 (rs9877502[A] 
near GMNC, β = 0.044, P = 1.68 × 10−7) and on 9p24.2 
(rs514716[C] on GLIS3, β = −0.072, P =  3.22 ×  10−9) 
were both genome-wide significant in this larger study 
(rs9877502[A], β = 0.032, P = 6.35 × 10−9; rs514716[C], 
β  =  −0.049, P  =  2.94  ×  10−8) (Table  2, Supplemen-
tary Fig.  13; see Supplementary Table  4 for all loci with 
P < 1 × 10−5) [13].

A small GWAS of AD CSF biomarkers from 374 
ADNI participants (102 controls) identified variants in 
EPC2 associated with CSF levels of tau and the Tau/Aβ42 
ratio [46]. In our current analyses, there were no genome-
wide significant, or suggestive, associations with the 
EPC2 locus (tau: β =  0.005, P =  0.428; Tau/Aβ42 ratio 
β  =  0.072, P  =  0.017), but interestingly the strongest 
association was for Aβ42 (β = −0.016, P = 3.77 × 10−4; 
Supplementary Fig.  14). Another early GWAS of CSF 
levels from 410 ADNI participants (119 controls) did not 
identify any genome-wide significant variants for CSF 
Aβ42, ptau181, or tau in cases, but found three genome-
wide significant signals for Aβ42 in controls (CYP19A1, 
NCAM2, and ARL5B) [36]; none of these loci were 
associated with Aβ42 in our current analyses of the joint 
dataset, cases-only, or controls-only (P  >  0.1). A recent 
GWAS with only AD cases (N = 363) reported that SNPs 
located in the SUCLG2 region were associated with CSF 

http://cnsgenomics.com/shiny/gctaPower
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Aβ42 levels [63] but this region was not associated with 
Aβ42 in any of the current analyses of the joint dataset, 
cases-only, or controls-only (P  >  0.1). FRA10AC1 vari-
ants were associated with CSF Aβ42 levels in a two-stage 
GWAS of data from ADNI (two discovery sets: N = 391 
and N  =  385; replication set N  =  204), and although 
there were no genome-wide significant signals within 
the FRA10AC1 locus in the current analyses, there was 
a near suggestive association between Aβ42 and indel 
rs143151810[-] (β  =  −0.033, P  =  8.13  ×  10−5; Sup-
plementary Fig.  14), which is in high LD with the SNP 
identified in the other study, rs10509663[G] (r2 = 0.987, 
D′  =  0.997), and both associations showed the same 
direction of effect on Aβ42 levels [51].

APOE locus significantly influences CSF levels 
of ptau181 and tau independently of Aβ42

As we reported previously, the APOE region was still 
significantly associated with ptau181 after including 
CSF Aβ42 levels in the analysis (rs769449[A]: default, 
βSNP =  0.079, P =  5.30 ×  10−33; adjusted for Aβ42 lev-
els, βSNP  =  0.046, P  =  2.08  ×  10−11), and in the cur-
rent analysis the association between rs769449[A] and 
ptau181 remained genome-wide significant after including 
the interaction between Aβ42 levels and APOE genotype 
in the model (βSNP =  0.042, P =  1.65 ×  10−8), suggest-
ing APOE may influence tau pathology independently 
of Aβ42 and supporting our previous findings (Supple-
mentary Fig.  11 and Supplementary Table  5) [13]. Simi-
lar results were observed with CSF tau as well (default, 
βSNP = 0.077, P = 6.75 × 10−28; adjusted for Aβ42 levels, 
βSNP =  0.048, P =  4.11 ×  10−11; Aβ42 and APOE geno-
type interaction, βSNP =  0.045, P =  1.04 ×  10−8). Low 
Aβ42 levels (ADRC  <  500  pg/mL and ADNI  <  192  pg/
mL) have been associated with amyloid positron emission 
tomography (PET-PIB) evidence of Aβ deposition [25, 
69]. To determine if the possible presence of Aβ pathology 
influenced the effect of the APOE locus on ptau181 levels 
as we reported previously [13], we stratified the data from 
ADRC, ADNI1, and ADNI2 by high and low levels of Aβ42 
and found the association between APOE locus and ptau181 
levels in both groups with a higher effect size in the indi-
viduals with low Aβ42 (β = 0.055, P = 2.12 × 10−7) than 
those with high Aβ42 (β = 0.037, P = 1.05 × 10−2).

We wanted to determine if the signal in the APOE 
locus was driven entirely by APOE genotype (APOE ε2, 
ε3, and ε4), or if there was an independent signal influ-
encing CSF levels of ptau181 and Aβ42, so we performed 
conditional analyses on APOE genotype accounting for 
both ε2 and ε4 effects. The APOE genotype showed 
the strongest association with CSF levels of ptau181 
(β = 0.042, P = 3.13 × 10−40) and Aβ42 (β = −0.053, 

P =  8.88 ×  10−114) after correcting for age, sex, study, 
and two principal components. The association between 
the top hit in the APOE locus (rs769449) and ptau181 or 
Aβ42, remained significant, but not genome-wide sig-
nificant, after adding APOE genotype to the model 
(ptau181: β = 0.034, P = 1.07 × 10−3; Aβ42: β = -0.036, 
P = 1.65 × 10−6) suggesting that there may be a signal 
in this region independent of APOE ε2, ε3, and ε4 (Sup-
plementary Table  12). To further explore this finding, 
we conditioned on the most significant SNP (rs769449), 
which is in high LD for the APOE ε4 allele (rs429358[C], 
D′ =  1, r2 =  0.726). We found that although the asso-
ciations between APOE genotype and ptau181 and Aβ42 
decreased, they remained genome-wide significant (con-
ditioned: β = 0.029, P = 5.91 × 10−9 and β = −0.040, 
P  =  2.28  ×  10−28, respectively) (Supplementary 
Table  12). Together, these results suggest that most of 
the signal in this region is driven by APOE genotype, but 
additional independent SNPs in this region may influence 
CSF levels of both ptau181 and Aβ42.

Novel associations in single‑variant regression analyses 
for Aβ42 and ptau181

The genomic inflation was minimal in all analyses suggest-
ing no evidence of confounding by systematic biases (default 
model λ = 1.03 for Aβ42 and tau, 1.02 for ptau181; Supple-
mentary Fig. 7). In addition to the loci reported previously, 
two novel genetic associations with CSF ptau181 were iden-
tified on 13q21.1 (rs9527039[C] near PCDH8, β = −0.061, 
P = 5.95 × 10−9) and 18q23 (rs12961169[T] near CTDP1, 
β =  0.050, P =  5.12 ×  10−10) (Fig.  1; Table  2). We also 
identified, for the first time, two genome-wide significant 
loci outside of the APOE region associated with CSF Aβ42 
on 1p32.3 (rs185031519[G] near GLIS1, β  =  −0.059, 
P = 2.08 × 10−8) and on 6p25 (rs316341[G] within SER-
PINB1, β = −0.025, P = 1.72 × 10−8) (Fig. 2; Table 2; see 
Supplementary Table 3 for all loci with P < 1 × 10−5). Con-
ditioning on the most significant SNPs in each of these iden-
tified loci did not reveal any additional genome-wide signifi-
cant signals (Supplementary Figs. 9, 10).

When clinical dementia rating (CDR) or clinical sta-
tus were included in the model for either Aβ42 or ptau181, 
the results for the top loci were not significantly differ-
ent than the default model (Supplementary Table  7), 
and when the analyses were stratified by AD status, the 
betas were similar for cases and controls (Supplemen-
tary Table 8). When individuals were stratified by high or 
low CSF Aβ42 levels (Aβ42 threshold: ADRC =  500  pg/
mL [25], ADNI = 192 pg/mL [69]), the betas for the top 
loci were similar between the two groups (Supplementary 
Table 8). These results suggest that all of the individuals 
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in this study contributed to the associations with CSF 
Aβ42 and ptau181 levels, independent of status or amyloid 
pathology.

Effects of associated genetic loci on other AD 
phenotypes

Since the purpose of studying these AD endopheno-
types was to identify genetic factors associated with AD, 
we tested the genome-wide significant loci for associa-
tions with AD risk [48], rate of AD progression [58], or 
AAO (personal communication: Huang & Goate) in 
independent cohorts. The loci associated with Aβ42 
were also associated with risk, AAO, and/or progres-
sion (Table  3). The GLIS1 locus was associated with 
lower CSF Aβ42 levels (rs185031519[G], β  =  −0.059, 
P =  2.08 ×  10−8), increased AD risk (rs114122417[A], 
OR = 1.105, P = 0.034) [48], and faster disease progres-
sion (rs185031519[G], β = 0.277, P = 0.019) (Table 3). 
The intronic SERPINB1 variant, rs316341[G], was asso-
ciated with earlier AAO (β =  0.043, P =  4.62 ×  10−3) 
as well as lower Aβ42 (β = −0.025, P =  1.72 ×  10−8) 
(Table 3). Although the loci associated with ptau181 that 
we reported previously were associated with AD risk and 
AAO [13], we did not find evidence that the novel loci 
were associated with risk, AAO, or progression (Table 3). 
We were unable to test other AD phenotypes such as brain 
atrophy or neuropathology. However, both the MAPT 

locus on 17q21, which is associated with CSF tau lev-
els in the presence of Aβ deposition [45], and the GMNC 
locus, which was associated with CSF levels of tau 
(β = 0.040, P = 3.07 × 10−11) and ptau181 (β = 0.035, 
P  =  7.62  ×  10−10), as well as AD risk (OR  =  1.044, 
P = 9.08 × 10−3), tangle pathology (P = 0.039, reported 
previously) and cognitive decline (P  =  4.86  ×  10−5, 
reported previously) [13], have recently been associ-
ated with total brain volume in a meta-analysis of 26,577 
individuals of European descent [1], suggesting variants 
associated with ptau181 may also be associated with other 
brain-related or neurodegenerative phenotypes.

Bioinformatics annotation

None of the genotyped or imputed SNPs in the genome-
wide significant loci for Aβ42 or ptau181 were coding vari-
ants (R2 > 0.5, Supplementary Tables 3, 4). In an effort to 
pinpoint functional genes influencing CSF protein levels, 
we searched for SNPs in the genome-wide significant loci 
with cis expression quantitative trait locus (eQTL) effects 
in human tissues. The top SNPs associated with Aβ42 on 
6p25 have eQTL effects for SERPINB1 in transformed 
fibroblasts (rs316341[G]: β  =  0.24, P  =  1.3  ×  10−7) 
and whole blood (rs316339[A]: Z score  =  28.96, 
P = 2.2 × 10−184), and rs316339 had the strongest eQTL 
effect on SERPINB1 in the hippocampus (β  =  0.30, 
P =  3.90 ×  10−5) (Table 4). To determine if the putative 

Table 3   Genome-wide significant loci from analyses of CSF Aβ42 and ptau, associations with AD risk, progression of cognitive decline, and age 
at disease onset from independent cohorts

SNP based on Build 37 of reference genome followed by effect allele, Gene nearest gene, MAF minor allele frequency in our dataset, Progres-
sion association with cognitive decline measured by sum of boxes, AAO age at onset (personal communication: Huang & Goate)

P values below significance threshold are in bold text
a  Novel associated loci for CSF Aβ42 or ptau181
b  AD risk reported for rs114122417 which is in LD with rs185031519 (r2 = 0.909, D′ = 1)
c  AD risk reported for rs316339 which is in LD with rs316341 (r2 = 0.993, D′ = 1)
d  Age at onset reported for rs883841 which is in LD with rs35055419 (r2 = 0.996, D′ = 0.999)

SNP [effect allele] Gene MAF CSF levels n = 3146 AD risk [48] 
n = 74,026

Progression n = 1530 AAO n = 39,855

β P OR P β P β P

CSF Aβ42 associated loci

 rs185031519[G]a GLIS1 0.042 −0.059 2.08 × 10−8 1.105 3.43 × 10−2b 0.277 1.92 × 10−2 0.032 6.15 × 10−1

 rs316341[G]a SERPINB1 0.301 −0.025 1.76 × 10−8 1.025 1.52 × 10−1c 0.048 2.77 × 10−1 0.043 4.62 × 10−3

 rs769449[A] APOE 0.184 −0.101 4.78 × 10−94 3.522 9.86 × 10−523 0.078 8.42 × 10−2 0.720 6.81 × 10−106

CSF ptau181 associated loci

 rs35055419[C] GMNC 0.357 0.035 7.62 × 10−10 1.044 9.08 × 10−3 0.027 5.25 × 10−1 0.037 3.14 × 10−3d

 rs514716[C] GLIS3 0.125 −0.049 2.94 × 10−8 0.954 5.05 × 10−2 −0.029 6.66 × 10−1 −0.045 1.45 × 10−2

 rs9527039[C]a PCDH8 0.069 −0.061 5.95 × 10−9 0.993 8.22 × 10−1 −0.069 4.25 × 10−1 −0.020 4.03 × 10−1

 rs12961169[T]a CTDP1 0.155 0.050 5.12 × 10−10 1.033 1.93 × 10−1 0.119 9.34 × 10−2 0.042 2.49 × 10−1

 rs769449[A] APOE 0.184 0.079 5.30 × 10−33 3.522 9.86 × 10−523 0.078 8.42 × 10−2 0.720 6.81 × 10−106
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causal variant is the same for SERPINB1 expression and 
Aβ42 levels, we utilized Summary data-based Mendelian 
Randomization (SMR) [85] to test the Westra whole blood 
expression data [79]. One SERPINB1 variant, rs316339, 
which is in LD with rs316341 (D’ =  1, r2 =  0.993; CSF 
Aβ42 β = −0.025, P = 1.76 × 10−8), passed the SMR anal-
ysis (P =  2.95 ×  10−8) and HEIDI test (P =  0.258). We 
performed the same test on macrophage expression data 
obtained from Cardiogenics and rs316341 passed the SMR 
analysis (P =  1.23 ×  10−7) and HEIDI test (P =  0.240). 
This suggests that the locus associated with CSF Aβ42 is 
the same locus that affects expression of SERPINB1 in 
blood and macrophages.

The other genetic loci for Aβ42 and ptau181 were not as 
enriched for significant eQTL effects as SERPINB1, but there 
were suggestive results for 1p32.3 (near GLIS1) and 18q23 
(near CTDP1). The signal near GLIS1 associated with Aβ42 
(1p32.3) had an eQTL effect on SLC1A7 throughout the brain 
(rs185031519[G]: P = 8.8 × 10−5); however, overall expres-
sion of SLC1A7 was reported to be relatively low in the human 
brain, within the 33rd percentile of all gene expression in the 
temporal cortex, primarily in endothelial cells [84] (Sup-
plementary Table  13). The locus on 18q23 associated with 
ptau181, between CTDP1 and NFATC1, may have eQTL effects 
on both genes in the frontal cortex (rs12961169[T]: CTDP1, 
β  =  −0.319, P  =  3.85  ×  10−5; NFATC1, β  =  −0.290, 
P = 1.71 × 10−5). Both NFATC1 and CTDP1 are expressed 
in the human temporal cortex (NFATC1 =  58th percentile; 
CTDP1 = 37th percentile; Supplementary Table 13).

Effect of AD risk loci on CSF levels

We wanted to determine whether known loci for AD risk 
are also associated with CSF levels of Aβ42 or ptau181. AD 

risk variants identified in the IGAP study [48] that were 
most significantly associated with Aβ42 were located in the 
CLU (β = 0.014, P = 0.001) and FERMT2 (β = −0.018, 
P =  0.009) gene regions, and SNPs in the CELF1 and 
ABCA7 regions had P < 0.05 (Supplementary Table 11). 
For CSF ptau181 levels, the most significant association 
was in the INPP5D region (β = 0.014, P = 0.009) and the 
CR1, PICALM, and FERMT2 regions had P < 0.05 (Sup-
plementary Table 11). These results suggest that the risk 
variant in the CLU locus (rs11136000[T]) may increase 
risk for AD through an Aβ-associated mechanism and the 
INPP5D locus by a ptau-associated mechanism. Other 
loci like APOE or FERMT2 may act through both Aβ- and 
ptau-associated pathways to affect AD risk, and still other 
risk loci may act through alternate mechanisms such as 
neuronal survival, apoptosis, or homeostasis.

Although the individual AD risk variants were not 
strongly associated with Aβ42 or ptau181, we decided to 
analyze the potential overlap in the genetic architecture 
of AD risk and these endophenotype levels by determin-
ing whether PRS (with or without the effect of APOE 
genotype) calculated from the genome-wide significant 
hits for AD risk are also associated with CSF levels. We 
found not only a strong association between the non-
APOE PRS and Aβ42 (β = −0.033, P =  5.01 ×  10−7), 
but also tau (β =  0.049, P =  1.38 ×  10−7) and ptau181 
(β = 0.049, P = 1.81 × 10−8) (Supplementary Table 11). 
The strength of the association with the non-APOE 
PRS was greater than any of the individual SNPs com-
posing the PRS. The addition of APOE genotype sig-
nificantly increased the PRS association with CSF 
levels (Aβ42: β  =  −0.065, P  =  5.01  ×  10−88; tau: 
β =  0.051, P =  1.38 ×  10−31; and ptau181: β =  0.044, 
P = 1.81 × 10−31) (Supplementary Table 11).

Table 4   Expression 
quantitative trait loci from 
genome-wide significant 
associations with CSF levels

rs316339[A] =  chr6.hg19:g.2838046A  >  G; rs316339[A] is in high LD with rs316341[G] (r2 =  0.993, 
D′ = 1)

SNP based on Build 37 of reference genome followed by effect allele; BMP2 bone morphogenetic protein, 
DEX dexamethasone
a  Z score

Analyte SNP Tissue/cell type Gene Effect size P References

Aβ42 rs316341[G] Transformed fibroblasts SERPINB1 0.24 1.3 × 10−7 [33]

Aβ42 rs316341[G] Hippocampus SERPINB1 0.30 4.3 × 10−5 [73]

Aβ42 rs316339[A] Transformed fibroblasts SERPINB1 0.24 1.9 × 10−7 [33]

Aβ42 rs316339[A] Hippocampus SERPINB1 0.30 3.9 × 10−5 [73]

Aβ42 rs316339[A] untreated osteoblasts SERPINB1 −0.18 7.7 × 10−9 [32]

Aβ42 rs316339[A] BMP2 treated osteoblasts SERPINB1 −0.19 5.7 × 10−7 [32]

Aβ42 rs316339[A] DEX treated osteoblasts SERPINB1 −0.19 3.8 × 10−9 [32]

Aβ42 rs316339[A] Whole blood SERPINB1 28.96a 2.2 × 10−184 [79]

ptau181 rs12961169[T] Frontal cortex CTDP1 0.32 3.9 × 10−5 [73]

ptau181 rs12961169[T] Frontal cortex NFATC1 0.29 1.7 × 10−5 [73]
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Estimation of CSF level variance explained 
by associated genetic loci

To determine the proportion of phenotypic variance 
(h2) explained by the genetic loci identified for Aβ42 and 
ptau181, we analyzed all of the tested genotyped and 
imputed autosomal common variants (MAF  >  0.02). 
It was recently demonstrated that estimated h2 may be 
biased if causal variants are enriched in areas with lower 
or higher LD than average [81], so we used the GCTA 
tool to calculate segment-based LD scores (segment 
length = 200 kb) for all SNPs and plotted the number of 
SNPs with P < 1 × 10−5 for Aβ42 and ptau181 (Supplemen-
tary Fig.  12). Since we observed LD heterogeneity in the 
associated variants, and the LDMS method can be applied 
to imputed GWAS data, we used the GCTA LDMS method 
to test all SNPs in our genetic data [81]. After correcting 
for age, sex, and two principal components, approximately 
35.5% of the variability in Aβ42 and 24.9% in ptau181 levels 
were explained by common variants; the respective SNPs 
associated with CSF Aβ42 and ptau181 with P < 1 × 10−5 
only accounted for 3.5% (2.9% from chromosome 19) of 
the variability in Aβ42 levels and 3.2% (1.4% from chromo-
some 19) in ptau181 levels, corresponding to 10 and 13% 
of the estimated h2 for CSF Aβ42 and ptau181, respectively. 
These results suggest many genetic variants have yet to be 
discovered.

Discussion

Genetic studies using disease endophenotypes as quanti-
tative traits provide power to identify loci associated with 
disease risk with smaller sample sizes, and endophenotypes 
provide biological context to help identify loci associated 
with other disease phenotypes such as AAO and disease 
progression. In our previous study using CSF levels of Aβ42 
and ptau181 as endophenotypes, rs9877502 (near GMNC1 
on 3q28) was reported, for the first time, to be associated 
with ptau181 levels, AD risk, tangle pathology, and cogni-
tive decline [13]. The ptau181 association was recently rep-
licated in an independent cohort [63] and we confirmed the 
association in this much larger dataset. The GMNC1 locus 
was also recently reported to be associated with intracra-
nial volume [1], suggesting that tau-associated pathology 
and brain volume share some genetic architecture. This 
larger study also revealed novel loci associated not only 
with Aβ42 but also with AD risk and disease progression 
(rs185031519[G], (rs185031519[G], P = 3.43 × 10−2 and 
P  =  1.92  ×  10−2, respectively), or AAO (rs316341[G], 
P = 4.62 × 10−3). The associations with AD risk and AAO 
were tested in independent datasets. The associations of 
these SNPs with risk, disease progression, and AAO may 

not pass stringent multiple test correction if we take into 
account the number of SNPs and phenotypes tested. How-
ever, it is important to note that we had a very specific 
hypothesis, including direction of effect, for each SNP. 
As expected, the alleles associated with lower CSF levels 
of Aβ42 were also associated with earlier disease symptom 
onset, increased AD risk, or faster progression. In any case, 
the associations with risk, disease progression, and AAO 
were identified in the largest datasets available to date, 
but additional studies will be needed to confirm the role of 
these loci in AD. By increasing the sample size more than 
twofold, we not only verified the results from our previous 
analyses, but also uncovered additional findings that can be 
used to inform future AD studies.

APOE genotype is the strongest genetic risk factor for 
sporadic AD, and is consistently the strongest association 
with CSF levels of Aβ42, tau, and ptau181 in several GWAS 
as well [13, 36, 46, 63]. Numerous studies have explored 
how APOE influences amyloid pathology in AD [67]. A 
few studies have also looked at the role of ApoE in tau 
pathology [30, 49, 52]. A recent study of brain tissue from 
1056 individuals (659 AD cases) found that the APOE ε4 
and ε2 alleles were not associated with tau tangle pathol-
ogy in the absence of amyloid deposits [27]. As we previ-
ously reported, after accounting for CSF Aβ42, there was a 
strong association for APOE with CSF ptau181, although it 
no longer passed genome-wide significance [13]. We veri-
fied these results in the current study, and with the larger 
dataset the APOE signal remained genome-wide significant 
after accounting for Aβ42 levels. This provides additional 
evidence that APOE influences ptau181-associated mecha-
nisms of AD independently of Aβ42-associated mecha-
nisms. We also found, through conditional analyses, that 
although APOE genotype is driving most of the association 
for APOE with CSF Aβ42 and ptau181, there appears to be 
an additional signal within the APOE gene region that is 
independent of APOE ε2, ε3, and ε4.

CSF Aβ42 and ptau181 are well-established AD endophe-
notypes with a clear common genetic association for APOE 
and AD risk, but the shared genetic architecture between 
the disease and AD biomarkers is not as well-understood 
[7, 13–15]. Shared heritability between two traits can be 
estimated using different methods to calculate genetic 
and phenotypic correlations by linear mixed models, LD 
scoring, or genome partitioning; but most methods cur-
rently available usually require sample sizes in the tens of 
thousands to counteract statistical noise [3, 9, 10, 12, 66]. 
Another method to detect shared genetic etiology between 
traits is to calculate a PRS from a well-characterized 
cohort, usually from large case–control GWAS, and regress 
the other trait of interest, such as CSF protein levels, on 
the PRS in an independent cohort [21, 24]. Small studies 
(N < 350) have found that PRS were negatively correlated 
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with CSF Aβ42 but not correlated with tau or ptau181 [54, 
65, 71]. Recent studies of AD cases (N = 338) or individ-
uals with mild cognitive impairment (N =  454), reported 
that their PRS without APOE were not associated with 
Aβ42, but tau and ptau were associated with the score with-
out the APOE effect [53, 71]. In our current study of both 
AD cases and controls (N =  3145), we calculated a PRS 
composed of genome-wide significant AD risk loci that 
were reported in the largest AD case–control GWAS thus 
far [48]. Since the APOE locus is strongly associated with 
CSF levels and AD risk, it is not unexpected that PRS that 
include APOE effect would also be significantly associated 
with Aβ42 and ptau181. Calculating PRS without including 
the APOE effect can provide information about the much 
smaller genetic effect of other AD risk loci, and although 
the individual variants were not even suggestively signifi-
cant the PRS was significantly associated with both pro-
teins. This suggests there is a genetic overlap between AD 
risk and the CSF biomarkers that is not apparent in single 
variant analyses. Since we restricted the PRS to genome-
wide significant AD risk loci, we may actually be under-
estimating genetic overlap between AD risk and CSF Aβ42 
and ptau181. Some of the AD risk loci did not appear to be 
associated with either biomarker, suggesting they affect AD 
risk through mechanisms independent of Aβ42 and ptau181. 
Some AD risk loci such as CLU and PERMT2 for Aβ42 and 
INPP5D for ptau181 may be associated with these AD endo-
phenotypes but did not reach genome-wide significance. 
Reasons for this could be that multiple risk loci interact to 
influence CSF levels, or possibly a lack of power due to 
small effect size of the individual variants. For example, we 
estimated that at least 4500 samples would be necessary for 
the association for CLU with Aβ42 to pass the genome-wide 
significance threshold (P < 5 × 10−8), suggesting that addi-
tional signals could be identified with a larger sample size.

Genetic studies of endophenotypes not only provide 
enough power to identify novel associations with smaller 
sample sizes than case–control studies, but can also help 
with understanding biological mechanisms of disease. 
Loci identified in this study alter gene expression or pro-
tein binding, which can provide valuable information for 
understanding the biological basis for AD pathology. We 
identified here, for the first time, two genome-wide sig-
nificant signals for CSF Aβ42 outside the APOE region. 
Of particular interest is the locus on 6p25 which is asso-
ciated with lower CSF Aβ42 and earlier AAO. This may 
be mediated through SERPINB1, because the same SNPs 
affect SERPINB1 expression in blood and macrophages. 
SERPINB1 encodes a serine protease inhibitor that is a 
key regulator of neutrophil programmed cell death [28, 
50]. SERPINB1 is expressed in the human brain, primar-
ily in microglia and macrophages [84]. Recent research of 
transgenic mouse models for AD (5xFAD and 3xTg-AD) 

reported that neutrophils were present in the brain near 
Aβ deposits, and researchers observed neutrophil migra-
tion from blood into the brain toward amyloid plaques [4, 
83]. They discovered that Aβ42 triggered the high-affinity 
state of integrin LFA-1, which is necessary for neutrophil 
infiltration of the CNS [83]. Their results, combined with 
our findings that genetic variants that increase expres-
sion of SERPINB1 are also associated with lower levels 
of Aβ42, support other studies suggesting that immune 
response pathways may play a key role in AD pathology 
[38, 75]. Our results indicate a potential role for SER-
PINB1 in AD and suggest that adaptive immune response 
mechanisms are associated with Aβ-mediated pathology. 
Key proteins in neuroinflammation, triggering recep-
tor expressed on myeloid cells 2 (TREM2) and YKL-
40, are promising AD biomarkers [59, 60], and TREM2 
variants are also strongly associated with AD risk [6, 34, 
42]. Clusterin (CLU) has been associated with AD risk 
in numerous studies [37, 48] and a GWAS of CSF CLU 
levels suggested CLU may be associated with immune 
response [20]. Our findings add to this growing evidence 
that immune response plays a key role in AD and CSF 
levels of Aβ42 may be representative of this role.

The associations of the GMNC locus with ptau181 levels 
and brain volume suggest biological mechanisms other than 
immune response may be associated with tau-mediated 
pathology in AD [1, 13, 63]. Although not well studied, 
GMNC (also known as GEMC1) is a necessary regulator 
of DNA replication [5] and recently was shown to be a key 
player in the differentiation of radial glial cells to multicili-
ated neuroepithelial cells during neurogenesis in the sub-
ventricular zone [47]. Combined with our GWAS results, 
it appears GMNC may influence CSF ptau181 as part of the 
neurogenesis process. Further research is needed to deter-
mine if GMNC is indeed the gene affecting ptau181 and 
what biological mechanism is involved. However, some of 
the loci associated with ptau181 suggest immune response 
may also play a role in tau-associated pathology. NFATC1 
encodes the nuclear factor of activated T-cells cytoplasmic 
1 protein which is important in gene transcription induced 
by immune response. CTDP1 encodes the RNA polymer-
ase II subunit A C-terminal domain phosphatase which 
interacts with the TFIIF transcription factor. Both NFATC1 
and CTDP1 are expressed in the human temporal cortex, 
NFATC1 (58th percentile) more so than CTDP1 (37th per-
centile). NFATC1 is also the more promising candidate than 
CTDP1 because CTDP1 is primarily expressed in fetal 
astrocytes and nominally in other cell types, while NFATC1 
is predominantly expressed in microglia and macrophages 
[84] (Supplementary Table 13). We were unable to test for 
the putative causal variant in these regions for these eQTL 
effects. However, these data suggest the top loci may influ-
ence ptau181 levels by affecting expression of these genes.
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In summary, by increasing the sample size more than 
twofold we not only verified the results from our previ-
ous analyses, but also uncovered additional findings that 
can be used to inform future AD studies. We identified 
novel associations between genetic loci and CSF levels 
that may provide insight into the biological mechanisms 
that affect protein levels, influence AD risk, AAO, and dis-
ease progression. Our findings suggest CSF Aβ42 levels 
may be representative of the role of immune response on 
Aβ-associated pathology, and that this role may influence 
AAO. Although immune-related genes may be associated 
with ptau181, our results suggest that CSF ptau181 may 
reflect pathways related to neurogenesis and brain volume. 
Although we did not identify individual AD risk variants 
outside the APOE region, the PRS results indicate shared 
genetic architecture between AD risk and these CSF bio-
markers. Larger studies using AD endophenotypes will 
likely provide even more information to help understand 
the biology underlying AD pathology.
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