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exacerbating effects on Aβ pathology. In contrast and unex-
pectedly, PGRN deficiency significantly reduces diffuse Aβ 
plaque growth in these APP/PS1 mice. This protective effect 
is due, at least in part, to enhanced microglial Aβ phagocy-
tosis caused by PGRN deficiency-induced expression of 
TYROBP network genes (TNG) including an AD risk fac-
tor Trem2. PGRN-deficient APP/PS1 mice also exhibit less 
severe axonal dystrophy and partially improved behavior 
phenotypes. While PGRN deficiency reduces these amyloi-
dosis-related phenotypes, other neuronal injury mechanisms 
are increased by loss of PGRN, revealing a multidimensional 
interaction of GRN with AD. For example, C1q complement 
deposition at synapses is enhanced in APP/PS1 mice lacking 
PGRN. Moreover, PGRN deficiency increases tau AT8 and 
AT180 pathologies in human P301L tau-expressing mice. 
These human and rodent data suggest that global PGRN 
reduction induces microglial TNG expression and increases 
AD risk by exacerbating neuronal injury and tau pathology, 
rather than by accelerating Aβ pathology.

Keywords  Progranulin · Alzheimer’s disease · Microglia · 
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Introduction

Progranulin (PGRN) is a secreted glycoprotein widely 
expressed in several tissues and plays a critical role in a 
variety of biological processes including development, 
wound healing, and tumorigenesis. In the central nervous 
system, PGRN is expressed in neurons and microglial cells 
and is thought to have neurotrophic and anti-inflammatory 
properties [11, 60].

Mutations in the PGRN gene (GRN) that result in its 
haploinsufficiency cause frontotemporal lobar degeneration 
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of cerebral amyloidosis show that PGRN deficiency has no 
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(FTLD) with ubiquitin-positive inclusions containing TAR 
DNA-binding protein 43 (TDP-43) [11, 60]. However, 
genetic studies have also suggested a role of PGRN in other 
neurodegenerative disorders. Homozygous loss-of-func-
tion mutation in GRN was found to cause neuronal ceroid 
lipofuscinosis (NCL) [71]. In addition, PGRN has been 
implicated in Alzheimer’s disease (AD). Several studies 
have reported GRN mutation carriers with an AD clinical 
presentation [7, 17, 41, 43, 59, 62]. Common GRN haplo-
types were associated with increased risk for AD in a Bel-
gian late-onset AD patient group [8]. The rs5848 T allele 
of GRN, which causes at least 10–20% reduction of PGRN 
protein levels in plasma and cerebrospinal fluid (CSF) [57, 
63], increases risk for AD as well as FTLD [50, 63, 70, 81].

The mechanism(s) by which GRN variation or mutation 
modifies AD pathophysiology is(are) poorly defined. AD is 
pathologically characterized by extracellular senile plaques 
composed of amyloid-β (Aβ) peptides (Aβ plaques) and 
intracellular neurofibrillary tangles composed of hyper-
phosphorylated tau. Synapse loss is widespread and pro-
nounced. In AD, the chronic Aβ accumulation causes 
cerebral neuroinflammation by activating microglia [35]. 
PGRN expression has been shown to correlate with dense-
core plaques [58], and is increased in activated microglia 
around Aβ plaques [3, 58] and peripheral blood [16]. A pre-
vious study has described greater Aβ plaque and worsened 
behavioral impairment in transgenic AD mice with condi-
tional PGRN deletion using LysM-cre mice [56]. However, 
a recent study as well as earlier publications raises concerns 
about the efficient and specific targeting using the LysM-
cre mice and cautions against conclusions drawn from the 
experiments with the mouse line [5, 79].

In the present study, we investigate the mechanism by 
which PGRN reduction from the GRN rs5848 T allele as 
well as GRN mutations increase AD risk and modify AD 
pathophysiology. To this end, we first analyze florbeta-
pir positron emission tomographic (PET) amyloid imaging 
and CSF biomarkers in human subjects with the GRN AD 
risk variant using Alzheimer’s disease neuroimaging initia-
tive (ADNI) database. In addition, we examine the APPswe/
PS1ΔE9 (APP/PS1) mouse model of cerebral amyloidosis 
and human P301L tau-expressing mice with global PGRN 
reduction. Previous studies have suggested that there is a dif-
ferent level of vulnerability in the human versus mouse brain 
to PGRN reduction. Although PGRN null (Grn−/−) mice 
recapitulate some of pathological features of FTLD such 
as microgliosis and retinal degeneration, Grn heterozygous 
(Grn+/−) mice do not, and both fail to show TDP-43-positive 
inclusions, a key pathological hallmark of FTLD. There-
fore, Grn−/− mice have been studied as the best available 
mouse model for human PGRN haploinsufficiency-related 
FTLD [1, 27, 29, 42, 47, 53, 61, 78, 80]. Given this evidence, 
although GRN rs5848 T allele causes 10–20% reduction of 

PGRN in humans and GRN mutation carriers with AD clini-
cal presentation are all heterozygotes, we utilize Grn−/− as 
well as Grn+/− mice. Our human and rodent data show that 
PGRN reduction has minimal effect on dense-core amyloid 
plaques and is protective against diffuse Aβ plaque growth, 
while it is associated with increased tau pathology. Thus, 
PGRN reduction may affect AD pathophysiology by causing 
tau dysfunction, distinct from Aβ pathology.

Methods

Mice

All animal studies were conducted with approval of the 
Yale Institutional Animal Care and Use Committee. APP/
PS1 mice and Grn−/− mice were described previously 
[26, 38]. All strains were extensively backcrossed onto 
the C57BL6 background and were maintained on this 
background.

Brain tissue collection

Six- and sixteen-month-old WT, Grn+/−, Grn−/−, APP/
PS1, APP/PS1 Grn+/−, and APP/PS1 Grn−/− mice were 
killed and immediately perfused with ice-cold PBS. The 
brains were then dissected out. One hemisphere was imme-
diately frozen using liquid nitrogen and stored at −80 °C 
for biochemical or RNA analysis and the other was fixed 
in freshly prepared 4% paraformaldehyde (PFA) (ACROS 
ORGANICS 416780030 or Sigma 158127) in PBS (pH 
7.4) overnight for immunohistochemistry.

Brain protein extraction

Brain protein extraction was performed as previously 
reported [26], with slight modifications. The brain hemi-
spheres were homogenized in threefold volume (w/v) of 
50 mM Tris–HCl, 150 mM NaCl, pH 7.6 (TBS) containing 
a protease inhibitor cocktail (Roche complete Mini EDTA-
free 11 836 170 001) and a phosphatase inhibitor cocktail 
(Roche phosSTOP 04 906 837 001). After ultracentrifu-
gation at 100,000×g for 20  min at 4  °C, the supernatant 
was collected and frozen as the TBS-soluble fraction. The 
pellet was resuspended to the same volume as the original 
homogenate in TBS with 1% Triton X-100 (TBST) con-
taining a protease inhibitor cocktail and a phosphatase 
inhibitor cocktail. The homogenates were ultracentrifuged 
at 100,000×g for 20  min. The supernatant was collected 
and frozen as the TBST-soluble fraction. The remaining 
pellet was then resuspended to the same volume in 70% 
formic acid (FA), homogenized, and ultracentrifuged. The 
supernatant was frozen as the FA-soluble fraction.
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Immunoblot

Immunoblot was performed as previously reported [26], 
with slight modification. Precast 4–20% Tris–glycine 
or 10–20% Tris–tricine gels were used (Bio-Rad). The 
iBlot™ Gel transfer device (Invitrogen) was used for trans-
fer. The membranes were incubated in blocking buffer 
(Blocking Buffer for Fluorescent Western Blotting Rock-
land MB-070) for 1  h at room temperature. The follow-
ing primary antibodies were used: 6E10 (Covance SIG-
39300, 1:1000), APP, C-terminal (Sigma A8717, 1:1000), 
actin (Sigma A2066, 1:1000), actin (Sigma A3853, 
1:1000), phospho-tau Ser404 (Thermo Fisher Scientific 
#44-758G, 1:2000), phospho-tau pThr181 (Thermo Fisher 
Scientific #701530, 1:1000), tau (Thermo Fisher Scien-
tific #AHB0042, 1:2000). Antibodies were diluted in the 
blocking buffer, and membranes were incubated overnight 
at 4  °C. The membranes were washed three times with 
TBST and secondary antibodies (Odyssey IRDye 680 or 
800, all 1:10,000) were applied for 1  h at room tempera-
ture. After washing four times, proteins were visualized 
using a Licor Odyssey Infrared imaging system. Blots were 
analyzed using ImageJ 1.47v software (National Institutes 
of Health). For the detection of Aβ, the membranes were 
microwaved in PBS to unmask the epitopes and increase 
the immunoblot sensitivity before blocking [69].

Immunohistochemistry

Immunohistochemistry was performed as previously 
reported [26], with slight modification. The fixed brain 
hemispheres were embedded in 10% gelatin (Sigma 
G1896) and placed in 4% PFA for 3 days at 4  °C. Sagit-
tal sections (30 μm) were then cut using a Leica WT1000S 
vibratome. The following steps were performed at room 
temperature. For AT8 and AT180 staining, the free-float-
ing sections were treated with 10% formic acid for 20 min 
for antigen retrieval before blocking. The sections were 
blocked with 10% normal goat or donkey serum, 0.2% Tri-
ton X-100 in PBS for 1 h, followed by incubation with pri-
mary antibody overnight. Primary antibodies were diluted 
in 1% normal goat or donkey serum, 0.2% Triton X-100 
in PBS. The following antibodies were used: β-amyloid 
(Cell Signaling Technology #2454, 1:500), CD68 (AbD 
Serotec MCA1957, 1:1000), Iba1 (Wako 019-19741 for 
immunocytochemistry, 1:600), LAMP-1 (Santa Cruz 
sc-8334, 1:250), C1q (Abcam ab11861, 1:50), C1q (Abcam 
ab182451, 1:1000), PSD-95 (Thermo Fisher Scientific 
51-6900, 1:200) AT8 (Thermo Fisher Scientific MN1020, 
1:500), AT180 (Thermo Fisher Scientific MN1040, 1:500), 
HT7 (Thermo Fisher Scientific MN1000, 1:500), GFP 
(Santa Cruz sc-8334, 1:500). The sections were washed 
three times with PBS, incubated in secondary fluorescent 

antibody (Invitrogen Alexa Fluor, all 1:500) for 2  h. To 
quench autofluorescence, the sections were treated with 
10  mM CuSO4 in ammonium acetate for 15  min [66]. 
The images were taken using the Zeiss AxioImager Z1 
microscopy with a 5× objective lens. To obtain high-mag-
nification images, we utilized the Zeiss LSM710 confocal 
microscopy using 63× objective lens. To take images in 
Supplementary Figure 3, we used 40× objective lens and 
“tile scan” function in Zen software. The maximum inten-
sity projection function was used in all confocal images.

Thioflavin S (ThioS) staining

The free-floating sagittal sections were stained with 0.01% 
ThioS (Sigma T1892) in PBS for 15  min, followed by 
washing three times with PBS. For double and triple stain-
ing with antibodies, after secondary antibody incubation, 
the free-floating sections were stained with 0.01% thiofla-
vin S in PBS, followed by treatment with 10 mM CuSO4.

Image quantification

Quantitative analyses of ThioS-positive plaque, Aβ, CD68, 
Iba1, C1q, and LAMP-1-positive dystrophic neurite areas 
and AT8, AT180, and HT7 signals were done using ImageJ 
1.47v software (National Institutes of Health). All images 
taken using the Zeiss AxioImager Z1 microscopy with a 
5× objective lens were uniformly thresholded and bina-
rized. For CD68, Iba1, and LAMP-1-positive dystrophic 
neurite staining, background was subtracted (Rolling ball 
radius: 200 pixels for CD68 and Iba1, 50 pixels for LAMP-
1) before binarization. Aβ, CD68, Iba1, and LAMP-1-pos-
itive dystrophic neurite areas were calculated using the 
“analyze particles” of ImageJ. For ThioS-positive plaques, 
plaque area, and plaque number were calculated with the 
“watershed” algorithm and “include holes” function. Only 
male was used for Aβ and ThioS analyses with 6-month-
old mice to avoid a potential gender effect previously 
reported [45]. For the other analyses, both male and female 
were used with similar ratio between genotypes and no sig-
nificant difference between male and female was observed. 
Three brain sections per mouse, each separated by 150 μm, 
were used for quantification. The mean of three sections 
was used to represent for each mouse. For the cortical anal-
ysis, frontal cortex, the cortex dorsal to the hippocampus, 
and occipital cortex were assessed and sums of the areas 
were used to calculate area percentages. In Supplementary 
Figure  4b, whether microgliosis (>3 Iba1-positive micro-
glia) occurs around ThioS(+) or ThioS(−) Aβ plaques 
was manually examined under the Zeiss AxioImager Z1 
microscopy. The area occupied by PSD-95-immunoreactive 
puncta from the layer III of FC was measured as described 
previously [26]. PSD-95 and C1q colocalization was 



788	 Acta Neuropathol (2017) 133:785–807

1 3

determined after background subtraction and binarization 
of C1q-immunoreactive area. For AT8, AT180, and HT7 
analyses, the images were taken using Zeiss AxioImager 
Z1 microscopy and “MosaiX acquisition” function in Axio-
Vision Rel. 4.8 software as shown in Supplementary Fig-
ure  8a and uniformly thresholded GFP-positive area was 
used for quantification. The mean signal of five sections 
from lateral ~2.76 to ~3.25 mm (~0.12 mm interval) was 
used to represent for each mouse. All analyses were per-
formed in a blinded manner.

Aβ42 ELISA

For mouse samples, Aβ42 ELISA (Invitrogen KHB3441) 
was performed according to the manufacturer’s manual. 
The optimal dilution for the FA fraction was empirically 
determined to be 1:20,000. The absorbance at 450  nm 
was measured using Victor 3V plate reader (Perkin 
Elmer). GraphPad Prism (version 5.0d) was used to gen-
erate the standard curve (four-parameter dose–response 
curve) and to interpolate the concentrations of unknown 
samples.

Primary microglial cell culture

Primary cultured microglia were prepared from the 
brains of postnatal day 3 WT or Grn−/− mice. Menin-
ges were removed mechanically, and the cells were dis-
sociated and cultured in DMEM supplemented with 10% 
heat-inactivated (65 °C, 30 min) FBS (hiFBS) and peni-
cillin/streptomycin. After 14  days (DIV14), the culture 
flasks were shaken (190  rpm) for 3  h to collect micro-
glial cells.

Phagocytosis assay

Primary microglia (DIV16 or 17) from WT and Grn−/− 
mice were plated on PDL-coated eight-well slides (Lab-
Tek, 154941) (8  ×  107 cells/well) using DMEM with 
8% hiFBS 3  days before experiments. The cells were 
incubated with FluoSpheres carboxylate, 1.0  μm, red 
(580/605) (Invitrogen F8821) diluted in DMEM with 
hiFBS at a final dilution 1:400 or 1:800 for 90  min at 
37  °C, washed once with PBS, and fixed with 4% for-
maldehyde in PBS. The cells were then stained with 
anti-Iba1 antibody (Abcam ab107159, 1:500) as 
described above. Three images per wells were taken in 
one independent experiment using the Zeiss AxioImager 
Z1  microscopy with a 10×  objective lens and the total 
area from the three images was used for quantification. 
Quantitative analyses of fluorescent beads and Iba1 areas 
were performed using ImageJ 1.47v software (National 
Institutes of Health).

RNA isolation and quantitative real‑time PCR 
(qRT‑PCR)

Total RNA was purified from snap-frozen frontal cortex 
using TRIzol reagent (Ambion 15596026) and the Pure-
Link RNA Mini kit (Ambion 12183018A) and reverse 
transcribed using the SuperScript III first-strand synthesis 
system (Invitrogen 18080-051) according to the manufac-
turer’s instructions. Real-time quantitative PCR was per-
formed using the C1000 Thermal Cycler and quantified 
using CFX96 Real-Time System (Bio-Rad). The TaqMan 
gene expression assay and iQ supermix (Bio-rad 170-8862) 
was used for PCR amplification and real-time detection of 
PCR products. mRNA expression values were normalized 
to the level of GAPDH expression. The following probes 
from Invitrogen were used: GAPDH (Mm99999915_g1), 
TNFα (Mm00443258_m1), IL-1β (Mm00434228_m1), 
iNOS (Mm00440485_m1), IL-6 (Mm00446190_m1), Arg-1 
(Mm00475988_m1), TGFβ (Mm00498255_m1), Fizz-1 
(Mm00445109_m1), Ym1 (Mm00657889_m1), TREM2 
(Mm00451744_m1), TYROBP (Mm00449152_m1), 
MS4A7 (Mm01197655_m1), CD68 (Mm03047343_m1), 
CD22 (Mm00515432_m1), Lyz2 (Mm01612741_m1), CatS 
(Mm01255859_m1), C1qA (Mm00432142_m1), EMR1 
(Mm00802529_m1), CCL8 (Mm01297183_m1).

Behavior test

Morris water maze testing was performed over a 6-day 
period, consisted of a 3-day learning trial and a 3-day 
reversal trial, as previously reported [26]. Both trials were 
performed in a ~1-m diameter open-water pool and used 
a submerged, nonvisible escape platform located in the 
center of one of the pool’s four quadrants. This location 
remained constant for each 3-day trial; for the reversal trial, 
the platform was placed, for the duration of the trial, in the 
quadrant diagonally across from its original location in the 
learning trial. Over the course of each day, the mice swam 
in the pool a total of eight times which were divided into 
two blocks of four attempts. One block took place during 
the morning while the second block took place during the 
afternoon. Over the course of a block, each mouse would 
begin its swim in each of four distinct locations around the 
wall of the pool, and was timed for its latency to reach the 
escape platform for a maximum time of 60 s. In the event 
that a mouse did not find the submerged platform within 
the time limit, the mouse would be gently guided to the 
platform and allowed ~10  s on the platform before being 
taken from the pool.

The water maze probe trial was performed 24 h after the 
last day of the forward and reversal trials, and in the same 
pool described above. During the probe trial, the platform 
was removed from the pool. All mice were started from 
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a location along the pool wall diagonally opposed to the 
location of the platform in the reversal trial and permitted 
to swim for 60 s. The probe trials were recorded on a JVC 
Everio, G-series camcorder and analyzed using Panlab’s 
Smart tracking and analysis program, v2.5. The observer 
was blinded to genotype for the duration of behavioral 
testing.

Florbetapir‑PET scan and CSF biomarker analysis

Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (http://adni.loni.usc.edu). The ADNI was 
launched in 2003 by the National Institute on Aging (NIA), 
the National Institute of Biomedical Imaging and Bio-
engineering (NIBIB), the Food and Drug Administration 
(FDA), private pharmaceutical companies and non-profit 
organizations, as a $60 million, 5-year public–private part-
nership. The primary goal of ADNI has been to test whether 
serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clin-
ical and neuropsychological assessment can be combined 
to measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD). Determination 
of sensitive and specific markers of very early AD progres-
sion is intended to aid researchers and clinicians to develop 
new treatments and monitor their effectiveness, as well as 
lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. 
Weiner, MD, VA Medical Center and University of Califor-
nia, San Francisco. ADNI is the result of efforts of many 
co-investigators from a broad range of academic institu-
tions and private corporations, and subjects have been 
recruited from over 50 sites across the US and Canada. 
The initial goal of ADNI was to recruit 800 subjects but 
ADNI has been followed by ADNI-GO and ADNI-2. To 
date these three protocols have recruited over 1500 adults, 
ages 55–90, to participate in the research, consisting of 
cognitively normal older individuals, people with early or 
late MCI, and people with early AD. The follow-up dura-
tion of each group is specified in the protocols for ADNI-1, 
ADNI-2 and ADNI-GO. Subjects originally recruited for 
ADNI-1 and ADNI-GO had the option to be followed in 
ADNI-2. For up-to-date information, see http://www.adni-
info.org.

For Fig.  1, Table  1, and Supplementary Table  1, data 
from ADNI-GO and ADNI-2 participants were analyzed, 
as GRN rs5848 genotype was available in these groups 
(ADNIGO2_GWAS_Set_1-15 files). APOE ε4 genotypes 
and diagnostic categories were examined using APOERES 
and ARM files, respectively. ADNI florbetapir summary 
data (UCBERKELEYAV45_7_30_14 file) including stand-
ardized uptake value ratio (SUVr) results normalized by 

whole cerebellum region were downloaded and analyzed. 
CSF biomarker data in ADNI-GO and ADNI-2 (UPENN-
BIOMK5, UPENNBIOMK6, and UPPENNBIOMK7 data 
files) were used for this study. This cross-sectional analysis 
across the three files was performed by combining all base-
line results, as recommended (ADNI_Methods_UPENN_
Third_Batch_Analysis_ of CSF_Biomarker_20140611).

Adeno‑associated virus (AAV) and surgery

Stereotaxic AAV injection was performed as previously 
described [2, 4], with modification. An AAV vector that 
expresses human P301L tau 1–441 or GFP under the con-
trol of the neuron-specific synapsin-1 promoter was pre-
pared as previously described [2]. Both male and female 
WT and Grn−/− mice at 6–8 months of age were used for 
this analysis. Briefly, mice were anesthetized with an intra-
peritoneal injection of ketamine (100 mg/kg) and xylazine 
(10  mg/kg). After mice were head-fixed on a stereotaxic 
frame, AAV was unilaterally injected into entorhinal cortex 
via the following coordinates: anteroposterior, −4.7  mm; 
lateral, 3.0 mm; dorsoventral, −4.6 mm. Twenty-eight days 
post-infection, mice were perfused with ice-cold PBS fol-
lowed by 4% PFA in PBS. All surgeries were performed in 
a blinded manner.

Statistical analysis

For animal studies, two-tailed t test (to compare two 
groups) and one-way ANOVA followed by Tukey’s mul-
tiple comparison test (to compare three and more groups) 
were prepared using GraphPad Prism (version 5.0d). For 
human data that did not follow a normal distribution, non-
parametric Mann–Whitney (to compare two groups) and 
Kruskal–Wallis (to compare three and more groups) were 
performed using GraphPad Prism (version 5.0d). Chi-
square test was used for comparison of differences in cat-
egorical variables. For GRN rs5848 genotypes analysis, the 
CSF and PET variables were log-transformed and evaluated 
by ANCOVA to control for effects of potential confounders 
(age, gender, diagnosis, and APOE ε4 genotypes), using the 
Statistical Package for the Social Science 21.0 (SPSS Inc.).

Results

GRN rs5848 T allele does not alter florbetapir‑PET 
signal and CSF Aβ42 levels

We first sought to assess how GRN rs5848 T allele might 
alter AD pathophysiology in the clinical setting. The 
ADNI database includes SNP genotypes, PET measure-
ment of florbetapir binding to amyloid deposits in the 
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brain [13], and CSF biomarker analyses of individuals 
with no neurological disease (NL), with significant mem-
ory concern (SMC), with early mild cognitive impair-
ment (EMCI) and with mild cognitive impairment (MCI) 
and with AD. The combined sample size is more than 
700 cases. We first analyzed the florbetapir-PET amyloid 
imaging data. There is progressive increase of the PET 
radioactive amyloid ligand florbetapir uptake (SUVr) 
across the clinical spectrum (Table  1). As expected, the 
APOE ε4 allele modifies the extent of florbetapir-PET 
signal, as previously described (Table 1) [64]. We segre-
gated the florbetapir-PET results by the GRN rs5848 gen-
otype, which is reportedly linked with decreased PGRN 
level and increased AD/FTLD risk [8, 22, 50, 57, 63, 70]. 
Characteristics of the ADNI participants with different 
GRN rs5848 genotypes are summarized in Supplemen-
tary Table  1. With or without correction for covariates 

(age, sex, diagnosis, and APOE ε4 copy number), there 
was no detectable difference in florbetapir-PET signal for 
those individuals with different GRN rs5848 genotypes 
(Fig. 1a; Table 1).

CSF Aβ42 levels are lower in AD patients compared to 
age-matched cognitively healthy controls, and the inverse 
correlation of CSF levels with plaque deposition is likely 
due to Aβ42 sequestration in plaques [20, 35, 73]. We 
observed the expected progressive decrease of CSF Aβ42 
levels across the clinical spectrum and APOE ε4 gene dos-
age (Table  1). However, consistent with the florbetapir-
PET data analysis, the GRN rs5848 T allele had no effect 
on CSF Aβ42 levels with or without correction for covari-
ates (Fig. 1b; Table 1). Thus, our analyses of ADNI flor-
betapir-PET and CSF Aβ42 dataset suggest that the GRN 
rs5848 T allele has no detectable influence on amyloid 
pathology in AD.

Fig. 1   GRN rs5848 AD 
risk variant has no effect on 
florbetapir-PET amyloid imag-
ing or CSF Aß42 levels while 
it increases CSF tau levels in 
humans. a Mean cortical Aβ 
levels (SUVr) as quantified by 
florbetapir-PET in the ADNI 
participants are segregated by 
GRN rs5848 genotypes. Log 
scale is used for X-axis. Red 
vertical bars indicate mean. 
See Table 1 for the statistical 
analyses used in this figure. b 
CSF Aβ42 levels in the ADNI 
participants are segregated by 
GRN rs5848 genotypes. Log 
scale is used for X-axis. Red 
vertical bars indicate mean. 
See Table 1 for the statistical 
analyses used in this figure. c 
CSF tau levels in the ADNI par-
ticipants are segregated by GRN 
rs5848 genotypes. Log scale is 
used for X-axis. Red vertical 
bars indicate mean. See Table 1 
for the statistical analyses used 
in this figure
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GRN rs5848 T allele increases CSF tau levels

CSF tau and tau phosphorylated at T181 (p-tau181) lev-
els are increased in AD patients [21, 31, 74]. The CSF 
increases are thought to reflect neuronal damage accompa-
nied by neurofibrillary tangles in AD [35]. As we did not 
observe an effect of GRN rs5848 T allele on Aβ pathology, 
we analyzed ADNI dataset to examine whether the GRN 
AD risk allele might affect CSF tau and p-tau181 levels. 
As previously described [18, 32, 46], there are progressive 

increases of CSF tau and p-tau181 levels across the clinical 
spectrum and the APOE ε4 gene dosage (Table 1). In addi-
tion, we observed a difference in CSF tau levels between 
male and female in this ADNI dataset (Table 1). Strikingly, 
there is a GRN rs5848 T allele gene dosage-dependent 
increase of CSF tau levels (Fig. 1c; Table 1). In addition, 
there is a statistically significant difference between GRN 
rs5848 genotypes after correction for covariates (age, sex, 
diagnosis, and APOE ε4 copy number) (Fig. 1c; Table 1). 
Importantly, the difference in CSF tau between GRN rs5848 

Table 1   A summary of florbetapir-PET and CSF Aβ42, tau, and p-tau181 in the ADNI participants segregated by sex, disease stage, APOE ε4 
allele number, or GRN rs5848 genotypes

NL individuals with no neurological disease, SMC significant memory concern, EMCI early mild cognitive impairment, MCI mild cognitive 
impairment, AD Alzheimer’s disease

* The first and second n indicate the number of participants available for SUVr and CSF biomarker data, respectively

** Mann–Whitney test, *** Kruskal–Wallis test, **** ANCOVA
a  Post hoc Dunn’s test: NL vs. EMCI, p < 0.05; NL vs. MCI, p < 0.001; NL vs. AD, p < 0.001; SMC vs. EMCI, p < 0.001; SMC vs. MCI, 
p < 0.001; SMC vs. AD, p < 0.001; EMCI vs. MCI, p < 0.001; EMCI vs. AD, p < 0.001; MCI vs. AD, p < 0.001
b  Post hoc Dunn’s test: NL vs. MCI, p < 0.001; NL vs. AD, p < 0.001; SMC vs. MCI, p < 0.001; SMC vs. AD, p < 0.001; EMCI vs. MCI, 
p < 0.001; EMCI vs. AD, p < 0.001; MCI vs. AD, p < 0.05
c  Post hoc Dunn’s test: NL vs. MCI, p < 0.001; NL vs. AD, p < 0.001; SMC vs. MCI, p < 0.001; SMC vs. AD, p < 0.001; EMCI vs. MCI, 
p < 0.001; EMCI vs. AD, p < 0.001; MCI vs. AD, p < 0.001
d  Post hoc Dunn’s test: NL vs. MCI, p < 0.001; NL vs. AD, p < 0.001; SMC vs. MCI, p < 0.01; SMC vs. AD, p < 0.001; EMCI vs. MCI, 
p < 0.001; EMCI vs. AD, p < 0.001
e  Post hoc Dunn’s test: ε4(0) vs. ε4(1), p < 0.001; ε4(0) vs. ε4(2), p < 0.001; ε4(1) vs. ε4(2), p < 0.05
f  Post hoc Dunn’s test: ε4(0) vs. ε4(1), p < 0.001; ε4(0) vs. ε4(2), p < 0.001; ε4(1) vs. ε4(2), p < 0.001
g  Post hoc Dunn’s test: ε4(0) vs. ε4(1), p < 0.001; ε4(0) vs. ε4(2), p < 0.001
h  Post hoc Sidak test: CC vs. CT, p = 0.042; CC vs. TT, p = 0.017

N* Florbetapir-PET(SUVr), 
median (IQR)

CSF Aβ42 (pg/mL), median 
(IQR)

CSF tau (pg/mL), median 
(IQR)

CSF p-tau181 (pg/mL), 
median (IQR)

Sex

 F (n = 411, 352–362) 1.16 (1.03–1.41) 163 (134–217) 77.5 (47.8–122.2) 36.0 (23.7–54.6)

 M (n = 455, 395–410) 1.13 (1.01–1.38) 165 (129–220) 67.6 (49.1–98.6) 36.2 (23.3–51.9)

 p** 0.0712 0.4064 0.0348 0.6578

Disease stage

 NL (n = 163, 141–144) 1.06 (1.00–1.16) 207 (158–235) 56.9 (45.1–84.6) 28.9 (21.9–42.9)

 SMC (n = 81, 96) 1.06 (1.00–1.19) 207 (156–240) 57.7 (42.3–79.3) 31.2 (23.5–44.7)

 EMCI (n = 293, 251–262) 1.10 (1.01–1.32) 187 (140–229) 64.1 (45.9–90.9) 30.4 (21.1–46.6)

 MCI (n = 149, 137–142) 1.28 (1.05–1.48) 140 (125–183) 86.9 (55.0–134.6) 42.1 (31.4–61.3)

 AD (n = 139, 122–128) 1.43 (1.28–1.53) 131 (114–149) 117.5 (84.1–163.6) 51.3 (36.9–66.9)

 p*** <0.0001a <0.0001b <0.0001c <0.0001d

APOE ε4 allele copies

 ε4 (0) (n = 449, 415–423) 1.05 (1.00–1.19) 207 (153–238) 57.8 (43.3–86.0) 29.3 (21.0–43.0)

 ε4 (1) (n = 290, 263–273) 1.30 (1.12–1.49) 142 (126–179) 87.2 (60.0–131.4) 42.0 (30.5–61.7)

 ε4 (2) (n = 79, 68–75) 1.39 (1.27–1.50) 116 (99–135) 105.0 (70.6–163.1) 48.6 (36.9–72.3)

 p*** <0.0001e <0.0001f <0.0001g <0.0001g

GRN rs5848 genotype

 CC (n = 320, 298–304) 1.16 (1.02–1.40) 166 (134–218) 68.4 (47.6–100.9) 36.3 (22.5–54.6)

 CT (n = 317, 292–304) 1.12 (1.02–1.39) 160 (130–219) 74.4 (48.5–111.0) 34.6 (24.2–50.2)

 TT (n = 91, 81–83) 1.13 (1.03–1.39) 166 (133–224) 80.0 (61.2–119.8) 38.1 (23.8–55.5)

 p**** 0.733 0.097 0.006h 0.391



792	 Acta Neuropathol (2017) 133:785–807

1 3



793Acta Neuropathol (2017) 133:785–807	

1 3

genotypes (CC vs. TT) is greater than the one between NL 
and EMCI in the ADNI dataset (Table  1). GRN variation 
does not have a significant effect on CSF p-tau181 in this 
cohort (Table 1). Thus, GRN variation has detectable effects 
on CSF tau levels in this ADNI group without alterations in 
amyloid pathology.

PGRN deficiency prevents diffuse Aβ plaque growth 
in APP/PS1 mice

While the human data show no effect of GRN variation, 
which causes at least 10–20% reduction of PGRN protein, 
on amyloid pathology, a previous study reported greater 
Aβ accumulation using 7-month-old APP (J20) mice with 
conditional PGRN deletion [56]. In addition, potential 
effects of further global PGRN reduction, which may occur 
by GRN mutations in humans, on Aβ accumulation are 
unclear. We, therefore, examined whether PGRN haploin-
sufficiency or complete absence affects Aβ pathology using 
the APP/PS1 mouse model of cerebral amyloidosis. As the 

APP/PS1 mice begin to develop Aβ deposition from 4 to 
6 months of age with progressive increases up to 12 months 
[24, 39], we performed thioflavin S (ThioS) staining of 
dense-core amyloid plaques and anti-Aβ (2454) antibody 
staining of diffuse Aβ plaques using 6- and 16-month-old 
animals. Only male mice were used for Aβ and ThioS anal-
yses at 6 months of age, to avoid a potential gender effect 
previously reported in the APP/PS1 strain [45]. The ThioS 
staining of dense-core amyloid plaques shows either no 
change, or a slight decrease, in different regions and with 
different plaque metrics in the 6-month-old and 16-month-
old APP/PS1 mice (Fig.  2a–d; Supplementary Figure  1). 
Anti-Aβ antibody staining shows no significant difference 
between Grn genotypes in 6-month-old mice (Fig. 2a, e), 
but reveals a significant reduction in the area of diffuse Aβ 
plaque pathology in 16-month-old APP/PS1 Grn−/− mice 
(Fig.  2b, e; Supplementary Figure  1). Co-staining with 
ThioS and anti-Aβ antibody shows that PGRN deficiency 
significantly decreases the ratio of diffuse Aβ plaques to 
dense-core amyloid plaques in 16-month-old APP/PS1 
mice (Fig. 2f, g; Supplementary Figure 1). The histological 
analysis was confirmed by ELISA analysis of tissue from 
these mice. The insoluble fractions from APP/PS1 Grn−/− 
mice yield significantly less Aβ42 after extraction with for-
mic acid (Fig. 2h). Immunoblot analysis shows that TBS-
soluble Aβ or APP fragments are equal with and without 
PGRN expression (Fig. 2i, j), suggesting that the reduction 
of diffuse Aβ plaques in 16-month-old APP/PS1 Grn−/− 
mice is not due to changes of APP metabolism. Thus, nei-
ther PGRN haploinsufficiency nor its absence accelerates 
the onset of Aβ plaque in 6-month-old mice. In contrast, 
PGRN absence reduces diffuse Aβ plaque significantly and 
selectively, compared to dense-core amyloid plaques in 
16-month-old APP/PS1 mice.

PGRN deficiency increases CD68‑positive microglia 
near Aβ plaques in APP/PS1 mice

As a reduction in diffuse Aβ plaque in APP/PS1 Grn−/− 
mice is unexpected and inconsistent with a previous study 
[56], we sought to examine how PGRN deficiency prevents 
diffuse Aβ plaque growth. PGRN is involved in neuroin-
flammation in the brain and an increase in CD68, a com-
mon marker for activated microglia, has been reported in 
several aged Grn−/− strains as well as human PGRN-defi-
cient FTLD cases [48, 55, 56, 75, 82]. In addition, accumu-
lating evidence suggests that microglia paly an important 
role in Aβ clearance in AD [49]. We thus first examined 
whether PGRN deficiency affects microglial phenotypes 
using anti-CD68 antibody in 6- and 16-month-old WT, 
Grn+/−, Grn−/−, APP/PS1, APP/PS1 Grn+/−, and APP/
PS1 Grn−/− mice (6 genotypes). CD68 immunohistochem-
istry shows a significant increase in CD68-immunoreactive 

Fig. 2   PGRN deficiency prevents diffuse Aβ plaque growth to a 
greater extent than dense-core amyloid plaques in APP/PS1 mice. 
a Representative images of Thioflavin S (ThioS) staining and Aβ 
immunostaining of hippocampus (Hipp) and frontal cortex (Ctx) of 
6-month-old male APP/PS1, APP/PS1 Grn+/−, and APP/PS1 Grn−/− 
mice. Bar 200 μm. b Representative images of Thioflavin S (ThioS) 
staining and Aβ immunostaining of hippocampus (Hipp) and frontal 
cortex (Ctx) of 16-month-old APP/PS1, APP/PS1 Grn+/−  and APP/
PS1 Grn−/− mice. Bar 200 μm. c Quantification of ThioS-positive 
area (%) in hippocampus (Hipp) and cortex (Ctx) of 6-month-old 
male and 16-month-old APP/PS1, APP/PS1 Grn+/−, and APP/PS1 
Grn−/− mice. Mean ± SEM, n = 4 (APP/PS1 and APP/PS1 Grn+/−) 
or 3 (APP/PS1 Grn−/−) in 6-month-old animals, n = 5 (APP/PS1 and 
APP/PS1 Grn−/−) or 4 (APP/PS1 Grn+/−) in 16-month-old animals. 
d Quantification of ThioS-positive plaque number in hippocampus 
(Hipp) and cortex (Ctx) of 6-month-old male and 16-month-old APP/
PS1, APP/PS1 Grn+/−, and APP/PS1 Grn−/− mice. Mean ±  SEM, 
n =  4 (APP/PS1 and APP/PS1 Grn+/−) or 3 (APP/PS1 Grn−/−) in 
6-month-old animals, n =  5 (APP/PS1 and APP/PS1 Grn−/−) or 4 
(APP/PS1 Grn+/−) in 16-month-old animals. e Quantification of Aβ 
immunoreactive area (%) in hippocampus (Hipp) and cortex (Ctx) 
of 6-month-old male and 16-month-old APP/PS1, APP/PS1 Grn+/−, 
and APP/PS1 Grn−/− mice. Mean ±  SEM, n =  6 (APP/PS1, APP/
PS1 Grn+/−) or 3 (APP/PS1 Grn−/−) in 6-month-old animals, n = 6 
(APP/PS1), n = 4 (APP/PS1 Grn+/−), or n = 5 (APP/PS1 Grn+/−) in 
16-month-old animals. f Representative images of ThioS and anti-Aβ 
antibody co-staining of frontal cortex of 16-month-old APP/PS1 and 
APP/PS1 Grn−/− mice. Bar 200 μm. g Quantification of ratio of dif-
fuse Aβ plaque area to ThioS-positive dense-core amyloid plaque 
area in hippocampus (Hipp) and cortex (Ctx) of 16-month-old APP/
PS1 and APP/PS1 Grn−/− mice. Mean ± SEM, n = 4 (APP/PS1) or 
5 (APP/PS1 Grn−/−). **p < 0.01, p < 0.001; t test. h Aβ42 ELISA 
using the FA-soluble fraction from 16-month-old APP/PS1 and APP/
PS1, Grn−/− mice. Mean ± SEM, n = 4 (APP/PS1) or 5 (APP/PS1 
Grn−/−), *p < 0.05; t test. i Representative blots using anti-Aβ, APP, 
actin antibodies of the TBS-soluble fraction, using anti-APP, CTF, 
and actin antibodies of the TBST-soluble fraction. j Quantification 
of immunoblots (i). Mean ± SEM, n = 4 (APP/PS1) or 5 (APP/PS1 
Grn−/−)

◂
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area for Grn−/− mice, and an even greater increase for 
APP/PS1 Grn−/− mice in both hippocampus and cortex of 
6- and 16-month-old animals although the increase in hip-
pocampus at 16 months of age does not reach statistical sig-
nificance (Fig.  3a–c). At 6  months, the Grn−/− phenotype 
is substantially more prominent than the APP/PS1 single 
gene increase of threefold magnitude (Fig. 3a, b). The CD68 
increase is present at 6  months of age, when Aβ plaques 

are first forming, and at 16 months, when Aβ plaque den-
sity is maximal, the increase reaches 30-fold WT levels in 
APP/PS1 and 50-fold WT levels in APP/PS1 Grn−/− mice 
(Fig.  3c, g). For APP/PS1 hippocampus and cerebral cor-
tex, the increase of CD68-positive microglia is most promi-
nent near Aβ plaques. High-resolution confocal microscopy 
confirms that the enhanced CD68-immunoreactive micro-
glial processes interdigitate with Aβ plaques in APP/PS1 
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Grn−/− mice (Fig. 3a, e). Quantitatively, the CD68-positive 
area colocalized with the vicinity of Aβ immunoreactivity is 
significantly greater for both 6- and 16-month-old APP/PS1 
Grn−/− mice, compared with APP/PS1 mice (Fig. 3f, h).

We also examined whether PGRN deficiency affects 
microgliosis and microglial morphology in 6-month-
old mice using anti-Iba1 antibody, a general marker for 
microglia. Although PGRN absence slightly increases 
Iba1-immunoreactive area and Iba1-positive microglia 
in both hippocampus and cortex, regardless of APP/PS1 
transgene, the increases fail to reach statistical signifi-
cance (Supplementary Figure  2a, 2b, and 2c). High-res-
olution confocal microscopy shows no significant mor-
phological change by PGRN deficiency in Iba1-positive 
microglia despite a significant increase in CD68-immu-
noreactive area (Supplementary Figure  3). These results 
using anti-Iba1 antibody are consistent with previous 
studies using different Grn−/− strains [1, 75]. In addition, 
triple staining with ThioS, anti-Aβ antibody, and anti-Iba1 
antibody shows that microgliosis rarely occurs near small 
ThioS-negative anti-Aβ-antibody-immunoreactive diffuse 
Aβ plaques while microglia accumulate robustly around 
ThioS-positive Aβ plaques in 6-month-old APP/PS1 mice, 
regardless of the presence of PGRN (Supplementary Fig-
ure 4a and 4b). Together, these results indicate that PGRN 
deficiency significantly increases CD68-positive micro-
glia in the brain globally, and does so near Aβ plaques in 
particular.

PGRN deficiency induces expression of TYROBP 
network genes

To further characterize microglial phenotypes induced 
by PGRN deficiency, we analyzed expression of typical 
pro-inflammatory and anti-inflammatory genes in frontal 
cortex of 6-month-old mice of the 6 genotypes by qRT-
PCR. Despite an increase in CD68-positive microglia in 
Grn−/− background, there is no significant difference in 
typical pro-inflammatory (iNOS, IL1β, TNFα, and IL6) 
and anti-inflammatory genes (Arg-1, TGFβ, Fizz1, and 
Ym1) between WT and Grn−/− mice or APP/PS1 and 
APP/PS1 Grn−/− mice (Fig. 4a, b). To explore changes of 
any other microglial genes by PGRN deficiency, we per-
formed genome-wide RNA sequencing (RNA-seq) using 
2-month-old WT and Grn−/− brains (Z. Klein et al., unpub-
lished observations) and analyzed upregulated genes in 
Grn−/− brains (FDR < 0.05, logFC > 0.2) using the data-
base STRING website [76]. In a functional protein–pro-
tein interaction module of differentially expressed genes 
detected by the STRING, there is a cluster with TYROBP 
forming a major hub that consists of many microglia-
related genes including an AD risk factor Trem2 [14], as 
well as Ms4a7, one member of the AD risk MS4A gene 
cluster [41]. Details of the 36 genes in the cluster are sum-
marized in Supplementary Table 2. We also sought to vali-
date our data using the microarray dataset in a previous 
study with 6- or 9-month-old different Grn−/− strain [65]. 
Interestingly, 18 of 36 genes in the cluster from our study 
were also upregulated in the microarray dataset. We fur-
ther analyzed them by the STRING and named the genes 
in the cluster TYROBP network gene (TNG) (Fig.  4c; 
Supplementary Figure 5). Consistent with the immunohis-
tochemical data, Cd68 is also found in the TNG. Several 
lysosomal cysteine proteases including cathepsin S (CatS) 
and cathepsin Z  (CatZ), which are highly expressed in 
immune/inflammatory cells, complement system pro-
teins (C1qA, C1qB, and C4B), and Lyz2 [also known as 
Lysozyme M (LysM)] are also in the TNG. Using qRT-
PCR of 6 genotypes, upregulation of at least 10 of 18 genes 
in the TNG was confirmed in frontal cortex of 6-month-old 
Grn−/− mice, regardless of APP/PS1 transgenes (Fig. 4d). 
Since previous studies have reported that TREM2 and 
TYROBP are involved in microglial phagocytosis, which 
in turn is implicated in Aβ accumulation in AD [14], we 
next sought to test the effect of increased TNG expression 
by PGRN deficiency on microglial phagocytic function. 
Grn−/− microglia engulf a significantly greater amount of 
fluorescent beads compared to WT cells at two different 
concentrations (Fig. 4e, f). Together, these results show that 
PGRN deficiency causes TNG expression and facilitates 
microglial phagocytosis. Thus, increased phagocytosis by 
TNG-positive microglia surrounding ThioS-positive Aβ 

Fig. 3   PGRN deficiency increases CD68-positive microglia near Aβ 
plaques in APP/PS1 mice. a Representative images of CD68 immu-
nostaining of frontal cortex of 6-month-old WT, Grn+/−, Grn−/−, 
APP/PS1, APP/PS1 Grn+/−, and APP/PS1 Grn−/− mice. Bar 200 μm. 
The right panel shows a high-resolution image of CD68 and Aβ dou-
ble immunostaining in the massive CD68-immunoreactive area in 
the sample of APP/PS1 Grn−/− mice. Bar 20 μm. b Quantification 
of CD68-positive area (%) in 6-month-old WT, Grn+/−, Grn−/−, APP/
PS1, APP/PS1 Grn+/−, and APP/PS1 Grn−/− mice. Mean ±  SEM, 
n =  5/genotype, *p  <  0.05, ***p  <  0.001; one-way ANOVA, with 
Tukey post hoc correction. c Quantification of CD68-positive area 
(%) in 16-month-old WT, Grn+/−, Grn−/−, APP/PS1, APP/PS1 
Grn+/−, and APP/PS1 Grn−/− mice. Mean ±  SEM, n =  9 (WT), 4 
(Grn+/−, Grn−/−, APP/PS1 Grn+/−), 6 (APP/PS1), or 5 (APP/PS1 
Grn−/−), *p  <  0.05, **p  <  0.01, ***p  <  0.001; one-way ANOVA, 
with Tukey post hoc correction. d Representative images of Aβ and 
CD68 double immunostaining of frontal cortex of 6-month-old APP/
PS1 and APP/PS1 Grn−/− mice. Bar 200 μm. e Representative confo-
cal high-resolution images of CD68 and Aβ co-staining of frontal cor-
tex (corresponding to d, inset) of 6-month-old APP/PS1 and APP/PS1 
Grn−/− mice. The images were taken using the samples identical to 
the ones used in d. Bar 20 μm. f Quantification of CD68-positive Aβ 
area (%) in 6-month-old APP/PS1, APP/PS1 Grn+/−, and APP/PS1 
Grn−/− mice. Mean ± SEM, n = 5/genotype, ***p < 0.001; one-way 
ANOVA, with Tukey post hoc correction. g Representative images of 
CD68 and Aβ co-staining of frontal cortex of 16-month-old APP/PS1 
and APP/PS1 Grn−/− mice. Bar 200 μm. h Quantification of CD68-
positive Aβ area (%) in 16-month-old APP/PS1 and APP/PS1 Grn−/− 
mice. Mean ± SEM, n = 5/genotype, ****p < 0.0001; t test
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plaques is the likely proximal cause for decreased diffuse 
Aβ plaque growth in PGRN-deficient APP/PS1 mice.

PGRN deficiency reduces dystrophic neurites 
and partially restores behavior deficits of APP/PS1 mice

Given the detectable reduction of diffuse Aβ plaques 
in 16-month-old APP/PS1 Grn−/− mice, we examined 
whether PGRN deficiency affects axonal dystrophy and a 
memory deficit in APP/PS1 mice. LAMP-1-positive dys-
trophic neurites are associated with all sizes and ages of 
Aβ plaques and are present from the earliest detectable 
stages of Aβ deposition in AD mouse models [28]. We 
performed triple staining using ThioS, anti-Aβ (2454) 
antibody, and anti-LAMP-1 antibody and detected the 
dystrophic neurites even in ThioS-negative and anti-
Aβ-antibody-immunoreactive diffuse Aβ plaques in 
both 6- and 16-month-old APP/PS1 mice (Supplemen-
tary Figure  6a and 6b). This demonstrates an associa-
tion of the LAMP-1-positive dystrophic neurites with 
diffuse Aβ plaques, regardless of the presence of ThioS-
positive amyloid filaments. Consistent with diffuse Aβ 
plaque results, the dystrophic neurites are significantly 
reduced in both hippocampus and cortex in APP/PS1 
Grn−/− mice (Fig. 5a–c). To examine spatial memory, we 
tested 16-month-old APP/PS1 Grn−/− mice in the Morris 
water maze. The APP/PS1 mice require a longer latency 
time to locate a hidden platform across forward learn-
ing trials and spend less time in the target quadrant dur-
ing the probe trial 24  h after learning trials compared to 

WT mice, as previously reported [26] (Fig. 5d, e). PGRN 
deficiency reduces the spatial learning acquisition deficit 
in APP/PS1 mice at certain time points, although APP/PS1 
Grn−/− mice are indistinguishable from APP/PS1 mice in 
the probe trial (Fig. 5d, e). For APP/PS1 mice, the PGRN 
null state reduces axonal dystrophy and improves memory 
impairment moderately, in contradistinction to enhanced 
AD risk in humans with PGRN reduction.

PGRN deficiency increases accumulation of C1q 
on neuronal synapses

To explain the contradiction described above as well as 
moderate effects of PGRN deficiency on behavior defi-
cits despite a significant reduction in diffuse Aβ plaques 
in APP/PS1 mice, we considered whether other pheno-
types and molecular pathways might be modulated differ-
entially. Our human data with the GRN AD risk variant 
have shown an increase in CSF tau levels, which reflect 
neuronal damage accompanied by neurofibrillary tan-
gles. Recent studies indicate that complement activation, 
especially an increase in C1q, mediates neuronal syn-
aptic damage in AD and PGRN null mice [36, 53]. As 
the TNG also includes C1qA and C1qB, we examined 
whether PGRN deficiency affects synaptic accumulation 
of C1q in 6-month-old APP/PS1 mice. Consistent with 
the RNA analyses, C1q immunoreactivity is increased in 
dentate gyrus and frontal cortex in Grn−/− mice (Fig. 6a, 
b). Although there is no significant increase in the C1q 
immunoreactivity in APP/PS1 mice, the immunoreactivity 
is further increased in frontal cortex of APP/PS1 Grn−/− 
mice, compared to Grn−/− mice (Fig. 6a, b). Importantly, 
the staining pattern of the anti-C1q antibody is consistent 
with several previous studies [12, 53, 72]. We also tested 
another anti-C1q antibody that is validated by C1q null 
mice [36, 72], and confirmed a similar distribution pattern 
of C1q in both dentate gyrus and frontal cortex and an 
increase in the immunoreactivity in APP/PS1 Grn−/− mice 
(Supplementary Figure 7). High-resolution imaging anal-
yses of PSD-95 and C1q colocalization show an increase 
in the colocalization in Grn−/− and APP/PS1 Grn−/− mice 
(Fig.  6c, d). The colocalization pattern of PSD-95 and 
C1q is also similar to that in a previous study [36]. These 
results suggest that PGRN deficiency enhances synap-
tic accumulation of C1q that has been reported to cause 
neuronal damage [36, 53] in APP/PS1 mice. Thus, while 
PGRN deficiency-induced microglial TNG expression 
protects against diffuse Aβ plaques, it simultaneously has 
a detrimental effect on neurons, a downstream target of 
Aβ accumulation, which can also, at least in part, explain 
the moderate effects on behavior deficits in PGRN-defi-
cient APP/PS1 mice.

Fig. 4   PGRN deficiency induces expression of TYROBP network 
genes. a Quantitative real-time PCR analysis of transcription of 
pro-inflammatory genes (iNOS, IL1β, TNFα, and IL6) in 6-month-
old WT, Grn+/−, Grn−/−, APP/PS1, APP/PS1 Grn+/−, and APP/PS1 
Grn−/− mice. Mean ±  SEM, n =  6 (IL1β and TNFα) or 4 (iNOS 
and IL6)/genotype. b Quantitative real-time PCR analysis of tran-
scription of anti-inflammatory genes (Arg, IL1β, TNFα, and IL6) in 
6-month-old WT, Grn+/−, Grn−/−, APP/PS1, APP/PS1 Grn+/−, and 
APP/PS1 Grn−/− mice. Mean ± SEM, n = 6 (Fizz1 and Ym1) or 4 
(Arg1 and TGFβ)/genotype. c TYROBP network genes (TNG) identi-
fied by STRING database analysis of upregulated genes (FDR < 0.05, 
logFC > 0.2) in our genome-wide RNA-seq analysis and a previous 
microarray study. For more detail information, see Supplementary 
Figure  5 and Supplementary Table  2. d Quantitative real-time PCR 
analysis of transcription of TYROBP network genes (TYROBP, 
TREM2, MS4A7, EMR1, C1qA, CD68, cathepsin S (CatS), Lyz2, 
CD22, and CCL8) in 6-month-old WT, Grn+/−, Grn−/−, APP/PS1, 
APP/PS1 Grn+/−, and APP/PS1 Grn−/− mice. Mean ± SEM, n = 4/
genotype. *p  <  0.05, **p  <  0.01, ***p  <  0.001; one-way ANOVA, 
with Tukey post hoc correction. e Representative images of fluores-
cent beads (1:400 dilution) phagocytosis assay using WT and Grn−/− 
primary microglia. Bar 100 μm. f Quantification of beads-positive 
Iba1 area (%) in fluorescent beads phagocytosis assay using two dif-
ferent dilutions 1:400 and 1:800. Mean ± SEM, n = 3. *p < 0.05; t 
test
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Fig. 5   PGRN deficiency reduces axonal dystrophy and learning 
deficit in APP/PS1 mice. a Representative images of LAMP-1-pos-
itive dystrophic neurites of hippocampus (Hipp) and cortex (Ctx) of 
16-month-old APP/PS1 and APP/PS1 Grn−/− mice. Bar 200  μm. 
b Quantification of LAMP-1-positive dystrophic neurite area (%) 
in hippocampus (Hipp) and cortex (Ctx) of 16-month-old APP/
PS1 and APP/PS1 Grn−/− mice. Mean ± SEM, n =  5. **p < 0.01, 
***p < 0.001; t test. c Representative confocal high-resolution images 
of LAMP-1-positive dystrophic neurites and Aβ co-staining of frontal 
cortex (corresponding to Fig. 6a, white square) of APP/PS1 and APP/
PS1 Grn−/− mice. Bar 20 μm. d MWM forward learning trial of aged 
WT, Grn−/−, APP/PS1, and APP/PS1 Grn−/− mice. Spatial learn-
ing is plotted as latency to find hidden platform. Mean ± SEM, WT, 

n = 14; Grn−/−, n = 8; APP/PS1, n = 12; APP/PS1 Grn−/−, n = 7. 
Performance differed across the last four trials by genotypes. There 
was an interaction between APP/PS1 transgenes and Grn genotype. 
**p < 0.01; two-way RM ANOVA. By Bonferroni post hoc compari-
sons, the APP/PS1 group differed from the WT group (***p < 0.001). 
In the trial number 3 and 4, the APP/PS1 group differed from the WT 
group, whereas none of the other groups differed from each other, as 
shown in figure. **p < 0.01; one-way ANOVA, with Tukey post hoc 
correction. e MWM probe trial after reverse trial of aged WT, Grn−/−, 
APP/PS1, and APP/PS1 Grn−/− mice. Percentage of time spent in the 
target quadrant and averaged time spent in all other (a.o.) quadrants. 
Mean ± SEM, WT, n = 14; Grn−/−, n = 8; APP/PS1, n = 12; APP/
PS1 Grn−/−, n = 7. **p < 0.01, ***p < 0.001; t test
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Fig. 6   PGRN deficiency 
increases C1q deposition on 
PSD-95-positive synapses. a 
Representative images of C1q 
staining of dentate gyrus (DG) 
and frontal cortex (FC) of 
6-month-old WT, Grn−/−, APP/
PS1 and APP/PS1 Grn−/− mice. 
Bar 200 μm. b Quantification 
of C1q-immunoreactivity in DG 
and FC of 6-month-old WT, 
Grn−/−, APP/PS1 and APP/PS1 
Grn−/− mice. Mean ± SEM, 
n = 4/genotype, *p < 0.05, 
**p < 0.01, ***p < 0.001; one-
way ANOVA, with Tukey post 
hoc correction. c Representative 
confocal high-resolution images 
of PSD-95 and C1q co-staining 
of FC of 6-month-old WT and 
APP/PS1 Grn−/− mice. Arrows 
indicate colocalization of PSD-
95 and C1q puncta. Bar 10 μm. 
d Quantification of PSD-95 and 
C1q colocalization in FC of 
6-month-old WT, Grn−/−, APP/
PS1 and APP/PS1 Grn−/− mice. 
Mean ± SEM, n = 4/genotype, 
**p < 0.01, ***p < 0.001; one-
way ANOVA, with Tukey post 
hoc correction
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Tau pathology is exacerbated in human P301L 
tau‑expressing Grn−/− mice

The CSF tau data and the results of enhanced synaptic 
C1q accumulation in Grn−/− mice prompted us to further 
examine the effects of PGRN deficiency on neuronal tau 
dysfunction. We first tested whether tau phosphorylation is 
increased in APP/PS Grn−/− mice by immunoblot analy-
sis using phospho-specific antibodies. Although no differ-
ence in tau phosphorylation between 16-month-old WT and 
APP/PS1 mice is observed, there is a significant increase 
in phosphorylation of tau at S404 in 16-month-old APP/
PS1 Grn−/− mice, compared with WT mice (Fig.  7a, b). 
A trend toward an increased tau phosphorylation at T181 
is also observed but does not reach statistical significance. 
It should be noted that APP/PS1 mice do not exhibit tau 
pathologies including neurofibrillary tangles. Therefore, 
to further investigate human tau pathology in the absence 
of Aβ accumulation, we took advantage of adeno-associ-
ated virus (AAV) vector that expresses human P301L tau 
1–441 under the control of the neuron-specific synapsin-1 
promoter. This AAV vector has been used to accelerate tau 
pathologies in mice and prominent AT8 pathology has been 
detected at least at 28 days post-injection [2]. We injected 
the AAV expressing human P301L tau (and GFP) into the 
entorhinal cortex of WT and Grn−/− mice (Supplementary 
Figure  8a) and analyzed tau pathologies at 28  days post-
injection. To detect tau pathology, we used AT8 (PHF phos-
pho-S202 and phospho-T205) and AT180 (PHF phospho-
T231) antibodies because they have been most commonly 
used for this purpose and are commercially available. 
Immunohistochemical analysis shows that both AT8 and 
AT180 signals are significantly increased in Grn−/− mice 

compared to WT (Fig. 7c, d, f, g). High-resolution confo-
cal microscopy confirms an increase in neuronal AT8 and 
AT180 pathologies in Grn−/− mice (Fig.  7e). In contrast, 
HT7 staining for human tau shows no difference in total 
viral-mediated expression of human mutant tau in entorhi-
nal cortex between WT and Grn−/− mice (Fig. 7h; Supple-
mentary Figure 8b). It should be noted that the human CSF 
(Fig. 1) and mouse brain tissue (Fig. 7) showed differential 
effects of GRN on phospho-tau and total tau. Nonetheless, 
the human data from GRN AD risk variants together with 
mouse data from human P301L tau-expression in knock-
outs show that PGRN reduction exacerbates tau pathology 
in AD irrespective of Aβ pathology.

Discussion

The major conclusions of the present study are that GRN 
AD risk variant increases CSF tau levels without affecting 
Aβ pathology in humans and that PGRN deficiency exac-
erbates tau pathology while it protects against diffuse Aβ 
plaques in mice. The opposing effects of PGRN deficiency 
observed in mice are, at least in part, associated with induc-
tion of microglial TNG expression, including TYROBP, an 
AD risk factor TREM2, and a complement protein C1q. 
Importantly, PGRN deficiency can modify microglial 
phenotype and enhance tau pathology independent of Aβ 
pathology.

The purpose of this study was to investigate how PGRN 
reduction by GRN rs5848 variant or GRN mutation could 
modify AD pathophysiology and increase AD risk and we 
unexpectedly found that GRN rs5848 T allele and PGRN 
deficiency have no exacerbating effects on Aβ pathology 
in humans and rodents, respectively. Moreover, complete 
absence of PGRN prevents diffuse Aβ plaque growth lead-
ing to less severe axonal dystrophy and a partial rescue of 
behavior phenotypes in an APP/PS1 amyloidosis mouse 
model. This protective effect could be explained by an 
induction of the TNG expression by PGRN deficiency. 
Interestingly, the enhanced TNG expression is not due to 
an increase in microgliosis because PGRN absence has no 
significant effects on the number of Iba1-positive micro-
glia or typical pro-inflammatory and anti-inflammatory 
genes at 6 months of age. There is also a further increase 
in expression of several TNG components in APP/PS1 
Grn−/− mice, although we detect no significant changes 
in the TNG or pro-inflammatory or anti-inflammatory 
genes in APP/PS1 mice, in distinction to previous stud-
ies investigating neuroinflammation in AD mouse models 
[68]. This discrepancy is likely explained by a difference 
in mouse age [33]. Many previous studies have used aged 
AD mouse models while we performed qRT-PCR analysis 
using 6-month-old animals. In fact, we observed a dramatic 

Fig. 7   PGRN deficiency exacerbates tau pathology in human P301L 
tau-expressing Grn−/− mice. a Immunoblot analysis using anti-
phospho-S404, anti-phospho-T181, anti-tau, and anti-actin antibod-
ies of the TBST-soluble fractions in 16-month-old WT, APP/PS1, 
and APP/PS1 Grn−/− mice. b Quantification of immunoblot (a). 
Mean ± SEM, n = 3–5/genotype. *p < 0.05; one-way ANOVA, with 
Tukey post hoc correction. c Representative images of AT8 and GFP 
double immunostaining of entorhinal cortex of human P301L tau and 
GFP-expressing WT and Grn−/− mice. Bar 200 μm. d Representative 
images of AT180 and GFP double immunostaining of entorhinal cor-
tex of human P301L tau and GFP-expressing WT and Grn−/− mice. 
Bar 200  μm. e Representative confocal high-resolution images of 
AT8 and A180 immunostaining of entorhinal cortex (corresponding 
to c and d, white squares) of human P301L tau and GFP-expressing 
WT and Grn−/− mice. Bar 10 μm. f Quantification of AT8 signals 
normalized by GFP signals in human P301L tau and GFP-expressing 
WT and Grn−/− mice. Mean ± SEM, n =  8/genotype. *p < 0.05; t 
test. g Quantification of AT180 signals normalized by GFP signals 
in human P301L tau and GFP-expressing WT and Grn−/− mice. 
Mean ±  SEM, n =  8/genotype. *p  <  0.05; t test. h Quantification 
of HT7 signals normalized by GFP signals in human P301L tau and 
GFP-expressing WT and Grn−/− mice. Mean ±  SEM, n =  8/geno-
type
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increase in CD68-immunoreactive area in 16-month-old 
APP/PS1 mice while there is no such change at 6 months 
of age. We also showed that PGRN deficiency facilitates 
microglial phagocytosis in vitro, consistent with a previous 
study using PGRN-deficient peripheral macrophages [40]. 
It is thus possible that increased TNG expression coop-
eratively facilitates microglial phagocytosis to reduce dif-
fuse Aβ plaque pathology. Importantly, a recent study has 
shown upregulation of very similar microglial gene net-
work including TREM2, TYROBP, MS4A7, CD68, C1qA, 
C1qB, and Lyz2 by PGRN deficiency [53], supporting this 
conclusion. The mechanisms by which PGRN deficiency 
induces microglial TNG expression will require further 
investigation.

CD68 has been commonly used as a marker for “acti-
vated” microglia. However, we detected no significant 
changes in microglial morphology or in expression of 
typical pro- and anti-inflammatory genes by 6-month-
old Grn−/− mice despite the dramatic increase in CD68-
immunoreactivity and TNG mRNA levels. It appears likely 
that CD68 is upregulated as a part of the TNG involved in 
protein degradation following phagocytosis together with 
cathepsins CatS and CatZ in Grn−/− mice, rather than as a 
marker of typical microglial “activation”, although the pre-
cise role of CD68 in lysosome remains unclear. Our data 
thus caution against simple interpretation of CD68 immu-
nohistochemistry as microglial activation. In future studies, 
careful characterization of microglia by gene expression 
analyses, in addition to CD68 immunostaining, will be nec-
essary to determine specific microglial phenotypes.

A reduction in diffuse Aβ plaques is detected only in 
16-month-old APP/PS1 Grn−/− mice despite increased 
TNG expression by PGRN deficiency at 6 months of age 
in our study. We found that microglia are rarely present 
around small ThioS-negative and anti-Aβ (2454) antibody-
positive diffuse Aβ plaques whereas pronounced microglial 
accumulation is observed around ThioS-positive amy-
loid plaques even in 6-month-old APP/PS1 mice, regard-
less of PGRN. Consistent with this result, we also found 
that PGRN deficiency has no significant effect on Iba-
1-immunoreactive microgliosis on APP/PS1 background. 
Importantly, recent studies have shown that microglia and 
TREM2/TYROBP play a critical role in reducing the dif-
fuse Aβ deposition associated with already formed Aβ 
plaques and in reducing axonal dystrophy [15, 77, 83]. Our 
results thus suggest that Grn−/− microglia may prevent 
diffuse Aβ plaque growth from ThioS-positive dense-core 
amyloid plaques most efficiently, rather than delaying the 
initial formation (onset) of diffuse Aβ plaques. Further-
more, this is mediated, at least in part, by enhanced phago-
cytosis. In human florbetapir-PET analysis with the ADNI 
dataset, we have not seen a reduction of Aβ pathology by 
GRN AD risk variant. This result might be due to the PET 

tracer possessing a higher affinity for dense-core amyloid 
plaques, although the full in  vivo specificity of the tracer 
remains to be determined [44].

Our Aβ plaque results are, however, inconsistent with 
a previous study using a different AD mouse model with 
conditional PGRN deletion [56]. One potential explana-
tion for this contradiction is that the previous study utilized 
the LysM-cre mice lacking endogenous Lyz2, a gene sig-
nificantly upregulated in Grn−/− and APP/PS1 Grn−/− mice 
in previous [53, 65] and our studies. Humans have one 
lysozyme gene, while mice have two encoding LyzM and 
LyzP [23], and the gene product lysozyme is reportedly 
increased in CSF of AD patients and has a protective role 
in Aβ aggregation in vitro and in fly [34]. Lyz2 deficiency 
alone might affect Aβ pathology directly or indirectly by 
compromising TNG-related microglial phenotypes by 
PGRN deficiency. Alternatively, artificial PGRN reduction 
in a subset of neurons and microglia by LysM-cre mice 
[5] and/or AD mouse models used may yield complicated 
outcomes reflecting the varied and multifactorial and indi-
rect actions of PGRN on Aβ pathology. However, regard-
less of difference in mouse models, our analyses of human 
florbetapir-PET and CSF Aβ42 dataset clearly suggest that 
GRN rs5848 T allele increases AD risk not by altering Aβ 
accumulation.

In contrast to Aβ pathology, our analysis of ADNI data-
base shows that GRN rs5848 T allele increases CSF tau 
levels in a T allele dose-dependent manner. The difference 
between GRN rs5848 genotype CC and TT is greater than 
the one between NL and EMCI in the ADNI cohort, sug-
gesting an importance of this change for increasing AD 
risk. We also found that PGRN deficiency increases tau 
AT8 and AT180 pathologies in human P301L tau-express-
ing mice. PGRN haploinsufficiency causes FTLD with tau-
negative and TDP-43-positive inclusions [3, 19, 60]. How-
ever, in several GRN mutations, tau pathology is observed 
in addition to TDP-43 inclusion, showing an association of 
GRN mutation with tau pathology [52, 59, 62]. Although 
we utilized the AAV vector to examine tau pathologies in 
mice, AAV injection can be associated with impairment of 
the blood–brain barrier and inflammation during the period 
in which abnormal tau aggregates are formed. In addition, 
as expression from AAV may be transient, germline-mod-
ified tauopathy models may be closer to chronic human 
diseases. Of note, the recent report that PGRN haploinsuf-
ficiency increases tau phosphorylation in P301L tau trans-
genic mice [37] strongly supports our conclusion from 
AAV studies. The mechanism by which PGRN reduction 
increases CSF tau levels and tau pathology will be a fruit-
ful site for further investigation. Both cell-autonomous 
and non-cell-autonomous mechanisms are possible, since 
neuroinflammation has been implicated in tau pathology 
as described previously [54]. The TNG-related microglial 
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phenotype by PGRN deficiency might exacerbate tau phos-
phorylation despite a reduction in diffuse Aβ plaque pathol-
ogy in a non-cell-autonomous manner, similar to previous 
studies using IL-1β-overexpressing mice and CX3CL1-
deficient mice [25, 51]. Our results of C1q immunostaining 
suggest that greater neuronal injury by enhanced C1q accu-
mulation may exacerbate tau phosphorylation and release 
into the CSF in GRN AD risk variants. It will be interesting 
to analyze C1q levels in CSF or brain sections of humans 
with GRN AD risk variant.

It also remains unclear how the GRN AD risk vari-
ant affects CSF tau but not CSF p-tau181 in our human 
study and how it is related to our mouse studies showing 
an increase in AT8 and AT180 pathologies by PGRN defi-
ciency. CSF phospho-tau is thought to reflect phospho-
rylation states of tau in the brain [6, 30, 67]. While CSF 
p-tau181 has been widely used in CSF biomarker studies, 
other p-tau epitopes such as p-tau199, p-tau231, p-tau404 
are also increased in AD patients [6, 30, 67]. A study com-
paring p-tau181, p-tau199, and p-tau231 using the same 
samples shows similar discrimination between AD and 
control [6, 31]. Previous CSF biomarker studies as well as 
the ADNI dataset in this study suggest that p-tau181-nega-
tive p-tau species are also present in the brain and released 
into the CSF of AD patients. Interestingly, although CSF 
p-tau181 shows a discrimination between AD and con-
trol, the relationship between CSF p-tau181 and AT8 
(p-tau202  +  205) and AT180 (p-tau231) pathologies is 
still controversial and CSF p-tau231 showed a better cor-
relation in AD in previous studies [9, 10]. In the present 
study of APP/PS1 mice lacking PGRN, we detected no 
significant difference in phospho-T181 tau while there 
was an increase in phospho-S404. Therefore, one poten-
tial hypothesis to connect between our human and rodent 
results is that the GRN AD risk variant or PGRN reduction 
might affect p-tau181-negative p-tau species to cause AT8 
and AT180 tau pathologies. Again, further investigations 
using the postmortem brain with GRN AD risk variant as 
well as genetically modified tauopathy mouse models will 
be needed to confirm this hypothesis.

Despite evidence that PGRN haploinsufficiency causes 
FTLD in human, most of previous studies have failed to 
see significant effects with mechanistic insight in Grn+/− 
mice [1, 27, 42, 53, 61, 80]. In the present study, we also 
observed no obvious phenotypic changes in Grn+/−  mice 
with or without APP/PS1 transgene, compared to WT. The 
mechanism by which PGRN reduction differentially affects 
human and mouse brain functions is currently unclear and 
further investigation will be required.

In summary, studies with an amyloidosis mouse model 
lacking PGRN and genetic associations in the ADNI 
database argue against global PGRN reduction having an 
exacerbating effect on Aβ accumulation. Critically, as an 

alternative hypothesis for an increased AD risk by PGRN 
reduction, our studies of human CSF tau levels and human 
P301L tau-expressing mice show a role of PGRN in tau 
pathology. Furthermore, identification and characterization 
of TNG and a TNG-related microglial phenotype in this 
study provide novel insights into understanding of neurode-
generative disorders including AD and FTLD.
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