
1 3

Acta Neuropathol (2017) 133:43–60
DOI 10.1007/s00401-016-1627-0

ORIGINAL PAPER

Peripheral VH4+ plasmablasts demonstrate autoreactive B 
cell expansion toward brain antigens in early multiple sclerosis 
patients

Jacqueline R. Rivas1 · Sara J. Ireland1 · Rati Chkheidze2 · William H. Rounds1 · Joseph Lim1 · Jordan Johnson1 · 
Denise M. O. Ramirez1 · Ann J. Ligocki1 · Ding Chen1 · Alyssa A. Guzman1 · Mark Woodhall3 · Patrick C. Wilson4 · 
Eric Meffre5 · Charles White III2 · Benjamin M. Greenberg1 · Patrick Waters3 · Lindsay G. Cowell6 · 
Ann M. Stowe1 · Nancy L. Monson1,7 

Received: 3 May 2016 / Revised: 23 September 2016 / Accepted: 23 September 2016 / Published online: 11 October 2016 
© Springer-Verlag Berlin Heidelberg 2016

recognize only a portion of cortical neurons, indicating that 
the response may be specific to neuronal subgroups or lay-
ers. Furthermore, CIS-PTM patients with this plasmablast 
response also exhibit modest reactivity toward neuroan-
tigens in the plasma IgG antibody pool. Taken together, 
these data indicate that expanded VH4+ peripheral plas-
mablasts in early MS patients recognize brain gray matter 
antigens. Peripheral plasmablasts may be participating in 
the autoimmune response associated with MS, and pro-
vide an interesting avenue for investigating the expansion 
of autoreactive B cells at the time of the first documented 
clinical event.

Keywords  Plasmablast · Multiple sclerosis · 
Autoantibody · B cell · Antigen receptor genetics

Introduction

Multiple Sclerosis (MS) is an autoimmune disorder of the 
central nervous system (CNS) that results in a loss of neu-
rological function [39, 60]. Throughout disease the adap-
tive immune system mediates brain inflammation and 
lesion formation in these patients [7, 43, 61]. Although MS 
was historically thought to be driven by T cells [44], evi-
dence for the importance of B cells in MS produced a shift 
in this perspective [25, 26]. The efficacy of B cell depletion 
therapy (BCDT) [40, 50], the prevalence of B cells in type 
II MS lesions [61], and the inverse correlation between 
memory B cell repopulation and benefit from BCDT [1] 
all support the hypothesis that B cells play a central role in 
pathogenesis [25, 26].

One B cell subtype of particular interest is the plasmablast, 
which normally develops in the blood as a part of the antigen-
stimulated memory B cell response to pathogens [30, 32, 55, 

Abstract  Plasmablasts are a highly differentiated, anti-
body secreting B cell subset whose prevalence correlates 
with disease activity in Multiple Sclerosis (MS). For most 
patients experiencing partial transverse myelitis (PTM), 
plasmablasts are elevated in the blood at the first clinical 
presentation of disease (known as a clinically isolated syn-
drome or CIS). In this study we found that many of these 
peripheral plasmablasts are autoreactive and recognize pri-
marily gray matter targets in brain tissue. These plasmab-
lasts express antibodies that over-utilize immunoglobulin 
heavy chain V-region subgroup 4 (VH4) genes, and the 
highly mutated VH4+ plasmablast antibodies recognize 
intracellular antigens of neurons and astrocytes. Most of the 
autoreactive, highly mutated VH4+ plasmablast antibodies 
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69]. Plasmablasts are identified by the upregulation of CD27 
and simultaneous expression of CD38 and CD95, and secrete 
large amounts of antibody [3, 32, 34, 48, 70]. They also pro-
duce IL-10, which positively feeds back to promote the dif-
ferentiation and expansion of IgG and IgM antibody secret-
ing cells [41]. After 2–3 weeks, plasmablasts either undergo 
apoptosis or differentiate into long-lived plasma cells [30, 32, 
55, 69], thus the presence of plasmablasts indicates an active 
B cell response and represents the fraction of B cells that are 
currently responding to stimulus. Plasmablasts also represent a 
large proportion (5–40%) of the B cell pool in the cerebrospi-
nal fluid (CSF) of untreated early and established MS patients 
[58] and their frequency correlates with increased inflamma-
tion as assessed by MRI [18]. They are also elevated in the 
blood of patients experiencing their first clinical attack, and 
when left untreated, their frequency continues to rise [58].

Despite these observations, the role of plasmablasts and 
secreted antibodies in MS has been difficult to explicate 
[25, 54]. The function of secreted antibody was particu-
larly questioned since BCDT begins to take effect before 
antibody titers are appreciably altered [40]. However, the 
importance of the antibody goes beyond its secreted form, 
as membrane bound antibody is the primary factor in issu-
ing B cell development and effector function [35, 64]. For 
example, B cells that lack cognate antigen recognition in 
germinal centers are removed from the B cell pool while 
those that engage cognate antigen are prompted towards 
activation, clonal expansion and affinity maturation [64, 
100]. Thus, there is a critical relationship between the anti-
body expressed by B cells, the antigen recognized, and the 
B cell’s potential to participate in an immune response.

Still, autoreactive antibodies secreted by plasmablasts 
or plasma cells may contribute to the disease by binding to 
self-antigens and mediating cell and tissue damage. Previ-
ous data from our laboratory demonstrated that B cells in 
the CSF of early and established MS patients express anti-
bodies with a particular mutational pattern that bind gray 
matter targets in brain tissue, such as neurons and astro-
cytes [57]. Others have demonstrated that antibodies from 
clonally expanded MS CSF B cells that bind gray matter 
targets mediate complement deposition and damage to neu-
rons in vitro, and pooled CSF antibodies from MS patients 
can mediate neurological dysfunction in vivo [12, 24].

Since we found that clinically isolated syndrome (CIS) 
patients display an expansion of plasmablasts during their 
first attack of partial transverse myelitis (PTM), we asked 
whether the peripheral plasmablasts from these patients har-
bor autoreactivity to CNS antigens. CIS-PTM patients are of 
particular interest as they display an expansion of plasmab-
lasts [58], and focusing on this group increases homogeneity 
of the patients in the study. To this end, we isolated single 
peripheral plasmablasts from our CIS-PTM patients, cloned 
the expressed antibodies, and investigated the antibody’s 

reactivity to brain antigens using a panel of methodologies. 
We found that antibodies expressed by plasmablasts from 
these early MS patients display high levels of reactivity for 
cellular and protein targets in the brain. Remarkably, only 
those antibodies that utilized variable heavy chain family 4 
(VH4) genes bound strongly to brain antigens. Elevated lev-
els of CNS reactive antibodies were detected in the plasma 
pool of many patients for whom CNS-reactive plasmablasts 
were detected. To our knowledge this is the first evidence for 
reactivity of peripheral plasmablasts from CIS-PTM patients 
to brain antigens, demonstrating their autoreactive nature.

Methods

Patient sample processing

Persons recruited for this study gave informed consent 
for the collection and utilization of blood according to the 
guidelines provided by the institutional review board at 
UTSWMC. Treatment naïve clinically isolated syndrome 
(CIS) patients with partial transverse myelitis symptoms 
(PTM) at high risk for developing MS, age and gender 
matched treatment naïve Neuromyelitis Optica (NMO) 
patients with established disease (used in the genetic anal-
ysis, cloning, and plasma antibody experiments), age and 
gender matched NMO patients on Cellcept therapy (used 
in the plasma antibody ELISA experiments), and age and 
gender matched healthy donors were included in this study 
(Table 1). CIS-PTM patients were defined as high risk for 
MS because the patients presented with at least one non-
enhancing brain white matter lesion by MRI and the CSF 
was positive for oligoclonal banding or had a high IgG 
index. Average time to MS evolution was 12 months. NMO 
patients were diagnosed by the 2006 criteria and either 
ELISA or a cell-based assay was used to detect aquaporin-4 
(AQP4) reactive antibodies in patient serum (Table 1). Only 
treatment naive NMO patients were used as comparators 
for immunoglobulin gene analysis and antibody cloning. 
Peripheral blood mononuclear cells (PBMCs) were isolated 
from the blood by Ficoll separation and stained with fluo-
rescent antibodies as previously described [58]. B cells were 
gated from PBMCs as CD45+CD19+ cells, then memory B 
cells (CD19+CD27+) and plasmablasts (CD19+CD27high, 
as defined by others [34, 48]) were sorted individually into 
96-well plates using the BD FACSAria flow cytometer (BD 
Biosciences, San Jose, CA, USA).

Single cell polymerase chain reaction 
and immunoglobulin gene analysis

Individually sorted B cell subpopulations were flash 
frozen and lysed. Upon thawing, mRNA was reverse 
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transcribed and immunoglobulin variable regions were 
amplified with multiple rounds of PCR as previously 
described [58]. Sanger sequencing was used at the 
UTSWMC sequencing core to generate the antibody vari-
able domain reads. Sequence data was analyzed using 
the VDJserver online repertoire analysis tool (https://
vdjserver.org/). Unproductive antibody rearrangements 
and truncated sequence reads (did not extend from the 
beginning of CDR1 to the first two codons of the J gene) 
were filtered out of the database. CIS-PTM and NMO 
sequence data was compared to healthy control CD19+ B 
cells provided by Peter Lipsky at UTSWMC [37, 67] and 
influenza responding plasmablasts from otherwise healthy 
donors as previously described [105]. GraphPad Prism 
software was used to determine the statistical significance 
of differences between groups and build graphs for fig-
ures. Frequencies were first subject to an arcsine transfor-
mation, as is appropriate for comparisons of frequencies, 
and non-parametric ANOVA was used with a post hoc 
analysis to do pairwise comparison of patient groups with 
the healthy controls by  the Dunnett multiple comparison 
method [107].

Antibody cloning and production

Plasmablasts from CIS-PTM and NMO patients expressing 
highly mutated VH4 or VH3 heavy chains were selected 
for production. The variable domains were synthesized 
(Integrated DNA Technologies, Corallville, IA) and bi-
directionally cloned into an IgG1 backbone provided by 
Michel Nussenzweig at the Rockefeller University as 
previously described [92]. The 6 IgG1 antibodies cloned 
from one healthy donor used as controls were also previ-
ously described [51]. Betty Diamond at the Hofstra North-
well School of Medicine provided the DNA for two con-
trol IgG1 antibodies, B1 and G11, which serve as isotype 
negative and positive controls, respectively [109]. Protocol 
details are provided in the supplemental methods.

Tissue and antigen ELISAs

Mouse tissues were used in this study to avoid epitope deg-
radation that may occur when tissues are not immediately 
processed post mortem. Mouse brain and kidney lysates 
were made as described elsewhere [51] and the protocol 
was adapted from this reference. Protocol details are pro-
vided in the supplemental methods. In brief, plates were 
coated with 10 µg/mL of lysate or 1 µg/mL of purified anti-
gen in bicarbonate buffer overnight then blocked. Dilutions 
of rhAbs or patient plasma were added overnight, followed 
by incubation with biotinylated anti-human IgG (eBiosci-
ence, San Diego, CA, USA) then streptavidin-HRP (BD 
Pharmigen, San Jose, CA, USA) and detection by TMB Pa
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substrate according to manufacturer recommendations 
(eBioscience, San Diego, CA, USA). Background sig-
nal (typically 0.05–0.09, defined as wells without primary 
antibody) was subtracted from each measured well. Patient 
rhAbs were defined as positive by ELISA if the average 
absorbance of the rhAb at 20 and 10 µg/mL was more than 
two standard deviations higher than the average absorbance 
of the healthy donor rhAbs at 20 µg/mL.

Immunohistochemistry (IHC)

Healthy and diseased (experimental autoimmune encepha-
lomyelitis [EAE] or stroke) mouse brains were preserved, 
cryosectioned and used for immunohistochemistry as 
described previously [57, 85]. Protocol details are provided 
in the supplemental methods. Blinded experts in histol-
ogy and pathology (co-authors RC, DR and AS) assessed 
staining of the rhAbs. Images for publication were pre-
pared using Zeiss ZEN lite software (Zeiss, Oberkochen, 
Germany).

Immunocytochemistry (ICC)

Hep2 ICC was performed with a Hep-2 Substrate Slide 
antinuclear antibody kit according to the manufacturer’s 
instructions (MBL International, Woburn, MA). For SH-
Sy5y staining, glass coverslips were coated with laminin 
and SH-Sy5y were plated overnight. The following day, 
cells were fixed and blocked before adding primary rhAbs 
overnight. The next day, secondary antibodies were added 
followed by DAPI staining and imaging. Protocol details 
are provided in the Supplemental Methods.

Supplemental methods

A separate document includes detailed methodology for the 
following: Antibody Cloning and Production, Tissue and 
Antigen ELISAs, Immunohistochemistry (IHC), Stained 
Cell Enumeration of Mouse Cortical Sections, IHC Signal 
Affinity Verification, Immunocytochemistry (ICC), Cell 
Based Assay for AQP4 Binding, Cellular Fractionation and 
Western Blotting, and rhAb Binding by Flow Cytometry.

Results

Expansion of peripheral PBs is common to patients 
experiencing transverse myelitis symptoms

Previously, our laboratory demonstrated that peripheral 
plasmablasts are expanded in clinically isolated syndrome 
(CIS) patients experiencing their first partial transverse 
myelitis (PTM) attack [58]. To ascertain the extent of this 
increase, we determined the frequency of CD19+CD27high 
plasmablasts in PBMCs from CIS-PTM patients as com-
pared to Neuromyelitis Optica (NMO) patients and healthy 
donors (Fig.  1a). Plasmablasts are typically expanded in 
NMO, a demyelinating neurological disease where patients 
similarly experience PTM, but do not classically exhibit the 
same pattern of brain inflammation as MS patients [77]. 
Therefore, these patients provided a relatively homogenous 
comparator for our CIS-PTM cohort, rather than patients 
with a variety of other neurological diseases. As expected, 
peripheral plasmablasts were expanded in NMO patients 
over steady state production found in healthy donors (2.12 
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Fig. 1   a Representative flow cytometry plot for detecting 
CD19+CD27high plasmablasts from the peripheral blood of a CIS-
PTM patient. b Percentage of plasmablasts (CD19+CD27high) of 
CD19+ B cells in blood samples from patient groups as measured by 
flow cytometry. Levels are elevated for CIS-PTM patients as com-
pared to healthy donors, much like that of NMO patients. c Repre-
sentation of VH4 family genes in single cell PCR plasmablast reper-

toires of CIS-PTM and NMO patients as compared to plasmablasts 
responding to influenza infection in otherwise healthy donors. VH4 
family gene usage is increased in CIS-PTM patients as compared to 
plasmablasts responding to influenza infection. NMO patients have a 
similar trend toward VH4 expansion, although it did not reach statisti-
cal significance. *p < 0.05, **p < 0.01
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vs 0.71%, p  =  0.01), and the frequency was similarly 
elevated in CIS-PTM patients (2.10 vs 0.71%, p = 0.005) 
(Fig. 1b).

Expanded peripheral PBs in CIS‑PTM patients 
over‑utilize VH4 antibody genes

Considering the importance of the B cell receptor in the 
development and function of B cells, we then investigated 
the antibody gene repertoire of CIS-PTM plasmablasts 
for features of dysregulation. B cells generate their unique 
antigen receptor by the processes of immunoglobulin gene 
segment recombination, light and heavy chain pairing, and 
somatic hypermutation [56]. Previous data from our labo-
ratory [16] demonstrated that CSF B cells of CIS-PTM 
patients at high risk to convert to MS tend to over-utilize 
one family of immunoglobulin gene segments, immuno-
globulin heavy chain V-region subgroup 4 (VH4). To deter-
mine whether CIS-PTM peripheral plasmablasts also tend 
to utilize VH4 genes, we isolated and sequenced the vari-
able domain of immunoglobulins from individual periph-
eral plasmablasts of CIS-PTM and NMO patients. Anti-
body repertoire data from these peripheral plasmablasts 
were compared to the ones deposited in published control 
databases of healthy total peripheral B cells [67] and flu-
responding peripheral plasmablasts from otherwise healthy 
donors [105].

Approximately 19% of peripheral plasmablasts from 
healthy donors responding to influenza infection utilize 
VH4 genes (Fig.  1c), which is a similar proportion to 
that of healthy donor total peripheral B cells (20%, Sup-
plemental Fig.  1b) [37]. In contrast, 32% of peripheral 
plasmablasts from CIS-PTM patients utilize VH4 genes, 
which was statistically higher than flu-responding periph-
eral plasmablasts (CIS-PTM vs HD, 32 vs 19%, p = 0.04) 
(Fig.  1c). Plasmablasts from NMO patients demon-
strated a similar trend toward expansion of VH4 usage, 
although this did not reach statistical significance (33%, 
p = 0.13). When individual genes within the VH4 family 
are assessed, no  single gene was expanded in CIS-PTM 
patients compared to controls, nor were there expanded 
genes in the other heavy chain variable domain families 
(Supplemental Fig.  1a). Similarly, no particular kappa 
light chain V gene or V gene family was overrepresented 
(Supplemental Fig.  2a, 2c). However, CIS-PTM plasma-
blasts more commonly expressed antibodies that utilized 
downstream light chain J gene segments in comparison to 
flu-responding plasmablasts (Supplemental Fig. 2d). JK5 
was expanded in CIS-PTM plasmablasts in comparison 
to flu-responding plasmablasts (40 vs 11%, p = 0.0065), 
while JK1 was under-utilized (4.5 vs 38%, p = 0.0072). 
Common indicators of autoreactivity such as increased 
heavy chain CDR3 length and an over-representation of 

positively charged heavy chain CDR3 regions [101] were 
not present (Supplemental Fig.  1d, 1e). Additional anti-
body genetic analysis is provided in Supplemental Figs. 1 
and 2.

CIS‑PTM peripheral plasmablasts bind strongly 
to brain antigens

We then sought to examine whether the antibodies 
expressed by the peripheral plasmablasts of CIS-PTM 
patients are autoreactive. To do this, recombinant human 
antibodies (rhAbs) from 38 peripheral plasmablasts were 
generated from seven treatment naive CIS-PTM patients 
(designated as CIS with a two-digit number). 10 rhAbs 
from four treatment naive NMO patients were also gener-
ated (designated as NMO with a two-digit number) and 6 
rhAbs from one healthy donor were used as controls (des-
ignated as HD10 with a one- or two-digit number). All 
the antibodies chosen for cloning were from the two most 
commonly represented heavy chain V-gene families (in 
both healthy donors and patients), VH3 and VH4, and had 
significant mutation accumulation that indicated they had 
undergone affinity maturation (Supplemental Table 1). Of 
the selected CIS-PTM plasmablasts from which the iso-
type could be determined, 85% belonged to the IgG isotype 
(Supplemental Table 1).

We first tested these rhAbs for binding to brain antigens 
using a mouse brain lysate ELISA. The six rhAbs from 
healthy donor peripheral B cells were not reactive in this 
assay (Fig. 2). In contrast, 29% of the CIS-PTM plasmab-
last rhAbs (11 out of 38) were highly reactive to the mouse 
brain lysate, and 22% of the NMO rhAbs (2 out of 9 tested) 
were similarly reactive. Of the seven CIS-PTM patients 
tested, six had one or two rhAbs that demonstrated strong 
reactivity to the mouse brain lysate (Fig. 2a), demonstrat-
ing that these antibodies can be found in many CIS-PTM 
patients.

The results of the mouse brain lysate ELISA were then 
confirmed using a commercially produced human brain 
lysate (Supplemental Fig.  3a, 3b). Of the 37 rhAbs from 
CIS-PTM patients tested in this ELISA, 19 of them (51%) 
displayed positive reactivity to human brain lysate (Sup-
plemental Fig.  3b). Nine of these bound both mouse and 
human brain lysate, while the remaining ten bound human 
brain lysate, but not mouse brain lysate. Of the nine rhAbs 
from the NMO patients, 3 of them (33%) displayed posi-
tive reactivity to human brain lysate. Two of these bound 
both mouse and human brain lysate while one additional 
rhAb bound human brain lysate, but not mouse lysate 
(Supplemental Fig.  3b). This may be due to differences 
between human and mouse proteins, or it may be that the 
commercial human brain lysate contains a wider variety of 
antigens.
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To investigate the specificity of the rhAbs, we tested 
17 of the 19 rhAbs that were positive in the human brain 
lysate ELISA and 19 of the rhAbs that were negative in 
the human brain lysate ELISA (n = 36) for recognition of 
an in-house prepared mouse kidney lysate (Supplemen-
tal Fig.  3c, 3d). As expected, none of the healthy donor 
rhAbs bound to mouse kidney lysate. One of the NMO 
rhAbs displayed positive reactivity to mouse kidney lysate 
(Supplemental Fig. 3b). None of the brain-negative rhAbs 
from CIS-PTM patients (n =  19) displayed reactivity to 
mouse kidney lysate, but 5 of the 17 CIS-PTM rhAbs that 
displayed positive reactivity to brain lysate also displayed 
reactivity to mouse kidney lysate. Thus, 14% of the CIS-
PTM rhAbs (5 out of 36) and 11% of the NMO rhAbs (1 
out of 9) are polyreactive.

We also investigated 36 rhAbs from CIS-PTM patients 
for reactivity to whole native H1N1 influenza antigen 
(FLU), and ovalbumin (OVA) (Supplemental Fig.  4). Of 
the 12 CIS-PTM rhAbs we tested that demonstrated posi-
tive binding to human brain lysate but not kidney lysate in 
the ELISA, only one displayed positive reactivity to FLU 
and OVA (CIS59). Of the 5 CIS-PTM rhAbs we tested 
that demonstrated positive binding to both human brain 
lysate and kidney lysate in the ELISA, 3 displayed positive 

reactivity to FLU and OVA (CIS56, CIS57, CIS28). The 
remaining two polyreactive rhAbs (CIS48 and CIS42) were 
not reactive to either FLU or OVA. Thus, 92% of the brain 
lysate specific rhAbs from CIS-PTM patients (11 out of 
12) maintained their exclusivity for brain antigens while 
60% (3 out of 5) of the polyreactive rhAbs from CIS-PTM 
patients maintained their binding promiscuity. One of the 
NMO rhAbs that bound to kidney lysate also bound FLU, 
but none of the NMO antibodies bound to OVA.

Interestingly, when the CIS-PTM rhAbs are categorized 
by VH family, only VH4 utilizing (VH4+) rhAbs react 
strongly to brain lysate (Fig.  3a, b). None of the rhAbs 
utilizing VH3 genes met our criteria for strong binding 
(Fig. 3a, b) despite having similar mutation frequencies as 
the VH4+ rhAbs used in this study (Supplemental Table 1). 
Reactivity to brain lysate by ELISA was noted for rhAbs 
using six of the nine represented VH4 genes (Fig.  3c), 
suggesting that the autoreactive plasmablast response 
occurs with multiple antibody genes, and possibly also 
many antibody specificities. Four of the nine VH4 genes 
were employed by rhAbs in both the positive and nega-
tive category (VH4-30, 4-39, 4-59, and 4-61), suggesting 
that other factors such as light chain pairing, CDR3 length 
and charge, or mutation accumulation govern whether 
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Fig. 2   a Brain ELISA results grouped by CIS-PTM patient, then by 
patient diagnosis (“All CIS” or “NMO”). Six of the seven CIS-PTM 
patients each contained two highly reactive rhAbs (33–50%), mean-
ing the OD450 of the rhAb at 20 and 10 µg/mL was more than 2 stand-
ard deviations above the mean OD450 of healthy donor (HD) rhAbs at 

20 µg/mL. The names of the positive rhAbs are designated for each 
titration curve. A dashed line in each graph represents the threshold 
for positive binding. b Summary of ELISA results grouped by patient 
type. 11 of the 38 CIS-PTM rhAbs and 2 of the 9 NMO rhAbs bound 
strongly to the mouse brain lysate
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antibodies with these antibodies will be autoreactive. Two 
of the nine genes (VH4-b and 4-38) were exclusively rep-
resented in the rhAbs that bound to brain lysate, and three 
of the nine genes (VH4-4, 4-31, and 4-34) were only uti-
lized by rhAbs that were not reactive in this assay (Fig. 3c). 
However, it should be noted that the relative representation 
of antigens in the lysate might encourage false negatives.

CIS‑PTM peripheral plasmablasts bind primarily 
to neurons and astrocytes

Next, we tested the binding of CIS-PTM rhAbs to brain 
tissues by fluorescent immunohistochemistry. We used 
brain tissues from healthy, experimental autoimmune 
encephalomyelitis (EAE) and stroke mice, which repre-
sent normal and inflamed brain tissues (Fig.  4, Supple-
mental Figs.  4–11). In addition to the CIS-PTM rhAbs, 

NMO rhAbs (n  =  3) and two antibodies from lupus 
patients (B1 as a negative control and G11 as a positive 
control) were utilized as controls in this part of the study 
[109]. Though the specificities of B1 and G11 have not 
been fully characterized, B1 does not bind to multiple 
types of brain tissue [57], NMDA receptors [19], DNA, 
LPS, or recombinant human insulin [109]. In contrast, 
G11 is a polyreactive antibody that binds to DNA [109] as 
well as NMDA receptors [19]. As expected, B1 showed no 
reactivity to these brain tissues and G11 showed positive 
reactivity (Fig. 4 and data not shown). We found that the 
two structures most commonly recognized are astrocytes 
in the corpus callosum (marked by expression of GFAP) 
and neuronal bodies in the cortex (marked by NeuN). The 
rhAb CIS19 is presented in Fig. 4 as an example of bind-
ing to neuronal bodies, and rhAb CIS07 is presented in 
Fig.  4 as an example of binding to astrocytes. Overall, 

Fig. 3   a Brain ELISA results 
for CIS-PTM rhAbs grouped by 
heavy chain V gene family. A 
dashed line in each graph repre-
sents the threshold for positive 
binding. b Summary of mouse 
brain ELISA results for CIS-
PTM rhAbs grouped by heavy 
chain V gene family. All VH3 
rhAbs showed little reactivity 
of brain lysate, but many (37%) 
of the VH4 family rhAbs bound 
strongly to the brain lysate. c 
V gene segments utilized by 
rhAbs that did and did not rec-
ognize brain lysate. Only VH4 
family genes recognized whole 
brain lysate above the level of 
healthy donor antibodies, but 
only two of the VH4 genes were 
specifically found in the positive 
group. Four of the VH4 family 
genes represented were utilized 
by rhAbs in both the positive 
and negative group, and three 
others were used only by rhAbs 
that did not bind brain lysate
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the majority of highly mutated VH4 expressing CIS-PTM 
plasmablast rhAbs recognized both neurons and astro-
cytes in multiple brain tissue types (Fig. 4e; Supplemental 

Table  1, Supplemental Fig.  6–12, 14a), with a smaller 
portion recognizing only astrocytes (Fig. 4e, Supplemen-
tal Fig. 12, 14a).
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Fig. 4   Example 20x images of example CIS-PTM rhAbs CIS19 and 
CIS07 binding neurons and astrocytes in the white (corpus callosum, 
left) and gray (cortex, right) matter of healthy mouse brain (a), stroke 
brain (b) and EAE brain (c) compared to the negative control antibody 
B1. Remaining images are in Supplemental Figs. 6–13. RhAb staining 
is shown in green, DAPI is shown in blue, and NeuN is shown in red. 
Scale bar represents 20 µm. d 63x images of example rhAbs CIS19 
and CIS07 compared to the negative control antibody B1. rhAbs that 

recognized neurons did so in a ring-like pattern around the nucleus (as 
demonstrated by CIS19) and rhAbs that recognized astrocytes bound 
to cell body processes (as demonstrated by CIS07). Scale bar repre-
sents 5 µm. e Of the 11 CIS-PTM rhAbs that were positive by mouse 
brain ELISA, one recognized exclusively glia and the remaining ten 
recognized both neurons and astrocytes. f Orthogonal view of CIS19 
staining in the cortex of healthy mouse brain, with only rhAb and 
DAPI overlay shown. Scale bar represents 10 µm
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Of those rhAbs that recognized neuronal cell bodies, 
the majority bound to the cytoplasm in a ring-like struc-
ture around the nucleus as illustrated by rhAb CIS19 
(Fig. 4a–d, f, top row and left-hand images). When viewed 
in the z-direction as in Fig. 4f and Supplemental Fig. 14c, 
it becomes clear that the green staining of these example 
rhAbs does not overlap with the blue staining of DAPI in 
the nucleus. Of those rhAbs that recognized astrocytes, 
the majority bound cell processes in the corpus callosum 
as illustrated by rhAb CIS07 (Fig.  4a–d, middle images). 
Additionally the rhAbs were tested for binding to oligoden-
drocytes, but only CIS68 displayed co-localization with the 
oligodendrocyte marker PDGFR (Supplemental Fig. 13). In 
some of the cortical images there appeared to be recogni-
tion of neuropil, the areas of unmyelinated axons, dendrites 
and glial cells in parts of the tissue where cell bodies are 
less dense (Supplemental Fig. 7, 9, 11). However, lambda 
scan analysis indicated that the signal of the neuropil bind-
ing was no different than background autofluorescence, and 
is likely a staining artifact. Additional data from lambda 
scans verified that the staining observed is true positive sig-
nal (Supplemental Fig. 14b).

Enumeration of cortical cells stained by rhAbs

For the rhAbs that recognized neurons, rhAb binding was 
not observed in every NeuN stained neuron in the cortex. To 
quantify this effect we counted the number of cells stained 
by a particular rhAb as compared to the cells stained by 
NeuN (Supplemental Fig. 15). By defining regions of inter-
est (ROIs, Supplemental Fig.  15a), measuring the signal 
intensity in that ROI, and setting a threshold for positive 
staining as compared to autofluorescence, the number of 
cells positive for rhAb or NeuN staining was determined. 
These values were used to create histogram plots of maxi-
mal signal intensity in each counted ROI (Supplemen-
tal Fig.  15c) and obtain the percentage of cells that were 
stained by only the rhAb, only NeuN or both (Supplemen-
tal Fig. 15b). Each rhAb shows a slightly different binding 
pattern, but the majority of all counted ROIs in the cortex 
were double positive for NeuN and rhAb staining (range 
56–70%, Supplemental Fig. 15d). For each rhAb there was 
also a substantial portion of neurons that do not stain with 
the rhAb (range 19–37%, Fig.  5d), indicating that these 
rhAbs could be specific for neuronal groups or layers.

Peripheral plasmablasts from CIS‑PTM patients 
recognize cytoplasmic and nuclear targets on human 
neurons

From the immunofluorescent staining of brain tissue, it 
appeared that the binding of CIS-PTM rhAbs was primar-
ily located outside of the nucleus of these cells (Fig.  4, 

Supplemental Fig.  7, 9, 11). Indeed, orthogonal views 
demonstrated that rhAb binding did not overlap with the 
nuclear stain DAPI in cortical neurons stained by NeuN 
(Fig.  4f and Supplemental Fig.  14c). To further test this 
finding, we utilized immunocytochemistry (ICC) on a 
human neuroblastoma cell line (SH-Sy5y) as well as the 
human epithelial cell line (Hep-2) that is commonly used 
for detecting anti-nuclear antibodies in lupus patients 
(Fig. 5, Supplemental Fig. 16–18) [87]. For both our CIS-
PTM and NMO cohorts we found anti-nuclear rhAbs as 
well as rhAbs that bound outside of the nucleus of these 
cell lines (Fig. 5a). As expected, negative control antibody 
B1 does not bind to the fixed and permeabilized SH-Sy5y 
cells (Fig.  5a) while G11, the positive control antibody, 
demonstrates strong binding across the entire body of the 
cell. Among 38 CIS-PTM rhAbs, 21 (55%) bound SH-
Sy5y, including 10 of the 11 CIS-PTM rhAbs that demon-
strated strong binding by the mouse brain lysate ELISA. 
Of these 21 CIS-PTM rhAbs that bound to targets outside 
the nuclei of these cells, only one bound to nuclear targets 
alone (Fig. 5b, Supplemental Fig. 16, 17). Of the 10 NMO 
rhAbs, 3 bound SH-Sy5y; one to nuclear targets alone and 
two to the cytoplasm. Only one of the 6 healthy donor 
rhAbs showed cytoplasmic staining of SH-Sy5y (Supple-
mental Fig.  17), and none displayed positive binding of 
Hep-2 cells (Supplemental Fig.  18). One NMO plasmab-
last rhAb and 7 (20%) of the CIS-PTM plasmablast rhAbs 
bound the Hep-2 cells, but again most were not anti-nuclear 
in nature (Supplemental Fig. 18). Performing ICC on both 
SH-Sy5y and Hep-2 also permitted us to evaluate polyreac-
tivity by this method. In so doing, we observed that 7 of the 
21 CIS-PTM rhAbs bound Hep-2 cells (4 to cytoplasmic 
targets and 3 to nuclear targets) and were thus polyreactive 
(SH-Sy5y + Hep-2+). Of the 20 CIS-PTM rhAbs that dis-
played cytoplasmic binding to SH-Sy5y by ICC, 4 of the 
them (20%) were polyreactive to cytoplasmic targets only 
(SH-Sy5ycytplasmic + Hep-2cytoplasmic+) since they also dis-
played cytoplasmic binding to Hep-2 by ICC.

To confirm the binding observed here, a western blot 
was run with select rhAbs against cellular fractionated 
lysate made from SH-Sy5y and Hep-2 cells (Supplemen-
tal Fig.  19). The positive control antibody G11 bound 
both the cytosol and nuclear/membrane fraction of both 
SH-Sy5y and Hep-2 cells, as was expected. The negative 
control rhAb R1 did not bind the lysates, as expected, as 
well as CIS05 which did not bind these cells in any other 
test. The only CIS-PTM rhAb that showed nuclear speci-
ficity by ICC, CIS10, also showed specificity for nuclear 
antigens by western blot. RhAbs CIS34, CIS42, and CIS46 
bound both the cytoplasmic and the nuclear/membrane 
fractions of both SH-Sy5y and Hep-2 cells. These rhAbs 
may bind extracellular proteins, which would be included 
in the nuclear fraction cell lysate, or may bind some 
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non-physiological linearized epitopes. NMO06, though 
reactive to SH-Sy5y by ICC, did not bind to the lysates, 
possibly due to the loss of conformational epitopes. Even 
so, the cytosolic CIS-PTM rhAb binding observed by ICC 
mirrors the previous result of cytosolic recognition of cor-
tical neurons in mouse brain tissue (Fig.  4, Supplemental 
Fig.  14c), confirming the peripheral plasmablast response 
toward neuronal antigens in CIS-PTM patients.

Autoantibodies to AQP4 are detected in ~75% of NMO 
patients [11, 108]. By standard clinical testing, all of the 
untreated NMO patients from whom rhAbs were cloned 
were positive for serum AQP4 antibodies (Table 1). How-
ever, none of the peripheral plasmablast rhAbs bound to 
AQP4 when tested on a transfected cell line (Supplemen-
tal Fig. 20). The expected frequency of AQP4 binding by 
peripheral B cells of NMO patients is unknown, but in the 
CSF, about half of clonally expanded B cells bind to AQP4 
[10, 53]. This same frequency was observed in our two 

CSF rhAbs (R1 and R2) cloned from a CIS-PTM patient 
who later converted to NMO. AQP4 binding antibodies can 
utilize VH4, VH3, and VH2 family genes [11], so a larger 
study is needed to identify B cells that express AQP4 bind-
ing antibodies in the periphery of NMO patients.

CIS‑PTM peripheral plasmablasts bind intracellular 
and extracellular antigens

The ICC methodology included the use of Triton-X, which 
could interfere with conformational epitopes of intracel-
lular antigens. Thus, to evaluate whether the intracellu-
lar staining observed by ICC was towards conformational 
epitopes, we performed intracellular and cell surface stain-
ing of the human neuroblastoma cell line SH-Sy5y with 
select rhAbs and acquired data by flow cytometry. We 
chose to test one rhAb from each patient in the CIS-PTM 
cohort that displayed strong binding by ICC. As shown in 

(a) 
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G11: Pos 

rhAb DAPI 

CIS07: Neg 

rhAb DAPI 

CIS19: C 

rhAb DAPI 

NMO06: N 
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CIS-PTM rhAbs
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20 Intracellular
1 Nuclear Only
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N = 10
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2 Intracellular
1 Nuclear Only
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N = 6

5 Negative
1 Intracellular

(b)

Fig. 5   Immunocytochemistry (ICC) of rhAbs on the human neuro-
blastoma line, SH-Sy5y. a Representative images of CIS-PTM rhAbs, 
one NMO rhAb and the control rhAbs B1 and G11 not binding or 
binding to SH-Sy5y neurons by ICC. B1 is an isotype negative con-
trol, and G11 is a positive control. Remaining images are in Supple-
mental Figs. 16 and 17. b Summary of ICC staining of rhAbs on SH-

Sy5y cells. Most healthy antibodies did not recognize SH-Sy5y, while 
over half of the CIS-PTM rhAbs and almost one-third of NMO rhAbs 
bound to this cell line. Intracellular binding that included more than 
just the nucleus was most common, while a subset of rhAbs demon-
strated nuclear binding
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Supplemental Fig. 21a, all 6 of the HD rhAbs, the CIS05 
rhAb, and the negative control rhAb B1 showed no reac-
tivity to intracellular and intact conformational antigens. 
In contrast, CIS19, CIS28, CIS42, CIS56 and the posi-
tive control rhAb G11 displayed reactivity to intracellular 
intact conformational antigens, while CIS49, CIS68 and 
CIS71 did not. Of these 7 CIS-PTM rhAbs that displayed 
strong binding by ICC, only one polyreactive rhAb (CIS56) 
showed reactivity to the cell surface of the SH-Sy5y neuro-
blastoma cell line (Supplemental Fig. 21b). A scatter plot 
of the geometric MFIs for both the intracellular and cell 
surface staining are presented in Supplemental Fig. 21c.

CIS‑PTM plasmablast antibodies are well represented 
in the plasma pool

Even when expanded, plasmablasts are only a small portion 
of the peripheral B cell pool, and thus may have limited 
impact on the ongoing auto-reactivity associated with MS. 
To assess whether plasmablast expansion and detection of 
autoreactive antibodies in the blood occurred in the same 
patients, we tested plasma samples from 16 treatment naïve 
CIS-PTM patients, 7 NMO patients, and 8 healthy donors 
with plasmablasts responding to recent influenza vaccina-
tion for reactivity to brain lysate by ELISA (Fig.  6). For 
comparison, the plasma antibodies were also tested for 
binding to native influenza antigen. Plasma from 7 of the 
16 treatment naïve CIS-PTM patients displayed antibody 
reactivity to the brain at least 2 standard deviations above 
the mean of healthy donors at 20 µg/mL (Fig. 6b). Of the 7 
CIS-PTM patients whose plasma displayed antibody reac-
tivity to the brain lysate, 4 of them were CIS-PTM patients 
from which autoreactive rhAbs from single peripheral plas-
mablasts were identified (Table 1, Supplemental Table 1). 
Only one NMO patient’s plasma displayed similar reactiv-
ity, and notably we were able to clone plasmablast rhAbs 
from this patient with high affinity for brain lysate (Supple-
mental Table 1; Fig. 2). Long-lived plasma cells in the bone 
marrow contribute substantially to the plasma antibody 
pools, and in the case of MS patients, modest affinity of 
the plasma antibody pools towards brain lysate may be due 
to a low frequency of autoreactive long-lived plasma cells 
in the bone marrow. Conceivably, plasmablasts in the CSF 
could also contribute to this reactivity as well. However, the 
fact that this affinity is modest may also be due to under-
representation of antigens in the whole brain lysate pool. 
Thus, we also tested for binding to whole cell lysate made 
from the SH-Sy5y human neuroblastoma cells, since the 
majority of the autoreactive plasmablast rhAbs bind neu-
rons. Here, 10 of the 16 CIS-PTM patients display plasma 
antibody reactivity at least 2 standard deviations above 
the mean of healthy donors at 20 µg/mL, with an apparent 
increase in affinity.

Discussion

In this study, we discovered that expanded and highly 
mutated VH4+ peripheral plasmablasts from CIS-PTM 
patients experiencing their first documented clinical attack 
express antibodies that bind neurons and astrocytes. We and 
others previously demonstrated that plasmablast expansion 
in the CSF is a common feature to many CIS-PTM, NMO 
and MS patients [18, 20, 58]. Here we extend that observa-
tion to demonstrate that the frequency of peripheral plasma-
blasts in our CIS-PTM cohort was similar to that of NMO 
patients, a CNS autoimmune disease in which patients also 
experience PTM, but classically without brain inflammation 
[77]. Peripheral plasmablast expansion is not a common 
feature reported by others, although our cohort displayed a 
high occurrence of plasmablast expansion in the periphery. 
This discrepancy may be partially explained by heteroge-
neity in the study group of the previous reports, as patients 
with both partial transverse myelitis (PTM) and optic neuri-
tis (ON) symptoms are included, as well as patients at vari-
ous stages of disease. Our study focuses only on patients 
experiencing their first clinical attack of PTM because we 
previously determined these patients are more likely to have 
a plasmablast expansion [58]. Interestingly, the four patients 
in our previous study who later displayed additional MRI 
activity had elevated frequencies of CD27high plasmablasts 
at the time of their initial clinical event, which recapitu-
lated the finding that plasmablast frequency correlates with 
parenchymal inflammatory disease activity [18].

The antibody genetics of a B cell population can have 
a profound impact on our understanding of disease, as 
the development and function of a B cell is dependent on 
the antibody it expresses [14, 17, 64, 65, 70, 101]. In fact, 
antibody genetic studies have led to several key discover-
ies in MS that show expansion of particular genes, exces-
sive receptor editing, dysregulation in B cell selection 
[6, 16, 22, 23, 37, 38, 54, 58, 67, 74–76, 78, 79, 82, 83, 
95–97, 104], and even a mutational biomarker that identi-
fies patients who will convert to MS with 86–92% accu-
racy [16, 83, 84]. Here, we demonstrate that VH4 genes 
are used more extensively by peripheral plasmablasts from 
CIS-PTM patients in comparison to previously published 
healthy donor plasmablasts responding to influenza infec-
tion (Fig. 1b). However, the specific genes within the VH4 
family were utilized at frequencies similar to these two con-
trol populations. This indicates that most VH4 family genes 
are slightly over-utilized in CIS-PTM patients, rather than 
particular VH4 genes driving the over-representation of the 
entire family. This data also suggests that VH4 expansion 
may be a generalized feature of patients with CNS diseases 
who experience PTM symptoms. Others have demonstrated 
VH4 family expansion in the CSF of MS patients [9, 75], 
which may suggest that VH4 expansion is an early and 
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Fig. 6   ELISA results with plasma taken from 8 healthy donors 
responding to influenza vaccination, 16 treatment naïve CIS-PTM 
patients, and 7 NMO patients. a Absorbance data from plasma ELI-
SAs on brain lysate and influenza antigen grouped by patient clas-
sification. Each black line represents ELISA data from an individual 
plasma antibody sample tested on brain lysate while each gray line 
represents ELISA data from an individual plasma antibody sample 
tested on influenza antigen. The dashed line on each graph represents 
the cutoff for positive binding (the average absorbance from healthy 
donor plasma on brain lysate at 20 µg/mL plus two standard devia-

tions). b Summary of brain lysate ELISAs with plasma antibodies. 
Plasma antibody samples from 1 NMO and 7 CIS-PTM patients were 
two standard deviations above the mean of healthy plasma antibody 
samples at 20  µg/mL. c Absorbance data from plasma ELISAs on 
SH-Sy5y lysate and influenza antigen grouped by patient classifi-
cation. Data are presented as in a, except that SH-Sy5y data is dis-
played in black. d Summary of SH-Sy5y lysate ELISAs with plasma 
antibodies. Plasma antibody samples from 1 NMO and 10 CIS-PTM 
patients were two standard deviations above the mean of healthy 
plasma samples at 20 µg/mL
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prolonged feature of particular CNS diseases. Interestingly, 
B cells from the CSF of NMO patients are dominated by an 
expansion of VH2 genes, and rarely VH4 genes [11].

In this study, we demonstrate that the expansion of 
VH4 utilization in peripheral plasmablasts translates to an 
increase in autoreactivity toward brain antigens. We used a 
brain lysate ELISA to initially screen rhAbs cloned from 
plasmablasts for binding to brain targets, but discovered 
that this assay could lead to false negatives. For example, 
several rhAbs that were not reactive in the brain lysate 
ELISA exhibited binding to neuronal cell bodies and astro-
cyte processes in the brain (Supplemental Table 1). How-
ever, it should be noted that the lysate preparation con-
sists mainly of cytosolic and easily soluble proteins, such 
as the abundant myelin proteins [36]. Thus, the probabil-
ity of identifying primary targets under-represented in the 
brain lysate such as non-myelin and hydrophobic targets 
is diminished. Indeed, more than half of all the CIS-PTM 
rhAbs displayed positive binding by the SH-Sy5y cell-
based assays (Fig.  5, Supplemental Figs.  16, 17), while 
only a third displayed positive reactivity by SH-Sy5y lysate 
ELISA (Supplemental Fig. 5). Additionally many antibod-
ies recognize conformational epitopes, and the degree to 
which a technique may alter these epitopes can profoundly 
affect the outcome. For example, tissue staining done with 
MS CSF rhAbs on formalin fixed paraffin embedded brain 
tissue yielded almost no positive staining [73], but posi-
tive staining is detected with similar rhAbs when tested on 
paraformaldehyde fixed and gently unmasked tissue [12, 
57]. However this unmasking may denature some confor-
mational epitopes. For these reasons, we agree that a multi-
tiered pipeline for characterizing the autoreactive potential 
of antibodies is necessary, as suggested by others [108].

Autoantibodies to extracellular neuronal antigens are 
known to contribute to cognitive dysfunction in a variety of 
CNS disorders, including nerve hyper-excitability, limbic 
encephalitis, encephalopathy, and autoimmune disorders 
with neurological involvement such as systemic lupus ery-
thematosus (SLE) and myasthenia gravis [42, 46, 47, 52, 
71, 94]. Others have identified a wide variety of neuron, 
astrocyte and oligodendrocyte B cell autoantigens in MS 
that are expressed both extracellularly and intracellularly 
[4, 5, 15, 21, 27–29, 31, 33, 62, 68, 72, 86, 89–91, 93, 98, 
102]. However, the majority of the autoreactive CIS-PTM 
plasmablast antibodies in our study recognized intracellu-
lar antigens expressed by neurons. Antibody recognition of 
intracellular antigens is only beginning to be understood as 
a means to drive autoimmunity [49, 59, 80, 88, 99, 106]. 
Most studies in SLE have focused on anti-nuclear antibod-
ies since their presence correlates well with exacerbation 
of disease [80]. One leading thought is that anti-nuclear 
autoantibodies can enter the cell and exert cytotoxic effect 
there [49, 106]. Perhaps a similar effect could be expected 

from antibodies that bind cytoplasmic proteins in MS, 
although there are certainly other scenarios that should be 
considered [103]. As evidenced with orthogonal images, 
binding of our CIS-PTM plasmablast rhAbs within the cell 
was largely excluded from the nucleus.

Of note, many of our rhAbs were polyreactive and rec-
ognized targets independent of tissue origin. Recent work 
by others [13] demonstrated that antibodies contributing 
to the oligoclonal banding observed in MS patients are 
directed against ubiquitous intracellular proteins. However, 
eleven of the rhAbs we tested are brain-specific by ELISA 
(Brain+ Kidney- Flu- OVA-) and fourteen of the rhAbs we 
tested are brain-specific by ICC (SH-Sy5y+  Hep-2-). Of 
the three NMO rhAbs we tested, only NMO03 was brain 
specific by ICC (SH-Sy5y +  Hep2-). Future experiments 
on the ability of polyreactive and intracellular brain spe-
cific binding CIS-PTM plasmablast rhAbs to participate 
in a pathogenic response against primary human cells are 
needed to determine the role of these antibodies in MS.

When rhAb reactivity is considered in aggregate (Sup-
plemental Table 1), it is interesting to note that while the 
CSF-derived rhAbs from these patients were largely reac-
tive to neurons and astrocytes in the gray matter of the brain 
[57], many of the rhAbs generated from the peripheral plas-
mablasts were directed towards both gray and white mat-
ter targets. These data suggest that peripheral plasmablasts 
have a wider array of autoreactive specificities compared 
to CSF-derived B cells, although their specificity and sig-
nificance to MS pathology remains unknown. Nevertheless, 
this scenario is consistent with an underlying dysregula-
tion in tolerance of peripheral B cells in these CIS-PTM 
patients, and indeed others have demonstrated that there 
is a break in the peripheral tolerance checkpoint in MS 
patients [51]. The exact mechanism of CNS-reactive effec-
tor B cell development in the blood is still unknown, par-
ticularly as it relates to the importance of specific antigens 
driving the autoreactive plasmablast expansion. Indeed, 
this break in tolerance could involve both B cell intrinsic 
and extrinsic mechanisms. Furthermore the rapid return of 
memory B cells in the periphery following B cell depletion 
is a strong indicator of poor response to therapy [1], and 
further emphasizes the importance of studying the develop-
ment of autoreactive B cells in the blood.

In MS patients, the blood brain barrier is often altered 
[63], allowing increased exchange of antigen-stimulated 
cells between the CNS and periphery [45, 66]. Although 
in our studies we did not detect clonal relatedness between 
peripheral blood and CSF B cells, others have found clonal 
overlap between these compartments in MS [8, 97]. Thus, 
one might predict that, as we observed, peripheral plasma-
blasts display autoreactivity towards CNS antigens. In MS 
and CIS patients, there may be an underlying open access 
to gray matter targets throughout the disease course, and 
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access to white matter targets primarily during distinct 
points in time. It is also possible that there is less reactiv-
ity to white matter targets at later stages of disease due to 
immune response exhaustion to those targets [2, 81]. Alter-
natively, gray matter targets may be more immunogenic, 
considering the more extensive clonal expansion of CSF B 
cells that bind to these targets as compared to the peripheral 
plasmablasts [58, 74, 97]. Interestingly, others have dem-
onstrated that antibodies targeting neurons from clonally 
expanded CSF B cells from MS patients mediate demyeli-
nation of axons in vitro, highlighting their potential to par-
ticipate in the pathogenesis of disease [12]. Delineating the 
pathway by which autoreactive plasmablasts develop, per-
sist and mediate pathogenesis in MS patients will greatly 
improve our understanding of the disease, and is particularly 
important given that the frequency of plasmablasts increases 
the longer that CIS-PTM patients are left untreated [58]. Of 
note, clonal overlap between the CSF and periphery has also 
been observed in NMO patients [20, 53], suggesting CNS 
autoreactivity should be evident among peripheral antigen-
experienced B cells from NMO patients. However, we 
observed that CNS autoreactivity, including AQP4, among 
the peripheral plasmablast rhAbs is less extensive in NMO 
patients. Although other studies demonstrated that approxi-
mately 50% of all clonally expanded CSF B cells from 
NMO patients bind AQP4 (range 3–97%) [11, 53], the fre-
quency of AQP4 binding by peripheral B cells from NMO 
patients is lower (19% on average, range 0–40%) [53]. Our 
data would support the concept that AQP4-reactive B cells 
may be enriched in the CNS of NMO patients rather than 
the periphery. Indeed, others have demonstrated that NMO 
plasmablasts express higher levels of the chemokine recep-
tor CXCR3 during relapse, which may aid in retention of 
affinity-maturated clones in the CNS [20] and subsequent 
lack of detection in the periphery. Further studies are war-
ranted to investigate this discordance in CNS autoreactivity 
by peripheral plasmablasts of PTM and NMO patients.

In summary, plasmablasts may be either direct perpe-
trators of autoimmunity or simply biomarkers of disease 
severity in MS [18], but they are certainly the footprints of 
previously activated B cells. The increased representation 
of VH4-utilizing autoreactive plasmablasts in the periphery 
of CIS-PTM patients demonstrates a B cell autoimmune 
response directed toward neurons and astrocytes early in 
disease. Their presence in the periphery proposes intrigu-
ing questions about the origin and function of autoreactive 
plasmablasts in CIS-PTM patients, and provides a unique 
avenue to explore the autoreactive B cell response in MS.
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