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signals, epigenetic mechanisms might play a central role 
in initiating ALS and FTD, especially for sporadic cases. 
Here, we provide a review of what is currently known 
about altered epigenetic processes in both ALS and FTD 
and discuss potential therapeutic strategies targeting epi-
genetic mechanisms. As approximately 85 % of ALS and 
FTD cases are still genetically unexplained, epigenetic 
therapeutics explored for other diseases might represent a 
profitable direction for the field.

Keywords Amyotrophic lateral sclerosis · Chromatin 
remodeling · Epigenetic processes · Frontotemporal 
dementia · RNA-mediated regulation · Transcription 
regulation

Introduction

Degeneration of motor neurons results in progressive loss 
of motor skills, a condition first described by Charcot and 
Joffroy in 1869 [29] and commonly known as Lou Gherig’s 
disease in honor of the baseball Hall of Famer who gave 
a memorable farewell speech in 1939. Also referred to as 
amyotrophic lateral sclerosis (ALS), the disease is char-
acterized by degeneration of upper motor neurons of the 
motor cortex and corticospinal tract, and lower motor neu-
rons of the brain stem and spinal cord, progressively caus-
ing muscle weakness, spasticity, atrophy, and finally lethal 
respiratory failure within 2–5 years of disease onset [20]. 
Only 5–8 % of overall ALS cases report a family history of 
the disease, where there is much heterogeneity in clinical 
presentation across affected relatives [2, 24, 25, 63]. The 
most common alternative deficit observed in ALS family 
members is cognitive impairment, which is also comorbid 
to ALS in about 50 % of patients. In fact, while deficits in 

Abstract Amyotrophic lateral sclerosis (ALS) and fron-
totemporal dementia (FTD) are two fatal neurodegenera-
tive diseases seen in comorbidity in up to 50 % of cases. 
Despite tremendous efforts over the last two decades, no 
biomarkers or effective therapeutics have been identified 
to prevent, decelerate, or stop neuronal death in patients. 
While the identification of multiple mutations in more than 
two dozen genes elucidated the involvement of several 
mechanisms in the pathogenesis of both diseases, iden-
tifying the hexanucleotide repeat expansion in C9orf72, 
the most common genetic abnormality in ALS and FTD, 
opened the door to the discovery of several novel patho-
genic biological routes, including chromatin remodeling 
and transcriptome alteration. Epigenetic processes regulate 
DNA replication and repair, RNA transcription, and chro-
matin conformation, which in turn further dictate transcrip-
tional regulation and protein translation. Transcriptional 
and post-transcriptional epigenetic regulation is mediated 
by enzymes and chromatin-modifying complexes that con-
trol DNA methylation, histone modifications, and RNA 
editing. While the alteration of DNA methylation and his-
tone modification has recently been reported in ALS and 
FTD, the assessment of epigenetic involvement in both 
diseases is still at an early stage, and the involvement of 
multiple epigenetic players still needs to be evaluated. As 
the epigenome serves as a way to alter genetic information 
not only during aging, but also following environmental 
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executive functioning, visual and immediate verbal mem-
ory, language and fluency, as well as psychomotor speed 
are commonly present in ALS patients, these symptoms are 
mostly not acute enough to receive a diagnosis of dementia 
[144]. As such, only 15–20 % of ALS patients receive con-
comitant diagnosis of frontotemporal dementia (FTD) [23, 
65, 67, 106, 153]. While ALS is the most common motor 
neuron disease, FTD is the second-most common cause of 
early onset dementia after Alzheimer’s Disease (AD) [120], 
and comprises three clinically distinct syndromes: behavio-
ral variant FTD, progressive nonfluent aphasia, and seman-
tic dementia [136, 163]. Briefly, FTD is characterized by 
neuronal degeneration in the frontal and temporal lobes 
causing progressive deterioration of language, personality, 
and behavior [68]. Up to 50 % of FTD cases report a posi-
tive family history, with members affected with either FTD 
or other neurodegenerative diseases [68].

The link between ALS and FTD was strengthened after 
the finding that a hexanucleotide repeat expansion (HRE) 
in the C9orf72 gene explains disease in multiple family 
pedigrees counting members diagnosed with either one or 
both diseases [45, 150]. Multiple genetic assessments now 
predict this HRE to be carried by approximately 34 % of 
familial and 6 % of sporadic ALS cases, as well as 26 % 
of familial and 5 % of sporadic FTD patients [145, 177]. 
Although higher and lower frequencies have been reported 
depending on the population studied [107], the HRE in 
C9orf72 is considered the most common genetic cause of 
ALS and FTD identified thus far [8, 149].

Causative genetic mutations identified in more than two 
dozen genes currently explain ~68 % of familial and ~11 % 
of sporadic ALS cases [149], leaving about 86 % of over-
all cases, mostly sporadic, unexplained. Similarly, genetic 
mutations explain about 25 % of familial and 10 % of spo-
radic FTD, leaving about 83 % of the overall FTD cases 
genetically unexplained [77]. The fact that genes associated 
with familial ALS remain typically unaltered in sporadic 
ALS (sALS) patients, along with the fact that genome-wide 
association studies have identified variants with only mod-
erate risk, points to the likelihood of other disease culprits 
[34, 40, 99, 149, 179]. Specifically, increasing evidence 
supports altered RNA processing as a central pathological 
mechanism in ALS [71, 140, 142]. Epigenetic processes 
are known to regulate RNA transcription, which can in turn 
dictate protein translation or further regulate downstream 
transcription [127]. Because of the discovery of an HRE in 
C9orf72, numerous studies using blood, brain tissues, and 
induced pluripotent stem cells from C9orf72 repeat expan-
sion carriers demonstrated the involvement of epigenetic 
and transcriptional dysfunction in ALS and FTD [14, 15, 
50, 142, 187, 190, 191]. How epigenetic and transcriptomic 
mechanisms interact with one another, and whether these 
interactions can be exploited as potential therapeutic targets 

for ALS and FTD remain unanswered questions. Here, 
we provide a review of what is currently known about the 
involvement of altered epigenetic processes in these two 
devastating diseases and discuss potential strategies for tar-
geting these alterations therapeutically.

Epigenetic regulatory mechanisms

Since Crick’s 1958 central dogma suggested a flow from 
genetic information to RNA transcription and protein trans-
lation [39], much effort has been devoted to better under-
stand RNA regulation and its role in human diseases. It has 
been recognized for decades that the genetic material is 
under epigenetic control through modification of the DNA 
and chromatin-associated proteins dictating RNA transcrip-
tion, the template for protein synthesis, as well as regulat-
ing DNA replication and repair. The ability of the RNA 
to also act as an intermediate in gene regulation was only 
contemplated in 1969 [22], a proposition refined in 2001 
suggesting a direct role for regulatory RNA networks to 
control epigenetic processes [111]. It is now recognized 
that RNA not only functions as a messenger between 
DNA and protein, but also regulates the organization of 
the genome as well as gene expression [127]. Regulatory 
RNAs play central roles in transcriptional and post-tran-
scriptional epigenetic processes, while their own expres-
sion is also under epigenetic control [113, 127]. While 
most epigenetic changes responsible for developmental 
processes result from anticipated internal processes rooted 
within the genome, communication between the environ-
ment and the genome is reflected through RNA editing, and 
these changes can further be transmitted from cell to cell 
to enhance proper physiological adaptation during develop-
ment [112]. Specifically, RNA editing serves as a way to 
alter genetic information following environmental signals, 
especially in the brain, highlighting a dynamic RNA-medi-
ated interaction between the environment, the epigenome 
and the transcriptome [113]. Over the last decade, there has 
been emergent interest to better understand the interaction 
between the epigenome and the transcriptome, especially 
in the contexts of cancer and neurodegenerative diseases. A 
general overview of the major epigenetic processes control-
ling transcription and chromatin conformation is provided 
in this section (Fig. 1).

Modification of DNA and chromatin‑associated 
proteins

During the last few decades, the role of transcriptional and 
post-transcriptional epigenetic modifications in gene acti-
vation and repression has been intensely studied, especially 
in the cancer field, and neuroscientists are increasingly 
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Fig. 1  Major epigenetic regulatory mechanisms. Schematic represen-
tation of the major cellular epigenetic mechanisms: histone modifica-
tion, DNA methylation, and RNA-mediated regulation. It is suggested 
that interplay between these mechanisms exists in cells, as depicted 

by the arrows from one pie slice to the next. For each epigenetic 
mechanism, one example of aberrant regulation demonstrated in ALS 
and/or FTD is provided (font in red)
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interested in assessing its role in neurodegeneration. Epi-
genetic modifications constitute codes that regulate chro-
matin organization as well as DNA transcription and 
repair, balancing stability and reversibility of the genetic 
material to maintain cell identity and/or enable appropri-
ate cellular responses to internal and external stimuli. Epi-
genetic responses are initiated by chemical modifications 
of eukaryotic DNA and histone octamers around which 
the DNA is wrapped. Each histone octamer is composed 
of four different pairs of histones (H2A, H2B, H3, and 
H4), and each have N-terminal tails that can be post-tran-
scriptionally modified. DNA cytosine residues, especially 
at CpG dinucleotides, can also be chemically adjusted, 
mostly in CpG-rich regions commonly referred to as CpG 
islands. CpG methylation has been known for a long time 
to act as an epigenetic repressive modulator in vertebrates 
[167, 180–182], and only recent evidence demonstrated 
that DNA methylation is actually highly interconnected to 
post-transcriptional changes at histone lysine residues, with 
each system mechanistically relying on the other for nor-
mal regulation of chromatin conformation [155]. As such, 
histone modification can direct DNA methylation patterns, 
and DNA methylation can serve as a template for histone 
modifications.

DNA methylation and histone modification pathways 
can act independently or be mutually dependent on one 
another through mediation of different biochemical interac-
tions. Such interactions are mediated by a limited number of 
enzymes and chromatin-modifying complexes that broadly 
influence the transcription of the genome, with only a few 
of these having affinity for specific DNA sequences. These 
enzymes and chromatin-modifying complexes facilitate 
transcriptional regulation by acting as ‘writers’ or ‘erasers’, 
adding or removing chemicals to DNA and histone proteins 
[105]. Specifically, epigenetic writers lay down epigenetic 
marks on DNA or histones by either covalently modifying 
the amino-terminal tails of histone proteins or by altering 
the DNA itself. The covalent modification generated by 
epigenetic writers can be reversed by epigenetic erasers and 
recognized by epigenetic readers [53]. DNA methyltrans-
ferases (Dnmts), such as Dnmt3a, Dnmt3b, and Dnmt1 are 
epigenetic writers responsible for establishing and main-
taining DNA methylation patterns at different genomic 
sites [31]. Other epigenetic writers, such as histone acetyl-
transferases (HATs), histone methyltransferases (HMTs), 
protein arginine methyltransferases (PRMTs), and kinases, 
are responsible for modulating epigenetic histone marks by 
modifying amino acid residues on histone tails. Epigenetic 
readers recognize specific epigenetic marks through their 
protein-containing domains and recruit other chromatin 
modifiers and remodeling proteins, all together regulating 
DNA-dependent processes [53]. Proteins containing DNA 
methyl-binding domains, chromodomains, bromodomains, 

and Tudor domains are all considered epigenetic read-
ers. Finally, some enzymes act as erasers after catalyzing 
the removal of epigenetic marks [53]. Examples of erasers 
are histone deacetylases (HDACs), lysine demethylases 
(KDMs), phosphatases, and deubiquitylases [53].

While histone modification leading to chromatin remod-
eling is readily reversible, changes in DNA methylation are 
perceived as stable, long-term changes. Specifically, Dnmt1 
is often considered as a ‘maintenance’ methyltransferase 
after recognizing hemimethylated CpG sites following 
semi-conservative DNA replication by reinstating original 
methylation patterns [180]. On the other hand, Dnmt3a 
and Dnmt3b are seen as de novo methyltransferases, both 
catalyzing the methylation of originally unmethylated CpG 
sites [155, 162]. Dnmts thus work in an interconnected 
fashion, with Dnmt3a and Dnmt3b recognizing and meth-
ylating specific genomic regions, and with Dnmt1 faithfully 
maintaining methylation. Recent reports demonstrated that 
de novo methylation through Dnmt3a and Dnmt3b action 
rely partly on pre-existing histone lysine methylation and 
enzymes catalyzing lysine post-transcriptional modifica-
tions [155]. In contrast, another report suggested that non-
methylated sites in CpG islands influence histone lysine 
methylation at gene encoding regulatory elements [155]. 
There is also an emerging belief that histone lysine meth-
ylation protects DNA from active demethylation [155].

The process by which demethylation can take place was 
first considered in the early 1970s when Penn et al. sug-
gested that methylated cytosines, or 5-methylcytosines 
(5mCs), can be oxidized to become 5-hydroxymethylcy-
tosines (5hmC), an observation finally demonstrated in 
2009 [98, 134]. Growing evidence now shows that 5hmCs, 
initially thought to represent an intermediate state between 
methylated DNA and unmethylated DNA, also act as a sta-
ble epigenetic marker that might contribute to neurological 
disease development [164, 166]. Of interest, studies using 
human and mouse tissues have shown that the number 
of 5hmC sites increases with age, and levels vary across 
organs [30, 66, 170]. In fact, the highest levels of 5hmC are 
found in the central nervous system [30, 66, 170]. Enzymes 
Tet1, Tet2, and Tet3 are Tet family 5mC hydrolases that 
convert 5mC to 5hmC [95, 98, 171] to potentially restore 
gene expression. While not essential for 5mC to 5hmC con-
version, recent evidence demonstrated that oxidative stress 
can also trigger this oxidation event [94, 141]. Finally, it 
was recently reported that Tet enzymes can also catalyze 
the establishment of 5hmC in RNA [58], which promotes 
RNA translation [46].

Enzymes and chromatin-modifying complexes must be 
purposefully directed to specific genomic positions in dif-
ferent types of cells to elicit DNA and histone tail modi-
fication. One important source of guidance for these pro-
teins is RNA species which, as opposed to enzymes and 
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chromatin-modifying complexes, are highly sequence and 
locus specific. The role of RNAs in mediating epigenetic 
processes is explained in the next section.

RNA‑mediated epigenetic regulation

There is now compelling evidence that RNA signaling and 
editing play a crucial role in chromatin remodeling and 
nuclear architecture [5, 113]. Specifically, coding and non-
coding RNAs (ncRNAs) are involved in epigenetic regu-
lation by recruiting chromatin-modifying complexes and 
Dnmts to particular genomic loci [112]. ncRNAs, which 
mostly operate through repressive control while still hav-
ing the potential to act as gene activators [160, 161], com-
prise small RNAs (sRNAs) of less than 200 nucleotides 
and long non-coding RNAs (lncRNAs) of more than 200 
nucleotides. sRNAs are further subcategorized as micro-
RNAs (miRNAs), short interfering RNAs (siRNAs) and 
PIWI-associated RNAs (piRNAs), and lncRNAs are clas-
sified according to their position and direction of their tran-
scription (e.g. antisense, intergenic, overlapping, intronic, 
bidirectional, and processed) [114, 137]. Several miRNAs 
originate from introns of protein-coding genes either by 
canonical Drosha pathway or by splicing (which generates 
mirtrons) [17, 132, 156], whereas lncRNAs often over-
lap with, or are interspersed between, several coding and 
non-coding transcript variants [28, 90]. In this way, lncR-
NAs regulate the expression of neighboring protein-coding 
genes [6].

Different sRNAs and lncRNAs are classified into 
groups depending on their genomic origin, but also accord-
ing to their mechanism of action [5, 137]. In fact, sRNAs 
and lncRNAs modify chromatin structure and silence 
transcription through distinct but unifying mechanisms. 
One of these is sRNA-guided gene regulation, which has 
emerged as a central mechanism that guides Argonaute 
(AGO) containing complexes to complementary nascent 
RNA scaffolds [118]. AGO proteins are highly specialized 
direct binding partners of miRNAs, siRNAs, and piRNAs, 
and interact with other proteins to coordinate downstream 
gene-silencing and RNA splicing [118]. sRNAs also per-
form as mediators of chromatin structure and transcription 
repression by facilitating the recruitment of histone and 
DNA methyltransferases. Besides playing a central role 
in RNA degradation and translational repression, sRNAs 
also modulate chromatin and gene expression via RNA 
interference (RNAi) pathways [85], which in turn modu-
late histone or DNA methylation to repress transcription 
[154]. sRNAs, such as miRNAs, can also act oppositely: 
they can stimulate gene expression under stress conditions 
as a result of new miRNA-ARGO complexes interacting 
with RNA-binding proteins which relocate during cel-
lular stress [102]. Transcriptional silencing under sRNA 

control is also ‘memorized’ through self-reinforcing epige-
netic loops, a process by which sRNAs are fused to his-
tone modification or DNA methylation and form positive 
feedback systems to maintain epigenetic conditions. These 
self-reinforcing epigenetic loops are key players in epige-
netic inheritance of histone and DNA methylation patterns 
[78]. Specifically, such association of sRNAs with positive 
feedback loops in the germ line acts as a fingerprint for 
internal or environmentally induced alterations, and can be 
transmitted from parents to offspring [60, 146].

On the other hand, several lncRNAs and some messen-
ger RNAs (mRNAs) mediate the recruitment of chromatin-
modifying complexes independently of sRNAs and RNAi 
pathways [154]. Specifically, lncRNAs can recruit chroma-
tin-modifying enzymes to specific loci to activate or silence 
gene-specific transcription [19, 78, 154]. One example is 
exonized Alu elements, the most common transposable ele-
ments in humans, which are mostly located in lncRNAs 
and untranslated regions of mRNA [93]. Alu RNAs act as 
transacting transcriptional repressors after binding RNA 
polymerase II [109], and are also involved in the regulation 
of alternative splicing, modulation of translation, and moni-
toring of mRNA stability [74]. In addition, several studies 
attempted to establish whether lncRNAs recruit Polycomb 
proteins, which are epigenetic regulators of transcription, 
but the data remain inconclusive [78]. Current evidence 
does support a role for lncRNAs transcribed from enhanc-
ers in transcription regulation. These particular enhancer 
sequences are different from enhancer sequences that 
bind transcription factors, as they activate specific target 
genes [101]. However, as the exact function of lncRNAs 
in genome regulation is still largely unknown, much will 
likely be learned in the near future.

Transcriptional silencing mediated by sRNAs and lncR-
NAs is an efficient RNA surveillance system responsible 
for the detection and silencing of aberrant transcript vari-
ants. sRNAs and lncRNAs, while having distinct functions, 
act together to regulate gene transcription. A good example 
is the piRNA-induced silencing complex, which protects 
the integrity of the genome by silencing transposable ele-
ments that can in turn act as transcriptional repressors when 
expressed [165]. Along with enzymes such as DNA and 
histone methyltransferases or acetylases/deacetylases, and 
repressive and permissive chromatin-modifying complexes 
such as Polycomb and Trithorax groups, RNA-directed 
processes assist in orchestrating chromatin architecture, 
gene transcription, and epigenetic memory [6, 18]. Moreo-
ver, RNA-mediated regulation has the highest affinity for 
specific DNA sequences, and can thus be an interesting 
therapeutic target for diseases such as ALS and FTD.

Finally, another way to regulate epigenetic processes 
is through RNA editing. Environmental information can 
be transmitted and reflected on the hardwired genetic 
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information after post-transcriptional editing of the RNA 
base sequence, which in turn affects the regulation of down-
stream targeted RNAs. Two classes of enzymes are respon-
sible for editing the RNA: the adenosine deaminases acting 
on RNA (ADARs), which catalyzes adenosine deamination 
to inosine [26], and the apolipoprotein B mRNA editing 
enzymes (APOBECs), which catalyze cytidine deamina-
tion to uracil [129]. While RNA editing has been shown to 
take place in most tissues, it is particularly abundant and 
important in the brain [13], and has been shown in some 
cases to alter the amino acid sequence and splicing patterns 
of neurotransmitter receptors, thereby altering the electro-
physiological properties of synapses [53]. Consequently, 
these RNA alterations can be transmitted across cells and 
offspring, a phenomenon that was first demonstrated in 
plants prior to animals [48, 75, 185].

RNA editing highlights the dynamic interplay between 
the environment, the epigenome, and the transcriptome. 
These post-transcriptional changes in RNA lead to altera-
tion of epigenetic information, which is memorized, and 
then transmitted between cells, across organ systems, and 
through different generations. Future studies will have to 
determine how extensively RNA editing may modulate 
epigenetic processes and assess how plastic the epigenome 
may be. This is particularly important for germline and de 
novo RNA editing occurring in the brain, considering the 
possibility that edited RNAs may eventually cause disease, 
including neurodegeneration.

The role of epigenetic regulation in ALS and FTD

Very few epigenetic studies related to ALS were pub-
lished before the identification of the C9orf72 HRE in 
September 2011 [45, 150]. As alteration of epigenetic 
processes has been observed in a number of repeat expan-
sion disorders [16], the finding of a HRE in C9orf72 
unveiled the possibility that epigenetic modifications and 
chromatin remodeling might also play a role in ALS and 
FTD. Since the HRE discovery, more than twenty stud-
ies have been reported, half of which are C9orf72 locus-
related. This sudden increase in ALS/FTD epigenetic 
reports reflects the enthusiasm of the field to explore new 
territories in terms of disease mechanism, as the young 
field of epigenomics might provide novel explanations for 
these two lethal diseases. The assessment of epigenetic 
modifications for ALS and FTD is still at an early stage 
and much remains to be evaluated. For example, it is not 
known whether unique epigenetic changes contributing 
to ALS and FTD can be found in all cells or a subgroup 
of cells more susceptible or vulnerable to specific epige-
netic changes. However, coupled with evidence that mod-
ifications of the epigenome contribute to ALS and FTD 

pathogenesis is the dynamic nature of epigenetic writer, 
eraser, and reader enzymes. Thus, developing therapeu-
tic strategies that target enzymes regulating epigenetic 
dynamics to reverse epigenetic changes that lead to neuro-
degeneration offers an attractive approach to combat these 
diseases.

The following sections provide an overview of what we 
currently know about epigenetic modifications in ALS and 
FTD (Table 1), including therapeutic implications of these 
findings, environmental factors that may lead to epigenetic 
changes, and avenues that should be explored in future 
studies.

DNA methylation in ALS and FTD

While earlier studies found the promoters of some genes 
implicated in the pathogenesis of ALS (SOD1, VEGF, and 
GLT1) largely unmethylated in ALS patients [131, 192], 
several studies indicate that DNA methylation plays a role 
in neurodegeneration pathophysiology. DNA methylation 
was reported altered in ALS post-mortem brains after meth-
ylation levels were compared between sALS and control 
subjects using Affymetrix GeneChip Human Tiling 2.0R 
Arrays [124]. The authors reported 38 differentially methyl-
ated regions (DMRs), and their pathway analysis suggested 
that the genes with DMRs were involved in calcium home-
ostasis, neurotransmission and oxidative stress. Another 
study designed to identify epigenetic modifications asso-
ciated with sporadic ALS reported global changes in both 
5mC and 5hmC levels in postmortem spinal cords but not in 
blood samples [54]. The authors observed hyper- or hypo-
methylation with corresponding under- or overexpression  
of 112 genes highly associated with immune and inflam-
mation responses. Furthermore, the whole blood was ana-
lyzed to determine whether DNA methylation is a modifier 
of ALS age of onset [174]. Here, it was found that DNA 
methylation may be a marker of epigenetic dysfunction in 
ALS, as levels of methylation are increased independently 
from age of onset. Moreover, two studies analyzing the pro-
granulin-encoding gene (GRN) reported that GRN promoter 
methylation regulates progranulin expression [11, 59]. 
Both reports found increased GRN promoter methylation 
in FTD subjects negatively correlating with GRN mRNA 
levels [11, 59], an interesting finding considering that GRN 
haploinsufficiency is a major cause of FTD [56]. A recent 
study analyzing genome-wide DNA methylation patterns 
in the peripheral blood of tau-related progressive supranu-
clear palsy (PSP) and FTD subjects relative to unaffected 
controls identified a specific methylation signature associ-
ated pathologically with tauopathy, indicating the signature 
serves as a risk factor for neurodegeneration [103].

The most extensively studied epigenetic change in ALS 
and FTD thus far is the methylation of C9orf72; different 
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studies aimed to determine whether this modification may 
play a role in mechanisms possibly leading to C9ORF72 
loss of function. The loss of function theory has been sup-
ported by several reports demonstrating decreased expres-
sion of one or multiple C9orf72 transcript variants in fron-
tal cortex, motor cortex, cerebellum, and cervical spinal 
cord of FTD or ALS C9orf72 HRE carriers (c9FTD/ALS) 
[15, 36, 50, 57, 64, 126, 178], as well as in lymphoblastoid 
cell lines generated from c9FTD/ALS patient blood [36] 
and neuronal cell lines differentiated from c9FTD/ALS-
induced pluripotent stem cells (iPSCs) [4, 50]. Hypermeth-
ylation of the 5′ CpG island located in the C9orf72 pro-
moter region was shown by different groups to be present 
in about 10–30 % of c9FTD/ALS subjects [14, 104, 187, 
191], possibly leading to reduced C9orf72 expression lev-
els. While the cause of reduced C9orf72 expression in the 
remaining 70 % of c9FTD/ALS cases not hypermethylated 
was still obscure, a subsequent study demonstrated that the 
repeat expansion itself is methylated in all HRE carriers 
[190], suggesting that the methylation of the HRE region 
might be the cause of the reduced expression for most, if 
not all, c9FTD/ALS patients. The consequence of C9orf72 
downregulation has been evaluated in several model sys-
tems, including by knocking down the C9orf72 orthologue 
in zebrafish. A knockdown of the zebrafish orthologue led 
to both altered morphology of motor neuron axons and 
locomotor deficits, a phenotype rescued by overexpression 
of human C9orf72 [36]. Depleting the C9orf72 orthologue 
in the nematode also led to motor neuron deficits [172]. 
Of note, the fact that the C9orf72 mouse orthologue is 
enriched in brain regions susceptible to degenerate in ALS 
and FTD [168] suggests that sufficient C9orf72 expression 
is critical to neuronal survival. However, since conditional 
deletion from mouse neuronal and glial cells was not asso-
ciated with neurodegeneration [96], reduced C9orf72 levels 
alone may not be sufficient to trigger motor neuron degen-
eration in higher organisms.

One report suggested that the length of the repeat might 
influence the level of DNA methylation at the C9orf72 
promoter. Specifically, this process was demonstrated in 
a Canadian family with a father carrying an intermediate 
length allele (70 repeats) with an unmethylated C9orf72 
promoter, which expanded to approximately 1750 repeats 
at the time of transmission to four of his children [188]. 
The expanded allele carried by the four children, two of 
whom have developed ALS symptoms thus far, was char-
acterized by C9orf72 promoter hypermethylation and 
associated with reduced C9orf72 expression [188]. The 
timing associated with hypermethylation of the C9orf72 
promoter and the reason why it happens in only ~30 % of 
c9FTD/ALS cases is still under investigation. However, in 
an attempt to explore this phenomenon, one group used 
iPSCs generated from a hypermethylated c9ALS patient 

and observed that 5mC levels at the C9orf72 promoter 
were reduced during reprogramming but restored upon 
neuronal differentiation. On the contrary, 5hmC levels in 
the same region were increased during the reprogramming 
process, and levels were even higher after neuronal dif-
ferentiation. The abundance of 5hmC at the C9orf72 pro-
moter was also confirmed in the brain of hypermethylated 
c9FTD patients [52]. Several groups attempted to assess 
whether DNA methylation can be a clinical modifier of 
disease. So far, very few significant correlations have been 
identified. Among these, however, the hypermethylation of 
the CpG island upstream of the HRE has been shown to 
correlate with shorter disease duration [191], which may 
serve as a prognostic tool for C9orf72-associated disease.

The role that methylation at the C9orf72 locus plays in 
ALS and FTD pathogenesis is yet to be fully determined, 
as contradictory results have arisen. For instance, while 
epigenetic modification of C9orf72 through hypermethyla-
tion has been significantly correlated with shorter disease 
duration, it has also been shown to be neuroprotective in 
patients [15, 104, 116, 157, 190, 191]. Specifically, it was 
shown that methylation of the HRE reduces the pathogenic 
effects of the HRE, as determined by the quantification of 
dipeptide poly (GP) levels, one product of non-traditional 
repeat associated non-ATG (RAN) translation of the HRE, 
and of RNA foci formation when the HRE was expressed 
in cells [12]. As such, simultaneously promoting meth-
ylation of the mutant allele to reduce its expression and 
overexpressing the normal allele might avoid both the hap-
loinsufficiency and the toxic gain of function observed in 
c9FTD/ALS. Consequently, using epigenetic modifiers 
to independently regulate expression of the normal and 
mutant alleles might be a novel strategy to explore in the 
near future. In fact, the mechanism of de novo gene meth-
ylation was first demonstrated in plants in 1994, and for the 
first time embraced the possibility of artificially modulat-
ing gene expression through epigenetic modulation [186]. 
Strategies to therapeutically reverse pathogenic changes in 
DNA methylation have been intensely studied since then to 
treat many diseases, including cancer and neurodegenera-
tion [76, 184]. Interestingly, to combat the potential conse-
quences associated with C9orf72 haploinsufficiency, small 
molecules targeting bromodomain proteins, proteins that 
recognize acetylated lysine residues on chromatin, have 
been shown to specifically enhance C9orf72 RNA expres-
sion without affecting the epigenetic regulation of this gene 
[193].

Other therapeutic strategies targeting DNA methylation 
include developing drugs that alter the enzymatic activity 
of the hydroxymethylase TET to normalize 5mC or 5hmC 
levels, as well as altered activity of Dnmts to treat diseases 
where DNA methylation levels are perturbed [44, 81]. 
While these strategies are being explored in diseases such 
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as cancer, where aberrantly regulated TET enzymes have 
both tumor suppressing and promoting capabilities [86, 
183], their potential to treat neurodegenerative diseases 
is even less known. DNA methylation studies character-
izing changes in 5hmC levels in many neurodegenerative 
diseases aim to identify whether these changes may serve 
as potential biomarkers or therapeutic targets for those 
diseases [3]. Interestingly, the involvement of 5hmC level 
changes in the regulation of transcription factors have been 
reported in neurodevelopment, neurodevelopmental dis-
eases, aging, and neurodegenerative diseases [164, 166], 
suggesting that these DNA marks are important for neu-
ronal cell development and maintenance.

Integrative analysis of DNA methylation from ALS 
subject spinal cords, combined with transcriptome analy-
ses, revealed a potential to use DNA methylation changes 
to identify suitable biomarker and therapeutic targets [54]. 
Experimentally, Dnmts were reported to be pro-apoptotic 
and increase 5hmC levels in motor neurons [32]. Interest-
ingly, pharmacologically treating a mouse model for motor 
neuron neurodegeneration and apoptosis with Dnmt inhibi-
tors abrogated both elevated 5mC levels and apoptosis of 
the motor neurons. Furthermore, in human sporadic ALS, 
Dnmt1 and Dnmt3a levels were found increased in motor 
cortex and spinal cord neurons, as were 5mC levels in cor-
tical pyramidal motor neurons. Dnmt3a expression was 
also found upregulated in FTD patients, and the methyl-
transferase was shown to regulate GRN promoter activity 
[11]. Taken together, targeting Dnmts may be an important 
therapeutic strategy to treat ALS.

Histone modification in ALS and FTD

Repressive histone marks at the C9orf72 locus were found 
to reduce gene expression in both ALS and FTD patients 
with the HRE, but not in ALS patients without expanded 
repeats [15]. Interestingly, treating fibroblasts derived from 
C9orf72 HRE carriers with the demethylating agent 5-aza-
2-deoxycytidine increased C9orf72 mRNA expression. 
These data demonstrated that a potentially pathogenic his-
tone modification event regulating C9orf72 expression can 
be reversed. Therapeutic strategies targeting histone modi-
fications have been intensely studied and developed as anti-
cancer agents, where multi-faceted HDAC inhibitors have 
successfully reversed the effects of cancer-induced aberrant 
epigenetic changes [100]. Among other diseases, HDAC 
inhibitors have also been explored to treat progressive neu-
rodegeneration such as in Parkinson’s disease (PD), where 
an imbalance between histone acetylation and deacetyla-
tion is known [73]. Because of the pathogenic potential for 
excessive histone deacetylation in PD, which leads to the 
altered expression of neuronal genes including those essen-
tial for survival, HDAC inhibitors were shown to provide 

neuroprotection in PD in vitro and in vivo models. How-
ever, the detailed molecular mechanisms for neuroprotec-
tion, and whether HDAC inhibitors will prove clinically 
successful in PD remain to be determined. HDAC inhibi-
tors have also been tested for the epigenetic therapy of ALS 
in in vitro and animal models, with some proceeding to 
clinical trials. For example, a phase 2 study of sodium phe-
nylbutyrate (NaPB) in ALS, a histone deacetylase inhibi-
tor that was neuroprotective and prolonged the survival of 
SOD1-Gly93Ala mice [158], was found safe and well-tol-
erated by study participants, and importantly, significantly 
increased histone acetylation in blood buffy-coat specimens 
[42]. These data demonstrate the ability for a compound to 
alter the epigenomic architecture in patients.

miRNAs in ALS and FTD

Disrupting miRNA biogenesis has the potential to have 
many downstream consequences that affect multiple cellu-
lar pathways. Postmortem human spinal cord tissues from 
ALS subjects were assessed to identify aberrantly regulated 
microRNAs [55]. Expression and systems biology analy-
ses revealed that mature miRNAs are globally reduced 
and miRNA processing is altered. Furthermore, the same 
study found that cellular redistribution and cytoplasmic 
aggregation of TDP-43 regulates ALS-associated miRNA 
expression. Interplay between different cell types is also 
being explored for pathogenic roles in neurodegeneration, 
and evidence suggests that alterations in neighboring skel-
etal muscle may enhance damage to motor neurons in ALS 
[128]. In fact, selectively expressing mutant SOD1 (G39A), 
a known mutation in ALS, in mouse muscles lead to the 
altered expression of miRNAs and mRNAs associated with 
myelin homeostasis in the spinal cords of the mice, there-
fore revealing interplay between cell types affects epige-
netic regulation [49].

Since altered miRNA regulation could aberrantly regu-
late many cellular pathways, reversing pathogenic miRNA 
changes could provide therapeutic benefit. Both miRNA 
antagonists, to inhibit pathogenic gain-of-function mecha-
nisms, and miRNA mimics, to replace downregulated miR-
NAs, have been intensely explored to treat cancer [7, 135]. 
In ALS mouse models, specific oligonucleuotide miRNA 
inhibitors known as anti-miRs, and miRNA agonists, have 
been used to demonstrate anti-miR delivery and function in 
the brain and spinal cord and to support targeting miRNAs 
to treat ALS. For example, anti-miRs to miR-155 or miR-
29a extended the lifespans of SOD1-Gly93Ala mice [97, 
130]. Injecting miR-124a oligonucleotides into SOD1-Gly-
93Ala mice prevented the pathological loss of the rodent 
excitatory amino acid transporter 2 (EAAT2/GLT1) [125], 
an astroglial glutamate transporter implicated in astroglial 
dysfunction in ALS. Similarly, in a mouse model expressing 
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FTD-associated mutant CHMP2B, miR-124 levels were 
found decreased; re-expressing miR-124 in those mice 
decreased the levels of the miR-124 target AMPA receptor 
(AMPAR) and partially rescued behavioral deficits [62]. 
Moreover, the authors found correlative levels of miR-124 
and AMPAR in induced pluripotent stem cell-derived neu-
rons from subjects with behavioral variant FTD, supporting 
the investigation of targeting this miRNA for FTD therapy. 
Several more studies have identified additional alternatively 
expressed miRNAs in ALS and FTD that could be devel-
oped as drug targets or as circulatory biomarkers for ALS 
[37, 69, 87, 108, 133, 173, 194]. For example, miR-206 
was found consistently altered during the course of disease 
in SOD1-Gly93Ala mice and increased in the circulation of 
a small cohort of ALS patients [173]. Furthermore, explor-
ing therapeutic strategies targeting pathogenic miRNAs 
in ALS is further supported by the recent report on aber-
rantly regulated miRNAS in sporadic ALS discussed above 
[55]. Manipulating miRNAs have the advantage of altering 
multiple gene targets simultaneously using a single drug, 
but the disadvantage of non-specific binding to other miR-
NAs resulting in deleterious off-target effects. Therefore, 
designing approaches to target pathogenic miRNA altera-
tions requires great specificity.

Environmental signals and epigenetic modifications 
in ALS and FTD

Communication between the environment and the genome 
is reflected through epigenetic alteration of the genetic 
information, and these changes can further be transmitted 
from cell to cell [139]. The dynamic interaction between 
the environment, the epigenome, and the transcriptome can 
be initiated by different factors, including age, exercise, 
diet, and toxic environmental exposure, to name a few. The 
first association between environmental factors and ALS 
was observed with the Chamorro indigenous people of 
Guam, who showed an extremely high incidence of ALS. 
Disease was linked to the accumulation of cycad neuro-
toxins, including beta-N-methylamino-l-alanine (BMAA) 
produced across the cyanobacterial order, from consuming 
flying fox [10, 21, 35]. It is well know that diet can induce 
epigenetic changes and cause various diseases [148], and 
the high incidence of ALS and other neurodegenerative dis-
eases in Guam might be the first report for the field [79]. 
Association between BMAA, reactive oxigene species 
(ROS), and ALS has also been reported by others [27, 35, 
43, 91, 139, 143].

Precisely, environmental signals can induce the libera-
tion of free radicals leading to oxidative stress and alteration 
of epigenetic mechanisms, including histone remodeling, 
RNA editing, as well as DNA methylation and hydroxy-
methylation, and consequently alter gene expression [70, 

83, 117, 151]. For instance, stress after social defeat has 
been shown to cause both histone methylation and acety-
lation changes in rodents [175], and histone modifications 
after acute or chronic stress was demonstrated to cause 
gene activation or repression that modulate memory pro-
cesses [152]. Acute stress has been shown to have a repres-
sive effect on retrotransposable elements (RTE), as well as 
on coding and non-coding RNA of the hippocampus after 
histone 3 trimethylation at lysines 9 and 27. Such repres-
sion was shown to be lost after repeated stress, suggest-
ing that induced expression of RTEs after prolonged stress 
may impair genomic stability and give rise to cognitive 
impairments [51, 82, 84, 89, 92, 115, 147]. Interestingly, 
two recent reports of twins highlight the potential contri-
bution of environmental factors to ALS onset. One study 
focused on monozygotic twins discordant for ALS, where 
no SNPs or genome-wide structural differences were found 
to explain the discordance, and the second study described 
a pair of C9orf72 HRE-positive identical twins discordant 
for ALS [119, 189].

Many other studies suggest connections between envi-
ronmental influences and ALS. For example, accumulat-
ing evidence indicates heavy metals induce cellular stress 
and toxicity by catalyzing ROS formation, thereby mediat-
ing protein denaturation and aggregation, together lead-
ing to the inability of the ubiquitin/proteasome system to 
eliminate dysfunctional proteins [121]. One study used a 
mixed isomer fluorescent indicator (5-(and-6)-carboxy-
2′,7′-dichlorofluorescein diacetate or carboxy-DCFDA) to 
assess ROS generation within human neuronal cells [138] 
after generating stress using different metal sulfates. Of note, 
aluminum sulfate demonstrated the greatest ability to induce 
ROS. They found that carboxy-DCFDA is a highly sensitive 
and long-lasting tracer enabling ROS quantification which 
can also be useful to evaluate epigenetic changes initiated by 
metal sulfate to ROS generation in neurodegeneration [138]. 
Furthermore, regular exposure to electromagnetic fields may 
trigger DNA methylation and histone modification, as was 
suggested by a study of a large cohort of workers, especially 
resistance welders regularly exposed to extremely low fre-
quency magnetic fields who had an increased risk for AD 
and ALS [72]. While no robust association has been reported 
between ALS and other environmental factors, some stud-
ies suggested connections with heavy metal exposures such 
as lead, mercury, and selenium, as well as agricultural and 
household pesticides- and herbicides-containing organo-
phosphate (OP) [9, 38, 41, 47, 88, 110, 123, 159, 169, 176].

Finally, a common subject of discussion is the increased 
ALS frequency among soccer and football players [1, 33], as 
well as in war veterans [80, 122] further supporting that neu-
rological symptoms of ALS arise from environmental expo-
sures. While different factors such as physical activity, drug 
consumption, and ischemia caused by head injuries have 
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been proposed to increase the production of ROS in ALS, 
the specific contribution of these exposures to epigenetic 
changes and neurodegeneration remains to be determined.

Concluding remarks

While much of the epigenome was initially believed to be 
inherited and mostly stable, that it is in fact dynamic, and 
that it is altered in ALS and FTD makes the epigenome an 
attractive target for therapeutic development. Much progress 
has been made in characterizing the status of different epige-
netic mechanisms in neurodegenerative diseases, but whether 
altered epigenetic regulation is a consequence of neurode-
generation or pathogenic remains a matter of debate [61]. 
For example, a recent study observed distinct transcriptome 
alterations in c9ALS and sALS brain [142], but whether these 
unique signatures are the result of aberrant epigenetic regula-
tion has not yet been demonstrated. If epigenetic mechanisms 
are indeed found to mediate transcriptome alterations, these 
unique changes would be useful to monitor the effectiveness 
of epigenetic targeting therapeutics in restoring transcriptome 
defects. In laboratory and clinical settings, strategies target-
ing epigenetic writers, readers, and erasers have shown some 
support to treat neurodegeneration and cancer, suggesting that 
therapeutic agents that reverse pathogenic epigenetic altera-
tions have the potential to treat ALS and FTD. Because RNAs 
mediate epigenetic regulation by recruiting important chro-
matin remodeling factors, RNAs, such as miRNAs, may be 
interesting therapeutics targets to develop based on their abil-
ity to recognize specific sequences. While research identify-
ing epigenetic pathogenic mechanisms is still in its infancy 
for ALS and FTD, lessons learned from other diseases, espe-
cially cancer, have the potential to fast-track the development 
of epigenetic targeting strategies from bench to bedside to 
treat ALS and FTD. Drugs already approved to target epige-
netic mechanisms may turn out to be efficacious and restore 
altered cellular pathways in ALS and FTD; already FDA 
approved to treat cancer, Dnmt and HDAC inhibitors [53, 
76] may be able to reverse aberrant epigenetic changes in the 
central nervous system [184]. Thus, the emerging field of epi-
genetics provides new hope for patients with lethal ALS and 
FTD, and exciting studies exploring new territories should be 
expected in the near future.
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