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angiopathy, hemorrhages and disrupted transport of nutri-
ents and toxins. The apoE4-induced detrimental changes 
may be linked to pericyte migration/activation, astrocyte 
activation, smooth muscle cell damage, basement mem-
brane degradation and alterations in brain endothelial cells.
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BBB  Blood–brain barrier
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CAA  Cerebral amyloid angiopathy
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ISF  Interstitial fluid
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LDLR  Low-density lipoprotein receptor
LRP1  Low-density lipoprotein receptor-related pro-
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MCI  Mild cognitive impairment
MMP  Matrix metalloproteinase
MS  Multiple sclerosis
NVU  Neurovascular unit
oAβ  Oligomeric Aβ

TJ  Tight junction

Abstract The ε4 allele of the apolipoprotein E gene 
(APOE4) is associated with cognitive decline during aging, 
is the greatest genetic risk factor for Alzheimer’s disease 
and has links to other neurodegenerative conditions that 
affect cognition. Increasing evidence indicates that APOE 
genotypes differentially modulate the function of the cere-
brovasculature (CV), with apoE and its receptors expressed 
by different cell types at the CV interface (astrocytes, peri-
cytes, smooth muscle cells, brain endothelial cells). How-
ever, research on the role of apoE in CV dysfunction has 
not advanced as quickly as other apoE-modulated path-
ways. This review will assess what aspects of the CV are 
modulated by APOE genotypes during aging and under 
disease states, discuss potential mechanisms, and summa-
rize the therapeutic significance of the topic. We propose 
that APOE4 induces CV dysfunction through direct sign-
aling at the CV, and indirectly via modulation of periph-
eral and central pathways. Further, that APOE4 predisposes 
the CV to damage by, and exacerbates the effects of, addi-
tional risk factors (such as sex, hypertension, and diabetes). 
ApoE4-induced detrimental CV changes include reduced 
cerebral blood flow (CBF), modified neuron-CBF coupling, 
increased blood–brain barrier leakiness, cerebral amyloid 
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TNFα  Tumor necrosis factor α
VaD  Vascular dementia
VLDLR  Very LDL receptor
WMH  White matter hyperintensities

Introduction to apolipoprotein E and the 
cerebrovasculature (CV) (Fig. 1)

APOE4 is the greatest genetic risk factor for Alzheimer’s 
disease (AD), is associated with cognitive changes dur-
ing aging and increases risk for other disorders, e.g., Lewy 
body disease, compared to APOE3. Thus, there is a criti-
cal need to dissect pathways modulated by APOE. There 
are three polymorphic alleles of the human APOE gene, ε2, 

ε3 and ε4, which encode three isoforms of apolipoprotein 
E (apoE, 299 amino acids, 34 kDa, reviewed extensively 
in [58, 67]). Human apoE isoforms differ at residues 112 
or 158: apoE2 contains Cys112, Cys158; apoE3 contains 
Cys112, Arg158; and apoE4 contains Arg112, Arg158. 
Mouse apoE is structurally and functionally distinct from 
human apoE and is not the focus of this review. ApoE plays 
a key role in a number of biological processes in the periph-
ery and the central nervous system (CNS). In the periph-
ery, apoE is important for cholesterol metabolism and 
APOE4 is associated with hyperlipidemia, hypercholes-
terolaemia, atherosclerosis and coronary heart disease. In 
the CNS, apoE modulates multiple mechanistic pathways 
that collectively affect cognition including cholesterol/
lipid homeostasis, synaptic function, glucose metabolism, 

Fig. 1  Expression of APOE and apoE receptors in the CNS. a Arterioles. b Capillaries that define the blood–brain barrier (BBB)
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neurogenesis, mitochondrial function, tau phosphorylation, 
neuronal atrophy, neuroinflammation, and the metabolism 
and aggregation of amyloid-β (Aβ). Peripheral apoE is pro-
duced by the liver and macrophages but peripheral apoE-
containing lipoproteins do not cross the CV, thus apoE is 
also produced locally within the brain. ApoE is produced 
by glia (astrocytes and microglia), pericytes, smooth mus-
cle cells, and to a much lesser extent in neurons under 
certain stress conditions, and potentially brain endothelial 
cells (BECs). The major apoE receptors are part of the 
low-density lipoprotein receptor (LDLR) family, which 
are expressed throughout the CNS. Astrocytes, microglia, 
neurons and BEC express LDLR, LDLR-related protein 
1 (LRP1), very LDL receptor (VLDLR) and LRP8/ApoE 
receptor 2 (ApoER2) [58]. LDLR and LRP1 are endocytic 
receptors and the main apoE metabolic receptors, while 
VLDLR and ApoER2 are primarily signaling receptors. 
ApoE also binds to heparan sulfate proteoglycans, which 
facilitate receptor-independent and receptor-dependent 
apoE uptake. Therefore, APOE-modulated effects on 
peripheral and CNS pathways, as well as direct apoE sign-
aling in the cells (astrocytes, pericytes, BECs) of the neuro-
vascular unit (NVU), may collectively induce CV dysfunc-
tion and cognitive decline. However, research on the role 
of apoE in CV dysfunction has not advanced as quickly as 
other apoE-modulated mechanistic pathways. This review 
will assess the role of APOE in CV dysfunction in aging 
and neurodegenerative disorders, discuss potential mecha-
nisms and summarize the therapeutic significance of the 
topic.

Aging/disease‑independent effects (Supplementary 
Table 1a)

APOE modulates cognitive function during aging

As this article is focused on whether APOE modulates CV 
function and impacts cognition, an important considera-
tion is the effect of APOE on cognitive function in aging. 
In young adults, evidence supports that APOE4 imparts 
behavioral advantages in tasks that require a wider spa-
tial and temporal attentional field [97]. In middle-aged 
adults there is no clear consensus on whether APOE4 
modulates cognitive ability (40–55 years, reviewed in 
[101]). In older adults (>55 years), APOE4 is associated 
with cognitive deficits in logical memory, recognition 
memory and processing speed as well as delayed recall 
and subjective memory complaints [20, 33, 57, 62, 72]. 
Proposed hypotheses for APOE-modulated cognition dur-
ing aging include: APOE4 modulated pathways induce 
neuronal dysfunction independent of AD; older individu-
als with APOE4-induced cognitive impairment are in the 

prodromal AD stage, and antagonistic pleiotropy, i.e., 
APOE4 exerts beneficial effects early in life, neutral-to-
no differences at a mid-age and detrimental effects at old 
age.

APOE4 synergistically interacts with vascular risk 
factors to impact cognition

APOE4 could affect cognition later in life through increas-
ing the risk of developing and exacerbating damage caused 
by cardiovascular risk factors [9]. For example, in APOE4 
but not APOE3 carriers, cardiovascular risk factors includ-
ing hypercholesterolemia, prior cigarette use, diabetes mel-
litus and hypertension result in longitudinal preclinical 
memory decline (auditory verbal memory) (mean age 60, 
5.6 years follow-up) [21]. Further, the interaction among 
APOE4, systolic blood pressure and neuropsychological 
performance was demonstrated in the Framingham Off-
spring Cohort (mean age 61 years) [141]. APOE4 also 
potentiates cognitive decline in the absence of pathological 
hypertension but with increased blood pressure. Normo-
tensive APOE4 carriers with higher systolic blood pressure 
present with smaller prefrontal volume, slower process-
ing speed and decreased verbal recognition [13]. Although 
some data conflict [32, 89], overall evidence supports that 
APOE4 interacts with peripheral cardiovascular risk factors 
to impact cognition and these factors share common down-
stream pathogenic properties: atherosclerosis, stroke and 
BEC dysfunction.

APOE4 disrupts cerebral blood flow

There is an intimate bi-directional association between 
CBF and neuronal metabolism. CBF ensures sufficient 
oxygen and nutrient supply, and neurons can secrete factors 
that influence CBF. APOE modulates CBF when assessed 
using PET or arterial spin labeling (ASL) MRI. In a small 
cohort of young college students, APOE4 carriers exhibited 
lower resting CBF in the left and right inferior temporal 
gyri and higher CBF in the left insula, right supramarginal 
gyrus and the inferior occipital gyrus compared to non-
carriers [102]. In middle age and older adults (52–81 years) 
APOE4 is associated with higher CBF as a function of 
longer sedentary time [148]. These data are consistent 
with the finding that CBF is elevated for APOE4 carriers 
in the medial temporal lobes and left parahippocampal and 
fusiform gyri, the latter of which is positively correlated 
with verbal memory [133]. Therefore, younger middle-
aged adults could display compensatory mechanisms in 
brain regions at risk for AD, but the data are also compat-
ible with antagonistic pleiotropy. Indeed, CBF is lower in 
older (50–78 years) compared to younger (20–35 years) 
APOE4 carriers [36]. Further, with APOE4 there is higher 
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baseline CBF followed by greater CBF decline with age in 
frontal parietal and temporal cortices in longitudinal analy-
sis (mean age 69.2, interval length 7.8) [121]. In vivo data 
support the idea that APOE modulates CBF during aging. 
In APOE4-targeted replacement mice (APOE4-TR mice), 
which express human apoE4 under the control of the mouse 
endogenous apoE promoter, there is a reduction in cortical 
CBF compared to wild type, but not compared to apoE-
knockout mice at 18 months of age. Although compared to 
wild-type mice the changes in functional connectivity were 
apparent at 12 months in APOE4-TR mice, reduced post-
synaptic density levels occurred with perfusion deficits at 
18 months [143].

A number of groups have performed fMRI with no clear 
consensus on the effects of APOE genotype on CBF as 
assessed by imaging (reviewed in [123]). Evidence for a 
role of APOE in CBF and CV dysfunction is derived from 
analysis of blood oxygenation level-dependent functional 
MRI (BOLD-fMRI). In BOLD-fMRI a signal represents a 
transient increase in CBF during neural activity, which in 
turn is dependent on a combination of neuronal activity, 
neuronal vascular coupling, CBF and general CV function. 
Young APOE4 carriers (~25 years) display a higher task-
related BOLD signal; however, they also demonstrate the 
lowest CV reactivity when assessed using a CO2 inhalation 
challenge [114]. It is tempting to speculate that a disrupted 
CV may underlie the BOLD signal changes in young 
adults. Middle-aged (50–65) APOE4 carriers exhibit higher 
resting CBF when assessed by ASL and decreased BOLD 
and perfusion responses [37]. Collectively, the higher CBF 
with APOE4 in younger and middle-aged adults may be 
related to antagonistic pleiotropy or functional compen-
sation due to CV damage and lead to CBF and cognitive 
impairments in older APOE4 carriers.

APOE2  and  APOE4 increase cerebral amyloid 
angiopathy (CAA)

CAA is the deposition of proteins, including Aβ (particularly 
Aβ40), in the leptomeningeal medium and small arteries, 
cortical arterioles and capillaries and is frequently observed 
with aging. CAA can induce inflammation, fibrinoid necro-
sis, microaneurysm, microbleeds, transient ischemic attack, 
hemorrhages and white matter damage. APOE4 is associ-
ated with the increased risk of CAA [22, 41] in the occipital 
lobe [79], neocortex [85] and meninges and correlates with 
neurofibrillary tangles [85]. Further, APOE4 enhances the 
amount of Aβ per vessel [4], which may cause CAA-induced 
hemorrhage. APOE2 carriers are also overrepresented in 
patients with CAA-related hemorrhage [26, 41, 74–76, 79, 
80], and indices of intracerebral hemorrhage severity includ-
ing hematoma size, functional outcome and mortality are 

greater in APOE2 carriers [90]. As APOE2 does not influ-
ence the severity of CAA, APOE2 is likely a risk factor 
for hemorrhage of vessels with CAA. ApoE2 binds with 
lower affinity to LDLR compared to apoE3 and apoE4 in 
the periphery [131] leading to hyperlipoproteinemia, which 
could damage the CV and contribute to CAA.

APOE4 induces BBB/blood–CSF barrier dysfunction

Compelling but limited data support that APOE4 induces 
CV leakiness in humans. In a seminal study, a higher cer-
ebrospinal fluid/plasma albumin quotient (QAlb) was 
demonstrated in cognitively normal older APOE3/4 carri-
ers (66–85 years) compared to younger APOE3/4 carriers 
and both younger and older non-APOE4 carriers [47]. In 
the Rotterdam study, APOE4 was associated with micro-
bleeds regardless of age (mean age 60.3) [86]. APOE4 also 
modulates the function of the CV as vasoreactivity is lower 
in younger APOE4 carriers [114] and in older adults [45]. 
Furthermore, in older adults, APOE4-induced cognitive 
deficits are amplified by hypertension and with low CO2 
vasoreactivity [45]. White matter hyperintensities (WMH) 
are regarded as indications of CV dysfunction and are asso-
ciated with changes in white matter integrity. Reports con-
flict on whether APOE4 increases or decreases the occur-
rence of WMH or white matter damage in aging [1, 69, 70, 
130]. One factor that may underlie these discrepancies is the 
interaction between APOE and vascular risk factors. Indeed, 
vascular risk factor-induced deficits in white matter micro-
structure integrity are exacerbated in APOE4 carriers [128].

Data from APOE-TR mice support APOE4-induced CV 
dysfunction. Compared to APOE3-TR mice, in APOE4-
TR mice CV permeability to dextran is higher at 6 months 
[12] and permeability to diazepam [2] is greater at 4 and 
12 months. However, a recent study failed to find any dif-
ferences in CV permeability to exogenously administered 
IgG in 2–3-month-old APOE4-TR or APOE-KO mice com-
pared to wild type [15]. Further, no differences in dextran 
(3 and 10 kDa) CV permeability were observed between 
APOE-KO and wild-type mice, but a comparison for the 
human APOE genotypes was not performed. Global CV 
leakiness may be mediated by alterations in the BBB. 
Reduced microvascular length, DNA fragmentation in 
pericytes and BEC, diminished microvascular coverage by 
pericytes, reduced CV vascularization and a thinner base-
ment membrane (including lower levels of collagen IV and 
laminin) are all observed in APOE4-TR mice compared to 
APOE3-TR mice [2, 12, 48]. Further, despite no changes 
in glucose transporter expression, 12-month-old APOE4-
TR mice exhibit a lower glucose transport into the brain, as 
well as increased levels of the receptor for advanced glyca-
tion end products [2].
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Alzheimer’s disease (AD)  
(Supplementary Table 1b; Fig. 2)

APOE4 increases AD risk

AD, the most common form of dementia, is a rapidly 
growing worldwide problem facing society and modern 
science. Subtypes of AD include early-onset/familial AD 
(FAD, 5 % of all AD cases) and late-onset AD (LOAD, 
95 % of all AD cases). The major pathological hallmarks 
of AD include extracellular plaques of the Aβ peptide and 
intraneuronal neurofibrillary tangles comprised of hyper-
phosphorylated tau. Other broad changes in AD include 
synaptic and neuronal degeneration, lower hippocampal 
and cortical volume, reduced glucose metabolism, neuro-
inflammation, impaired insulin signaling, higher soluble 
Aβ levels and CV dysfunction. Evidence for APOE4-
induced AD risk is unequivocal. APOE4 is the great-
est genetic risk for LOAD, increasing risk up to 12-fold 
compared to APOE3, whereas APOE2 reduces risk [58]. 
APOE4 is also associated with a lower age of AD onset 
and an increased risk of progression from mild cognitive 

impairment (MCI) to AD. Mechanistically, APOE4 
has been linked to virtually every AD-relevant patho-
genic process including Aβ levels, altered Aβ-signaling 
both directly through Aβ binding and indirectly, and 
Aβ-independent pathways. There is now little doubt if 
APOE4 impacts upon the CV and its function in all stages 
of AD.

APOE4 synergistically interacts with vascular risk 
factors to increase AD risk

APOE4 is not only associated with an increased risk for 
AD and cardiovascular disease, but the evidence suggests 
APOE4 and vascular risk factors combine synergistically 
to exacerbate cognitive decline in AD [43, 55, 73]. For 
example, neuropathological hallmarks of AD (neurofibril-
lary tangles, neuritic plaques and CAA) are increased in 
patients with diabetes who are APOE4 carriers when com-
pared with non-carriers [43]. The combination of hypergly-
cemia, hyperinsulinemia and insulin resistance observed in 
type 2 diabetes plus APOE4 exacerbate the development of 
AD pathology [73].

Fig. 2  CV deficits with APOE4 and Aβ in EFAD mice. CD31 
(green) and Aβ (red, using the MOAB-2 antibody) staining in 
8-month-old male mice that express APOE4 and overexpress human 

Aβ (EFAD mice described in [139]). a ×10 magnification, scale bar 
100 μm (b–e) ×63 magnification, scale bar 20 μm
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APOE4 disrupts cerebral blood flow in AD

APOE4 exerts a pronounced effect on CBF in MCI and AD 
when assessed by ASL-MRI, or single-photon emission 
computer tomography (SPECT). A number of groups have 
demonstrated higher CBF in MCI patients with APOE4. 
CBF is higher in the medial temporal lobes, parahippocam-
pal gyrus, cingulate gyrus, posterior cingulate gyrus and 
lingual gyrus of patients who are APOE4 positive and have 
MCI [10, 60, 134]. The effect of APOE4 on CBF in MCI 
is brain region specific. In the left parahippocampal/fusi-
form gyrus, CBF is higher with APOE4 in non-demented 
controls and lower in APOE4 MCI patients, whereas the 
opposite pattern is observed in frontal regions [134]. The 
higher CBF in MCI patients who are APOE4 positive may 
be indicative of compensatory mechanisms in response 
to stress, or of an ongoing pathogenic response acting on 
the vasculature (e.g., inflammation, neuronal activity). 
Although CBF is elevated in posterior brain regions with 
one risk factor such as APOE4 or MCI, the presence of 
both results in decreased CBF and a greater likelihood of 
conversion to dementia [134]. Thus, in the presence of mul-
tiple risk factors declining posterior hippocampal function 
may result in higher CBF to other brain regions as a com-
pensatory mechanism. In AD, APOE4 is associated with 
cerebral hypoperfusion, including the occipital lobes, mid-
dle temporal gyrus, inferior frontal gyrus, anterior cingulate 
gyrus, claustrum, insula and caudate [51, 65, 66], as well as 
a greater spread of CBF reductions from the parietotempo-
ral to the frontal area [99]. However, there are also reports 
of increased CBF asymmetry in APOE4 non-carriers [125], 
no APOE4-dependent effects in AD patients [96], and a 
counter argument that APOE4 promotes neuronal dysfunc-
tion rather than CV changes. However, the data are most 
consistent with disrupted CBF with APOE4 in AD.

APOE4 increases capillary CAA in AD

CAA in cortical and leptomeningeal arteries/arterioles of AD 
patients follows the order; APOE4/4 > APOE3/4 > APOE3/3 
[6, 25, 35, 87, 92, 93, 104], and APOE4 increases CAA 
in the occipital lobes [122]. For example, in one study the 
prevalence of severe CAA from highest to lowest in AD was 
73.4 % for APOE4/4 carriers, 46 % in APOE3/4 carriers and 
24.2 % in APOE3/3 carriers [92]. Further, CAA in APOE4 
AD patients is more severe [87] and associated with a longer 
onset period of cognitive decline to death, lower diffuse 
plaque score, cortical microinfarcts, leukoencephalopathy, 
enlarged perivascular spaces in the white matter, subcorti-
cal and lobar and intracerebral hemorrhages, thrombosis and 
fibrinogen deposition [6, 25, 35, 54, 87, 92, 93, 104]. APOE4 
also leads to substantial CAA compared to APOE3 and also 
a higher Aβ40/42 ratio in mice that express FAD mutations 

(FAD-Tg mice) [38]. However, a few studies have reported 
a lack of association between APOE4 and CAA in AD [83, 
112], no link for APOE4 modulated CAA and hemorrhage 
[25], that CAA in general rather than APOE4 is important 
for dementia [117] and an association between CAA and 
lower cognition proximal to death in non-APOE4 carriers 
[16]. Thus, there is confusion of whether CAA in APOE4 
AD patients is a major contributor to overall dementia. One 
question that remains is how the APOE genotypes correlate 
with the types of vessels affected by CAA in AD. A body of 
data supports that the CAA in APOE4 carriers affects corti-
cal capillaries [3, 120, 140]. For example, Thal et al. [120] 
observed an odds ratio of 4.751 for capillary CAA in APOE4 
AD patients. CAA is also linked to amyloid-related imaging 
abnormalities (ARIA) after passive and active immunization 
strategies targeting Aβ in AD [98]. ARIA is characterized by 
vasogenic edema and cortical hemorrhages, is more common 
in APOE4-AD patients after immunization with antibodies 
for Aβ and has been linked to CAA [98, 136]. The higher 
levels of CAA with APOE4 may reflect detrimental changes 
in the CV with immunization that include splitting of vessel 
wall, and/or the removal of Aβ from the vessel wall [98]. In 
contrast to APOE4, there is a negative association of CAA 
for APOE2 [35]. The evidence that APOE2 increases CAA 
and ICH in aging, but not in AD, is potentially due to the 
protection afforded by APOE2 for AD risk through effects 
on other AD-relevant pathways, e.g., apoE lipidation and 
inflammation.

APOE4 induces BBB dysfunction in AD

Initial evidence that APOE modulates the BBB (capillaries) 
in AD was observed by Salloway et al. [100], who demon-
strated a thinning of the basement membrane in APOE4/4 
compared to APOE3/3 AD patients. When assessed using 
quantification of agrin (basement membrane protein) stain-
ing, the capillary basement membrane area was smaller in 
APOE4/4 AD patients compared to APOE3/3 AD patients 
in the prefrontal cortex [100] and APOE3/4 AD patients 
trended (non-significant) to lay between APOE3/3 and 
APOE4/4 AD patients. Basement membrane disruptions 
may be an indication that the BBB is degenerating with 
APOE4 leading to increased leakiness. Indeed, levels of 
the plasma protein prothrombin in the prefrontal cortex 
are higher in APOE4/4 AD patients than APOE3/3 AD 
patients (significance at the 10 % level) [146]. Further, IgG 
and fibrin extravasation surrounding microvessels follows 
the order APOE4AD > APOE3AD > controls in the frontal 
cortex [47]. In contrast, no APOE genotype-specific effects 
were observed on the QAlb in AD patients, although there 
was evidence for a protective effect of APOE3 on BBB 
leakiness in Creutzfeldt-Jacob disease [59]. There is evi-
dence that APOE modulates microbleeds in AD. In AD, 
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microbleeds are associated with male sex, higher blood 
pressure, lower CSF Aβ42 and APOE4 [14]. In contrast to 
the male bias in humans, microbleeds are higher in female 
mice that express APOE4 and Aβ compared to male mice 
[18]. Perhaps there are other stressors synergistically inter-
acting with APOE4 in males with higher microbleeds. 
APOE4 is associated with increased WMH in the parietal 
lobe compared to non-carriers [17], however, data con-
flict on whether APOE4 increases WMH risk in AD [17, 
49, 61, 78]. Potential confounding factors are that APOE4 
and vascular risk factors interact to induce WMH, and that 
WMH are brain region specific. Our preliminary data also 
demonstrate that there are CV deficits in mice that express 
APOE4 and overexpress Aβ (E4FAD mice described in 
[139] Fig. 2). In 8-month-old male E4FAD mice we have 
observed characteristics of CV dysfunction including ves-
sels surrounding extracellular Aβ (Fig. 2b), CAA (Fig. 2c, 
d), the absence of vessels in areas of high Aβ, and vessel 
degeneration (Fig. 2e). Additional data that apoE modu-
lates the CV include the negative association of APOE-
positive capillaries and extracellular Aβ plaques, the posi-
tive correlation of APOE and expression of angiogenesis/
vasoactive mediators (VEGF, eNOS) in AD brain capillar-
ies [88], and the link between apoE levels and CV leakiness 
in AD patients with small vessel disease [124]. Collectively 
these data support that APOE4 increases CV leakiness in 
AD patients compared to APOE3.

APOE‑modulated CV dysfunction in other 
neurodegenerative conditions

Data suggest that rather than representing a risk factor, 
APOE4 exacerbates the progression, is inferior or hinders 
repair mechanisms in vascular dementia (VaD), multiple 
sclerosis (MS), stroke and traumatic brain injury (TBI), 
compared to APOE3. For example, APOE4 is linked to 
greater cognitive impairment in VaD, higher disease pro-
gression/severity in MS [107], a detrimental progression 
or outcome after intracerebral hemorrhage, subarachnoid 
hemorrhage, stroke [42] and after TBI [28]. Although the 
CV is important for these conditions, surprisingly the role 
of APOE-modulated CV dysfunction has not been dis-
sected. Cleaved apoE is considered toxic, but this is also 
evidence of an ongoing apoE-dependent process. In VaD, 
cleaved amino-terminal fragments of apoE were identi-
fied within blood vessels in an APOE genotype-dependent 
manner: APOE4/4 > APOE3/4 > APOE3/3 [94]. For MS, 
in APOE knockout mice subjected to experimental autoim-
mune encephalitis, a murine model of MS, there are lower 
levels of proteins in the tight junctions and higher levels of 
matrix metalloproteinases, suggesting a role for APOE in 
the progression of disease, but the exact role is still unclear 
[44, 144]. In TBI, possession of APOE4 promotes CAA, 

possibly by disruption of the vascular clearance mecha-
nisms for Aβ [145]. Together, these results suggest that it is 
important to determine whether apoE4 has a detrimental or 
inferior effect upon cellular and tissue repair mechanisms 
in the CNS, compared to the other apoE isoforms.

Potential mechanistic pathways underlying 
APOE‑modulated CV dysfunction  
(Supplementary Table 1; Fig. 3)

Genetic, environmental, physiological and lifestyle risk 
factors will collectively induce changes in a multitude of 
biological pathways that determine whether an individual 
will experience impaired cognition with aging, or begins 
to progress towards a neurodegenerative disease. Further, 
the overlapping nature for many of the pathways can result 
in comorbidities. Accumulating evidence supports that 
APOE4 modulates a multitude of mechanistic pathways 
which can affect cognition. However, APOE4, like diabe-
tes, hypertension and aging is a risk factor not a cause. It 
would be naïve to propose that for every individual, a sin-
gle risk factor or pathway is the cause of cognitive impair-
ments, especially in the context of chronic conditions, 
e.g., Aβ causes AD. Similarly, CV deficits are not disease 

Fig. 3  Pathways of APOE-modulated neurovascular dysfunction. 
APOE4 imparts negative effects on a multitude of peripheral and 
CNS pathways that may contribute to cerebrovascular dysfunction 
and lead to cognitive impairment. Brain endothelial cells may act as 
the primary effector interface for these pathways
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specific and, therefore, are unlikely to be relevant to pri-
mary causation. However, multiple risk factor-modulated 
pathways acting in temporal-specific manner will impact 
cognition. Within this complexity, we propose that APOE4 
induces CV dysfunction through direct signaling at the 
NVU, and indirectly via modulation of peripheral and cen-
tral pathways, contributing to cognitive decline in aging 
and neurodegenerative disorders. Further, that APOE4 pre-
disposes the CV to damage by, and exacerbates the effects 
of, additional risk factors (e.g., sex, hypertension, diabetes).

ApoE4 can directly induce detrimental signaling at the 
NVU

The question of how the apoE isoforms differentially 
modulate a diverse range of biological processes to affect 
cognition is a major focus of a number of groups. ApoE 
produced by the periphery can signal to BEC and cells of 
the NVU express apoE and the apoE receptors. The struc-
ture and receptor binding properties of apoE could exert a 
strong influence on the CV. Overall, apoE isoform-specific 
differences are thought to affect the folding, including the 
receptor binding domain (N terminus) and the lipid bind-
ing domain (C terminus), and stability of apoE (reviewed 
in [58]). In the CNS differences between the apoE isoforms 
will affect the structure of lipoproteins, and the majority, 
if not all, of the apoE in the interstitial fluid of the brain 
is present as a lipoprotein. One proposed hypothesis is 
that structural differences among the apoE isoforms in 
the brain results in lower apoE4 lipidation, lower apoE4-
containing lipoprotein stability, the production of toxic 
apoE4 fragments and lower apoE4 levels, which in turn 
causes impaired apoE4 cellular recycling and altered recep-
tor activity (reviewed in [116]). Specific for the CV, apoE 
modulates astrocyte–pericyte–BEC interactions [12, 23, 
127, 135]. ApoE4 but not apoE3 (from astrocytes) signal-
ing to LRP1 in pericytes is impaired, resulting in higher 
activation of the cyclophilin A (cypA)-NFkB-matrix metal-
loproteinase 9 (MMP9) pathway in pericytes [12, 47]. The 
higher MMP9 levels with APOE4 leads to CV dysfunction 
by basement membrane degradation and impaired BEC 
function. Lipidated apoE is also produced by pericytes 
in vitro [23] and apoE knockdown in isolated human peri-
cytes accelerates pericyte mobility, which is suppressed 
by supplementing apoE3, but not apoE4 into the media. 
Importantly, apoE isoform-dependent modulation of peri-
cyte mobility is mediated by a pathway involving LRP1 
and RhoA. Often overlooked is the potential that apoE from 
the CNS activates apoE receptors in BECs to modulate CV 
function. Indeed, astrocyte-derived apoE signals via LRP1 
on BECs in vitro, an effect greater with apoE3 than apoE4, 
resulting in lower occludin phosphorylation with apoE4 
[81]. Further to agonist activity, the accumulation of toxic 

apoE4 fragments inside of BEC as observed in VaD could 
induce CV dysfunction. Therefore, apoE4 receptor signal-
ing cascades may be blunted compared to apoE3 in astro-
cytes, pericytes and BECs resulting in a disrupted CV.

APOE‑modulated neuroinflammation contributes 
to BBB dysfunction

As reviewed extensively elsewhere [115], APOE4 is 
increasingly recognized as modulating glial-mediated neu-
roinflammation in aging and AD. APOE4 is associated with 
a detrimental response to Aβ-independent neuroinflamma-
tion (such as LPS or as occurs in aging) and Aβ-induced 
inflammation. However, the complexity of chronic neuro-
inflammation, including multiple detrimental and benefi-
cial effects occurring in a temporal and cell-specific man-
ner, has resulted in conflicting functional data for virtually 
every inflammatory mediator. Potentially, APOE4 induces 
a detrimental neuroinflammatory phenotype characterized 
by higher pro-inflammatory and lower anti-inflammatory 
cytokines [115]. Importantly, many mediators described 
as inflammatory exert a strong influence of the CV, includ-
ing BEC function (e.g., TNFα), angiogenesis (e.g., VEGF, 
EGF) and the basement membrane (MMPs, TIMPs). In 
addition, an overlooked topic is how BEC themselves pro-
duce inflammatory mediators in response to stress. Mecha-
nistically, the effects on glial inflammation may be medi-
ated in part by direct apoE signaling as described above. 
Thus, apoE through its effects on soluble mediator release 
from inflammatory cells within the brain may cause and 
also prime the CV to damage in response to a subsequent 
hit from the periphery.

Aβ clearance is slower with APOE4 at the CV

Aβ, in insoluble or soluble form, is considered a key 
mediator of AD progression and can induce direct (BEC) 
and indirect (via pathways such as inflammation) CV 
dysfunction. Therefore, APOE could directly modulate 
Aβ signaling to affect the CV. For example, Aβ-induced 
detrimental signaling in glia and BEC may be ampli-
fied in the presence of apoE4. In addition, Aβ clearance 
rates are slower with apoE4 at the BBB [7, 30] and via 
perivascular drainage [24, 48]. Higher levels of Aβ with 
APOE4 will result in amplified detrimental pathways in 
the CNS to cause CV dysfunction. After Aβ42 injections 
in vivo, Aβ clearance into the plasma follows the pattern 
APOE3 > APOE4 > APOE-KO/wt [8]. At the BBB, when 
Aβ binds apoE2 or apoE3 (apoE/Aβ complex) clearance is 
mediated via LRP1 and LDLR, whereas Aβ-bound apoE4 
is cleared at a significantly slower rate via VLDLR [30]. 
ApoE and Aβ also co-localize in the perivascular elimina-
tion pathways of AD transgenic mice as well as in control 
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and AD patients [95]. Importantly, after ICV injections of 
Aβ into APOE-TR mice, Aβ40 aggregates in the perivas-
cular drainage pathway with APOE4 but not APOE3 [48], 
evidence that perivascular elimination is slower with 
APOE4. Further, following Aβ immunotherapy plaque-
associated apoE is reduced and CV wall-associated apoE 
increased [98]. This immunotherapy-mediated transloca-
tion of apoE from plaques to the CV mirrors the changes 
in Aβ and is consistent with a proposed role for apoE as an 
important transporter of Aβ in the brain. Mechanistically, 
apoE could affect Aβ clearance through direct binding as 
an apoE/Aβ complex and an important functional distinc-
tion is whether the apoE/Aβ complex is part of a plaque, 
present in the basement membrane or soluble in the ISF. 
ApoE when part of a plaque or as part of an initial seed for 
oAβ may drive Aβ pathology and inflammation and also 
transport Aβ to the CV, apoE-Aβ interactions at the base-
ment membrane are likely involved in perivascular drain-
age, and soluble apoE/Aβ complex may prevent oAβ for-
mation and promote Aβ clearance (contrasting in vitro data 
exist [8]).

APOE4 could prime the CV to damage by increasing 
the risk of developing and potentiating peripheral stress

A recurrent theme is the potentiation of cognitive decline 
with APOE4 and peripheral vascular risk factors in aging 
and AD. APOE4 can increase the risk of developing car-
diovascular disease contributing to CV dysfunction, e.g., 
hypertension increases the risk of BBB disturbances and 

atherosclerosis. Mechanistically, the N and C terminus of 
apoE4 interact to a greater extent than apoE3, which directs 
apoE4 to very low density lipoproteins and increases the 
incidence of atherosclerosis. The apoE4-induced alterations 
in lipid metabolism can also modulate CV function. There 
are higher serum cholesterol, phospholipid and triglyceride 
levels in APOE4 carriers. Lipolysis products from lipopro-
teins rich in triglycerides, specifically triacylglycerol-rich 
lipoproteins (TGRL), alter the structure of apoE4, but not 
apoE3 [118]. These conformational changes influence the 
way in which apoE4 binds to BECs [5], which in turn may 
disrupt BBB permeability, allowing for influx of damag-
ing TGRL lipolysis products. Further, many of the periph-
eral risk factors have a strong inflammatory component, 
which will directly affect BEC at the CV. One potential 
mechanism is that CV active inflammatory mediators in the 
periphery are modulated by APOE, analogous to neuroin-
flammation. For example, healthy volunteers injected with 
lipopolysaccharide exhibit hyperthermia and increases in 
plasma levels of pro-inflammatory markers (TNFα, IL-6) 
that are higher in APOE3/4 carriers compared to APOE3/3 
carriers [39].

Therapeutic significance (Fig. 4)

Directly targeting apoE or the apoE receptors

Directly targeting the structural and functional deficits of 
apoE4 may ameliorate detrimental changes that cause CV 

Fig. 4  Therapeutic targets for APOE-modulated cerebrovascular dysfunction
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dysfunction (reviewed in [67]. These strategies may also 
become relevant for apoE3 in certain conditions. If apoE4 
is considered detrimental (toxic gain of function) then 
lowering apoE4 levels using genetic or antibody-based 
approaches is optimal. If apoE4 is less functional (loss of 
positive function) increasing apoE4 lipidation by promot-
ing the activity or levels (e.g., via nuclear receptor agonists) 
of the primary lipid efflux transporter in the CNS, the ATP-
binding cassette transporter A1, or correcting the structure 
of apoE4 becomes the focus. Both approaches show prom-
ise in vivo for AD-relevant pathways. Importantly, nuclear 
receptor agonists may target BBB dysfunction in AD [149], 
and are protective against CV dysfunction caused by viral 
infections [53]. However, both strategies have drawbacks 
including toxicity and lack of specificity for nuclear recep-
tor agonists, or the necessity of accessing apoE before 
becoming part of a lipoprotein for structural correctors. The 
development of more advanced genetic strategies could 
also lead to overexpression of APOE2 in APOE4 carriers 
[52]. Directly targeting the LDLR family is an alternative 
way to circumvent a loss of positive function for apoE4 
signaling at the neurovascular unit. ApoE mimetic peptides, 
which are based on the receptor binding region of apoE, 
reduce edema after focal brain ischemia and lower CV dys-
function after TBI in vivo [19, 63].

Targeting inflammation at the NVU and the basement 
membrane

Targeting either the signaling pathways or the soluble media-
tors produced by APOE-modulated activated glia (astrocytes 
and microglia) and pericytes may ameliorate CV dysfunc-
tion, or prevent the risk with a subsequent additional hit. 
For signaling in glia and astrocytes, antagonists/inhibitors of 
TLR4, p38a, cyclooxygenase 2 (COX2) and nuclear receptor 
agonists suppress pro-inflammatory cytokines and increase 
anti-inflammatory cytokines in various in vivo and in vitro 
models of neurodegenerative conditions. For pericytes, tar-
geting the LRP1-rhoA or cypA-NFkB-MMP9 pathway 
may prove efficacious. In terms of mediators, likely targets 
include TNFα, and nitric oxide, a vasoactive mediator pro-
posed as a target for CAA-induced CNS damage. Additional 
targets include raising levels of tissue inhibitors for metal-
loproteinases to prevent basement membrane disruption, or 
targeting soluble mediators that induce changes in angiogen-
esis and BEC function. Surprisingly, BEC pathways are fre-
quently overlooked as a direct for APOE4-induced CV dys-
function, e.g., reactive oxygen species, COX, mitogen active 
protein kinase and angiogenic signaling. The main advantage 
of targeting BECs directly is that therapeutics do not have to 
cross the BBB into the brain to be active.

Targeting peripheral pathways

Therapeutic or lifestyle interventions for the peripheral 
factors that synergistically combine with APOE4 to cause 
CV dysfunction may provide a great benefit for neuro-
degenerative disorders. For example anti-hypertensive 
drugs, particularly angiotensin receptor blockers, have 
shown promise in AD but the effects of these drugs cor-
related with APOE genotype are unknown. For hyper-
cholesterolemia statins have been tested in clinical trials 
for the treatment in AD with disappointing results. The 
biological mechanisms behind why hypercholesterolemia 
increases AD risk are still unclear, but elevated choles-
terol levels can disrupt the integrity of the BBB. Thus, it 
is proposed that BBB penetrant lipophilic statins disrupt 
cholesterol synthesis in the brain resulting in detrimental 
effects on cognition whereas less-BBB penetrant hydro-
philic statins may be promising [27]. Targeting peripheral 
inflammation can be achieved using the same approaches 
as for neuroinflammation and include nonsteroidal anti-
inflammatory drugs (NSAIDs); however, results from the 
clinic are not as promising as observed in epidemiologi-
cal studies. Potentially, therapeutics that target hyperten-
sion, hypercholesterolemia and peripheral inflammation 
will prove efficacious for cognitive decline in APOE4 
carriers with CV dysfunction. There is growing evidence 
supporting the adoption of lifestyle changes to improve 
cognition, which partially act through modulating the CV. 
ApoE is also necessary for the prevention of age-induced 
CV dysfunction by exercise in vivo [111]. With profes-
sional guidance and assistance most individuals, particu-
larly APOE4 carriers, would be able to curtail damaging 
habits that put them at risk of cognitive damage caused by 
CV dysfunction.

Conclusion

ApoE4 exerts a strong influence of CV dysfunction, an 
effect exacerbated by additional risk factors. Identifying 
APOE-modulated CV-specific mechanistic pathways via 
basic and preclinical therapeutic research may ultimately 
lead to prevention and treatment options to improve cogni-
tion in aging and neurodegenerative disorders.
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