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(IDH1/2 wt), and secondary (IDH1/2 mut) GBMs. In this 
review, we describe major clinically relevant genetic and 
epigenetic abnormalities in GBM—such as mutations in 
IDH1/2, EGFR, PDGFRA, and NF1 genes—altered meth-
ylation of MGMT gene promoter, and mutations in hTERT 
promoter. These markers may be incorporated into a more 
refined classification system and applied in more accurate 
clinical decision-making process. In addition, we focus on 
current understanding of the biologic heterogeneity and 
classification of GBM and highlight some of the molecular 
signatures and alterations that characterize GBMs as histo-
logically defined. We raise the question whether IDH-wild 
type high grade astrocytomas without microvascular prolif-
eration or necrosis might best be classified as GBM, even 
if they lack the histologic hallmarks as required in the cur-
rent WHO classification. Alternatively, an astrocytic tumor 
that fits the current histologic definition of GBM, but which 
shows an IDH mutation may in fact be better classified as 
a distinct entity, given that IDH-mutant GBM are quite dis-
tinct from a biological and clinical perspective.

Keywords  Glioblastoma · TCGA · G-CIMP · IDH1/2 · 
MGMT

Introduction

Glial tumors can be divided into two major categories based 
on the degree of invasiveness into the surrounding brain 
tissue; gliomas with diffuse infiltration of the brain paren-
chyma are referred to as “diffuse gliomas”, to be contrasted 
with gliomas with more “circumscribed” growth behavior. 
Diffuse gliomas share the ability to infiltrate surrounding 
normal brain parenchyma, and unfortunately, inevitably 
recur even after gross total resection [136]. Given their 
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extensive infiltrative nature, major goals for neurosurgery 
include cytoreduction, to the extent that is possible, as well 
as obtaining tissue for accurate diagnosis. Another feature 
of diffuse gliomas is the notion that low-grade tumors of 
WHO grade II over time not only recur but also tend to pro-
gress to high-grade (anaplastic) gliomas of WHO grade III 
and eventually secondary GBM of WHO grade IV, leading 
to rapid clinical deterioration. GBM is considered incura-
ble, with a median survival of 15 months following aggres-
sive combination of therapies including maximal-safe 
surgical resection, adjuvant radiation therapy (RT) with 
concurrent and adjuvant temozolomide (TMZ) treatment 
[154]. Many tumors respond poorly to conventional chemo-
therapy and radiation, and those for which tumor control is 
accomplished often lack a durable therapy response [107]. 
Therefore, development of new diagnostic approaches and 
especially more effective treatment strategies is urgently 
needed. Targeting driver molecular aberrations is the most 
promising therapeutic advancement, as seen with successes 
of “personalized” and targeted therapies in other cancer 
types. In this context, we provide in this review an update 
on the state of our knowledge in this field, focusing on how 
understanding of the molecular heterogeneity of GBM has 
been and could be utilized for classification of these tumors 
into molecular subtypes that could potentially improve out-
comes for specific tumor subsets.

To date, gliomas are classified largely based on their 
histopathological characteristics and while clinical and 
radiological features of the tumors are at times taken into 
account, the present WHO classification is mainly based 
on histological features. Histologic criteria for high-grade 
infiltrating astrocytic tumor (at least grade III) include 
hypercellularity, nuclear atypia, and mitotic activity. Fur-
thermore, a GBM diagnosis requires, in addition, either 
microvascular proliferation and/or tumor necrosis. How-
ever, many aspects of these histologic features remain 
poorly correlated with key molecular drivers and path-
ways. For example, the presence or absence of IDH muta-
tions cannot be distinguished on pure morphologic grounds 
in GBM. In addition, among IDH wild-type high-grade 
gliomas (which account for over 90 % of GBM), the key 
molecular chromosomal changes are shared between histo-
logic grade III (anaplastic astrocytoma) and GBM (histo-
logic grade IV) tumors. In addition, clinical and biological 
variability is thought to exist within each grade and each 
tumor entity, suggesting that identification of molecular 
factors which contribute to this variation would be invalu-
able for the development of targeted therapies. In other 
words, histopathologically defined GBM in fact may rep-
resent multiple subtypes based on molecular features or 
signatures.

The emergence of molecular signatures in cancer can 
iteratively present a shift in the way diagnosis and treatment 

of malignancies are approached. In turn, molecular signa-
tures that are found to either describe fundamental biologic 
behavior or correlate clinically with patient outcome—fol-
lowing administration of either cytotoxic or molecularly 
targeted agents—become candidates to enter classification 
criteria as circumstances warrant. Due to this shift, tumors 
are classified not only based on a static concept of how 
they “look” under the microscope, but rather by incorpo-
rating molecular markers relevant to current therapeutic 
modalities. Clear proof of principle for such approaches 
has been demonstrated in therapies targeting EGFR mutant 
non-small-cell lung cancer [103], HER2-amplified breast 
cancer [149], lung cancer harboring the EML4–ALK trans-
location [89], chronic myelogenous leukemia (CML) har-
boring the BCR–ABL translocation [36], and BRAF mutant 
melanoma [26]. Annotations of molecular alterations are 
more routinely being incorporated into histopathologic 
diagnosis where appropriate [34, 104] and have facilitated 
therapeutic decision making, progressively decreasing the 
time frame from target discovery to therapy [25]. Molecu-
lar initiatives, including the Cancer Genome Atlas (TCGA), 
have described fundamental aspects of the biologic under-
pinnings of GBM [18] and lower grade gliomas (TCGA 
network, unpublished data). The TCGA project was initi-
ated by the NIH and is a comprehensive, coordinated, mul-
ticenter effort that applies multiple innovative genomic 
analysis tools to understand the genetics and epigenetics 
of cancer. More than 20 cancer types, including more than 
10,000 samples, will undergo detailed genomic characteri-
zation and further incorporated with bioinformatic and data 
analysis components that will enable researchers to apply 
this information for prevention, diagnosis, and treatment of 
cancer. Unfortunately, although such molecular alterations 
have led to extensive clinical progress for many cancer 
types, to date these alterations have not been incorporated 
into clinical decision making where ultimately the subtype 
classification can be matched with efficacious therapeutic 
options. In addition, more detailed characterization of the 
genomic alterations that are clinically relevant still need to 
be established in GBM to fully implement and maximize 
information from these high-throughput genomic studies.

Clinical diagnosis of GBM

Based on guidelines of the World Health Organization 
(WHO) for classification of central nervous system tumors 
[101], diffuse gliomas are divided into three grades: 
WHO grades II, III, and IV, with WHO grade IV diffuse 
glioma being synonymous with GBM. Diffuse gliomas 
occur more commonly in adults than in children and are 
the most common intrinsic primary brain tumors that dis-
play a wide range of clinical behaviors, ranging from slow 
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clinical progression in patients with WHO grade II tumors, 
to very short median survival times of 12–18  months in 
patients with WHO grade IV tumors (GBM); however, 
long-term survival extending the span of three years has 
been described in a fraction of GBM patients [88]. Diffuse 
gliomas of WHO grade II or III are further divided into 
several histologic entities, including astrocytoma/anaplas-
tic astrocytoma, oligodendroglioma/anaplastic oligoden-
droglioma, and oligoastrocytoma/anaplastic oligoastrocy-
toma. The most common diffuse glioma, however, is GBM 
(WHO grade IV), accounting for 45–50 % of all primary 
intrinsic brain tumors [38, 101, 161], with the vast major-
ity of GBMs arising de novo as “primary GBMs”. GBMs 
that develop by progression from a pre-existing glioma of 
WHO grade II or III are less common and are referred to as 
“secondary GBMs” [118]. Most primary GBMs manifest in 
elderly patients, while secondary GBMs most commonly 
affect younger patients prior to the age of 45 years.

Histopathologically, several patterns exist, including 
giant cell GBM, small cell GBM, and gliosarcoma. Glio-
sarcoma can be observed at initial diagnosis or at recur-
rence, and appears to have similar genetic aberrations 
as GBM, although MGMT methylation may be less fre-
quently present [92], and EGFR mutations may be less 
common as well [56]. Another pattern that may be seen 
is termed “GBM with oligodendroglioma component” 
(GBM-O), where the tumor, at least regionally, appears 
similar to anaplastic oligodendroglioma. These tumors are 
easily distinguished from GBM by the presence or absence 
of 1p/19q co-deletion, which while controversial, in our 
view effectively defines this differential diagnosis as glio-
blastoma versus oligodendroglioma. Specifically, GBM-O 
is distinguished from anaplastic oligodendroglioma (AO) 
by the absence of 1p/19q deletion, and the presence of IDH 
mutation and 1p/19q deletion effectively defines AO and is 
therefore incompatible with the diagnosis of GBM-O. To 
put it a different way, high-grade gliomas with IDH muta-
tion and whole-arm 1p/19q co-deletion should in our view 
be classified as AO grade III. For further discussion on this 
point, the reader is referred to the companion article on 
oligodendroglial tumors in the cluster in this issue of Acta 
Neuropathologica.

Integrated genomic analysis of GBM

Traditionally, GBM is separated into 2 major classes as 
“primary” and “secondary” GBM. Primary GBM was sug-
gested as generally presenting without a known clinical 
precursor, while secondary GBM was a result of molecu-
lar progression and increased malignancy grade of a lower 
grade glioma over time. Ongoing and recent advances 
have demonstrated molecular correlates of these clinical 

definitions. For example, TERT promoter mutation, PTEN 
tumor suppressor gene mutation, and high-level gene 
amplification of certain proto-oncogenes—most commonly 
the epidermal growth factor receptor (EGFR) gene—are 
hallmark alterations in primary GBMs, while mutations of 
IDH1/2, TP53, and ATRX are frequent in secondary GBMs 
[97, 118]. Going further, several recent studies have utilized 
high-throughput genomic, epigenomic, and transcriptomic 
approaches for detailed molecular characterization of glio-
mas [18, 66, 166, 176]. The identification of distinctive and 
highly recurrent molecular alterations has begun to clarify 
some of this diversity and introduce new concepts in tumor 
classification. Further, these studies provide insights for 
improvement of current therapeutic strategies and develop-
ment of a new paradigm for the management of this deadly 
malignancy.

Large-scale molecular profiling of diffuse gliomas has 
taken place in individual laboratories [13, 123, 129], at the 
national level in the US by TCGA network [23], and at the 
international level within the International Cancer Genome 
Consortium (ICGC) [74]. GBM was one of the early tumor 
types that was investigated by TCGA and characteriza-
tion of the genome and transcriptome of these tumors has 
provided a detailed insight of their genomic landscape and 
revealed the major molecular alterations that may contrib-
ute to disease pathobiology and progression [18, 23, 166]. 
While many of the findings from TCGA were confirmatory 
and relied on the foundation set by prior studies, insights 
gained from TCGA data are partially based on the ability 
to integrate data from diverse molecular platforms (mRNA, 
miRNA, DNA copy number, mutational data, protein 
expression, DNA methylation) on a focused set of tumor 
samples. TCGA and other large-scale analyses have dem-
onstrated that GBM, as histologically defined, is a hetero-
geneous tumor type at the molecular level and is potentially 
sub-classifiable into distinct biologic entities based on 
molecular pathogenesis and “driver” lesions (i.e., molecu-
lar changes that are required for tumorigenesis and pro-
gression). While such comprehensive genome-wide stud-
ies have provided useful insights for the characterization 
and classification of tumors, their experimental limitations 
need to be taken into consideration when drawing conclu-
sions. Such limitations include the retrospective nature of 
the experimental design and the fact that patients involved 
in these studies were not uniformly treated. In addition, the 
impact of patient selection with respect to tumors with suf-
ficient material for multidimensional profiling is unknown, 
as is the potential for bias from the fact that samples were 
derived primarily from academic oncology centers. Fur-
thermore, although some prognostic markers are emerg-
ing from these studies, there is a great demand for the 
identification of bona fide predictive markers that would 
improve the treatment process for personalized care and 
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these markers await identification. At this point, translation 
of key novel biomarkers discovered by initiatives such as 
TCGA into clinically useful tests is yet to be fully accom-
plished. That said, these efforts have led to improved under-
standing of the molecular signature of GBM and other 
diffuse gliomas and have revealed a number of consistent 
alterations in genes and pathways, including mutations in 
specific genes, modified pathway component expression 
signatures, and altered DNA methylation patterns [23, 117, 
129, 166], but point to the still unmet need to incorporate 
these findings into the clinic to identify predictive markers 
to improve outcome for patients with GBM.

Common pathways disrupted in GBM

In the past two decades, a large number of recurring molec-
ular alterations have been identified in gliomas and particu-
larly in GBMs, which enable characterization of diffuse 
gliomas and better understanding of glioma landscape and 
pathways that are disrupted in this malignancy. In the ini-
tial TCGA report, Sanger sequencing was combined with 
array-based platforms to analyze alterations in 601 genes 
from 91 samples. This study investigated the gene expres-
sion, DNA methylation, DNA copy number, in addition to 
coding and non-coding RNA expression profiles. Results 
from TCGA studies and contributions made by individual 
labs have revealed a number of genetic abnormalities and 
as a result, specific patterns have emerged that suggest the 
involvement of specific molecular and signaling pathways 
in the development and progression of glial tumors. These 
include loss of CDKN2A, RB1, and TP53 tumor suppressor 
genes, in addition to alterations in genes involved in these 
pathways or regulated by these tumor suppressor proteins 
[30, 63, 100, 131, 171]. Mutations in the IDH1, ATRX, and 
p53 genes are considered molecular hallmarks of diffuse 
and anaplastic astrocytomas (WHO grades II and III) as 
well as secondary GBMs [27, 77, 100, 106], and interest-
ingly, TP53 mutations also occur in nearly all instances of 
the rare giant cell GBM variant [110]. Integrated genomic 
studies have revealed that in the majority of GBMs, the 
functions of p53 (87 % of GBM patients) and retinoblas-
toma (Rb) (78 % of GBM patients) pathways are disrupted 
either by mutations or gene copy number alterations [23]. In 
addition, mutations in genes encoding upstream regulators 
of Rb, but not necessarily the RB1 gene itself, have been 
known for some time to be characteristic of gliomas [23, 
63, 123]. For example, in a fraction of anaplastic gliomas 
and particularly in GBMs, the CDKN2A gene is homozy-
gously deleted; CDKN2A locus encodes both Ink4A and 
Arf proteins, which are crucial activators of Rb and p53, 
respectively [22, 123, 126, 163]. In addition, upstream 
repressors of p53 and Rb signaling pathways, such as Cdk4 

(phosphorylates and inactivates Rb) and Mdm2 (p53 inhib-
itor), are often up-regulated by gene amplification, suggest-
ing the involvement of alternative mechanisms for disrup-
tion of p53 and Rb signaling pathways, as observed in the 
majority of GBMs [23].

In addition to alterations in tumor suppressive path-
ways, activation of oncogenic pathways such as those 
involving receptor tyrosine kinases (RTKs) are well 
known to be one of the most common genetic alterations 
in malignant gliomas (Fig. 1). The role of these drivers of 
glioma has been demonstrated and their importance was 
revealed in a number of studies using mouse models. In 
adult GBMs, high-level genomic amplification (~40  %) 
occurs in the EGFR gene, often along with constitutively 
activating mutations in this protein’s ectodomain mainly 
through the variant III (vIII) deletion event [46, 93, 114, 
123, 178]. Although the changes leading to the EGFRvIII 
mutation are complex and heterogeneous, they are consid-
ered late events following amplification of EGFR. Overall, 

Fig. 1   Alterations in the RTK/RAS/PI3  K signaling pathway in 
GBM. Several genes that encode proteins involved in the RTK/RAS/
PI3 K signaling pathway are considerably altered in GBM. Genes that 
are most frequently amplified in this pathway are epidermal growth 
factor receptor (EGFR) and platelet-derived growth factor receptor α 
(PDGFRA), two transmembrane receptors with tyrosine kinase activ-
ity. The most commonly deleted gene in the RTK pathway is phos-
phatase and tensin homolog (PTEN), a tumor suppressor that inhibits 
phosphatidylinositol-3 kinase (PI3  K) signaling such as retinoblas-
toma (RB1), a cell cycle inhibitor of PARK2, a regulator of dopamin-
ergic cell death, and neurofibromin 1 (NF1), a negative regulator of 
the RAS signal transduction pathway. The most commonly mutated 
genes in this pathway are PTEN, NF1, EGFR, and PIK3R1, and 
PIK3CA. This figure was adapted from The Cancer Genome Atlas 
Research Network [23]
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EGFRvIII is found in approximately 30–50  % of glioma 
cases in which EGFR amplification is present. Histopatho-
logically, the pattern recognized as “small cell” GBM is 
enriched for EGFRvIII-positive tumors [128]. In addition, 
in a smaller proportion of adult GBMs (~13 %), high-level 
amplification of the platelet-derived growth factor receptor 
alpha gene (PDGFRA) has also been detected [114]. Simi-
larly, constitutively activating deletion mutants in PDG-
FRA have been demonstrated in receptor-amplified GBMs 
[121]. PDGFRA gene amplification appears to be a com-
mon genomic alteration in the RTK pathway, exerting a 
significant impact on pediatric GBMs and diffuse intrinsic 
pontine gliomas (DIPG) [125, 126, 182]. Although much 
less frequent in GBMs, high-level amplification of the 
MET proto-oncogene has also been shown [114, 123, 126]. 
More importantly, activating genetic alterations can occur 
simultaneously in multiple RTKs within individual GBMs, 
with distinct cellular subpopulations containing amplified 
receptor genes [151, 158]. This finding suggests that the 
targeting of single RTKs in an effort to neutralize onco-
genic signaling may in some cases prove futile, and drugs 
targeting multiple RTKs activated in GBM may confer 
greater treatment efficacy in some settings as opposed to 
drugs targeting single RTKs. Finally, although high-level 
amplification of RTK genes is not frequent in WHO grade 
II and III gliomas, their pathogenesis is often associated 
with elevated PDGF signaling and PDGFRA phosphoryla-
tion [33, 52]. These findings suggest that the lack of suc-
cess in anti-EGFR treatment trials of GBM may be in part 
due to the high degree of heterogeneity and complexity of 
RTK biology in gliomas.

The majority of GBMs exhibit activation of the extended 
PI3 K–AKT–mTOR and RAS–MAPK signaling pathways 
[114] and these are therefore, considered to be common 
oncogenic alterations in these tumors. Deregulating muta-
tions in these pathways include mutations in genes encod-
ing either the catalytic (PIK3CA) or regulatory (PIK3R1) 
domains of PI3  K, which in turn induce the activity of 
these enzymes (~15 % of adult GBMs), as well as deletions 
and/or silencing mutations in PTEN, the primary negative 
regulator of the PI3 K-AKT signaling pathway (~30 % of 
cases). Beyond genetic alterations of PTEN, additional epi-
genetic and miRNA-based regulation of PTEN repression 
have also been described in diffuse gliomas, although they 
are more common in WHO grade II and III gliomas (50–
60 %) [52, 71, 82, 108, 175]. Mutations in the Ras antag-
onist protein neurofibromin 1 (NF1) are thought to be the 
cause of neurofibromatosis type 1, a cancer predisposition 
syndrome mainly characterized by frequent neurofibro-
mas and astrocytomas [55]. Recent studies, however, have 
demonstrated NF1 somatic gene mutation or deletion in 
15–18 % of “primary” GBMs [23, 123], and a major con-
clusion from the TCGA effort was demonstration of a link 

between NF1 gene alteration and the mesenchymal GBM 
subclass (see below).

The identification of point mutations in codon 132 of 
isocitrate dehydrogenase I (IDH1) (and less commonly 
codon 172 of IDH2) in gliomas has provided a fundamen-
tal new insight into our understanding of the biology, as 
well as the molecular classification of these tumors [123]. 
Such mutations are frequent in WHO grade II and III dif-
fuse gliomas (70–90  %) and secondary GBMs (85  %), 
but are rarely found in patients with traditionally referred 
to as “primary” GBMs (5 %) [58, 181]. While the distinc-
tion between primary and secondary pathways to GBM 
was originally based on the different clinical history, it has 
become evident that both are molecularly distinct GBM 
entities with absence or presence of IDH1/2 mutations 
being the most important molecular discriminator. Further-
more, IDH1/2 mutations are generally found to positively 
correlate with other genetic abnormalities common to dif-
fuse gliomas such as TP53 and ATRX mutations in astro-
cytoma and 1p/19q co-deletion in oligodendroglial tumors, 
while they display an inverse correlation with EGFR gene 
amplification and monosomy of chromosome 10, altera-
tions that more commonly occur in primary GBMs [181]. 
Therefore, the molecular pathways that lead to the devel-
opment of low-grade gliomas and secondary GBMs that 
they evolve into are clearly distinct from those giving rise 
to primary GBMs. On this point, the prior designation of 
“primary GBM” is likely misleading, since IDH wild-type 
lower grade gliomas—especially anaplastic astrocyto-
mas—are often genomically identical and likely represent 
precursors to IDH wild-type GBM. Therefore, “primary” 
GBM likely undergo molecular evolution from lower grade 
lesions (Brat et  al. Comprehensive, integrative genomic 
analysis of diffuse lower grade gliomas, in press). As a first 
pass, while GBMs with IDH1/2 mutations are relatively 
uncommon, IDH1/2 mutant secondary GBMs represent a 
completely different biologic entity compared to the major-
ity of GBMs which do not harbor mutations in IDH1/2, i.e., 
most primary GBMs. In addition, anaplastic astrocytomas 
that are IDH wild type are for practical purposes best con-
sidered as GBM, since these tumors show genomic hall-
marks of GBM (loss of chromosome 10, gain of chromo-
some 7, and EGFR amplification) and clinically behave as 
GBMs.

Transcriptional subtypes of GBM

The availability of high-throughput genomic platforms 
for mRNA expression profiling since the late 1990s has 
resulted in some experience and published data attempting 
to identify patterns of gene expression and to codify these 
into subtypes, with subsequent correlative studies layering 
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additional genetic and genomic aberrations. Initially, work 
on gliomas focused mainly on high-grade tumors such as 
GBM and comprehensive transcriptional analysis was used 
to identify molecular correlates for known clinical and/or 
pathological distinctions, such as the corresponding WHO 
grade, primary versus secondary GBM, and astrocytic ver-
sus oligodendroglial morphology [49, 80, 83, 96, 133, 137, 
146, 160, 162]. Subsequent profiling studies have success-
fully identified distinct molecular signatures for diffuse gli-
omas and revealed specific subclasses within GBMs.

In 2006, Phillips et  al. [129] examined differential 
expression of markers associated with clinical outcome and 
used K-means clustering to delineate gene signatures in 
WHO grade III and IV diffuse gliomas. Three major sub-
classes of GBM emerged based on this analysis: proneural, 
mesenchymal, and proliferative. This classification bares 
similarity to earlier sub-classification of prognostically rel-
evant high-grade gliomas [47]. In addition, markers associ-
ated with one of the major subtypes (the mesenchymal sig-
nature), including YLK40 and VEGF, had previously been 
applied to distinguish GBMs from lower grade gliomas [48, 
51, 137]. In its initial description, the proneural signature 
was shown to be associated with a better outcome (although 
later this was discovered to be confounded by the fact that 
IDH1/2 mutant gliomas invariably appear to be proneural) 
and expresses marker genes associated with neurogen-
esis. In a study by Aiguo et  al. unsupervised analysis of 
transcriptome profiles from 159 glioma samples predicted 
two major groups of gliomas (oligodendroglioma-rich and 
GBM-rich) that were further separable into six hierarchi-
cally nested subtypes [95]. The initial TCGA expression 
profiling report described four GBM subtypes termed 
proneural, neural, classical, and mesenchymal [166]. This 
study also documented genomic associations, with classi-
cal, proneural, and mesenchymal tumors strongly enriched 
for aberrations in EGFR, PDGFRA and IDH1 or IDH2, and 
NF1 genes, respectively (Fig. 2).

The proneural subtype is mainly described by mutations 
in PDGFRA or in IDH1/2, whereas the classical subtype 
is characterized by amplification/mutation of the EGFR 
gene, and mutations in neurofibromin 1 (NF1) are mainly 
found in the mesenchymal subtype. The proneural GBM 
is further subdivided into glioma CpG (G–CIMP)-positive 
and -negative subgroups based on the characteristic DNA 
methylation patterns that are directly linked to the IDH1/2 
mutational status [117]. The mesenchymal signature is 
mainly regulated by the expression of the transcription 
factor signal transducer and activator of transcription 3 
(STAT3), CCAAT/enhancer-binding protein-β (C/EBPβ), 
and transcriptional co-activator with PDZ-binding motif 
(TAZ), which have also been associated with poor clinical 
outcome [15, 45]. Furthermore, recent studies have shown 
that CTNND2 (encoding catenin-δ2) and RHPN2 function 

as negative and positive genetic regulators of mesenchymal 
transformation, respectively [32, 45]. Whether the proneu-
ral and mesenchymal signatures, as well as the other 

Fig. 2   Transcriptional subtypes of glioblastomas based on Phillips 
and Verhaak classification. Gene expression-based molecular clas-
sification of GBM into proneural, neural, classical, and mesenchy-
mal subtypes by Verhaak et al. and into proneural, proliferative, and 
mesenchymal subtypes by Phillips et al. Integrated genomic analysis 
demonstrate patterns of somatic mutations and DNA copy number 
alterations. Aberrations in EGFR, NF1, and PDGFRA/IDH1 genes 
each define the classical, mesenchymal, and proneural subtypes, 
respectively

Fig. 3   Progression of IDH-wild type and IDH-mutant gliomas. IDH-
mutant gliomas (right) go through an ordered sequence of genetic 
modifications. Upon acquisition of IDH1/2 mutations and hypermeth-
ylation of CpG islands (CIMP) in the glial progenitor cells, a subset 
of these cells acquires secondary mutations in TP53 and ATRX, which 
result in the development of astrocytomas and eventual progression 
to ‘secondary’ glioblastoma. Co-deletion of 1p and 19q occurs in the 
other subset of glial cells, along with TERT promoter mutation, lead-
ing to formation of oligodendrogliomas. IDH-wild type gliomas (left) 
progress via acquisition of different molecular alterations and most 
commonly present as glioblastoma. However, the designation as ‘pri-
mary’ glioblastoma may not be entirely accurate, as IDH-wild type 
lower grade astrocytoma, although not common, is well-described
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transcriptional subtypes of GBMs, could serve as predic-
tors of patient outcome is being investigated by a number 
of groups. While overall the proneural subclass is associ-
ated with better outcome, a finer examination suggests that 
proneural GBMs can be subdivided into IDH1/2 mutant 
G-CIMP-positive and -negative subsets and once IDH1/2 
G-CIMP status is controlled for, the proneural class has no 
prognostic advantage compared to other IDH1/2 wild-type 
GBMs [18].

While the two major subclasses, proneural and mesen-
chymal, appear to be reproducibly defined and character-
ized and may describe important biology, the implemen-
tation of these gene expression signatures into clinical 
diagnosis has not been accomplished. Indeed, subclass 
assignment has been shown to be unstable and change 
following surgical resection and radiochemotherapy [14, 
129]. Moreover, a recent study analyzing expression sig-
natures of single cells within GBM samples showed sub-
stantial intratumoral heterogeneity of expression subclasses 
within each tumor [124]. Based on these considerations, 
the mRNA expression profile of glial tumors may represent 
an average of a heterogeneous mix of transcriptional sig-
natures and therefore, alternative aberrations, including the 
genomic and epigenomic profiles of tumors may represent 
more stable metrics for tumor classification.

Clinically relevant genetic and epigenetic 
abnormalities in GBM

Isocitrate dehydrogenase 1 and 2 (IDH1/2) genes

One of the most important discoveries resulting from high-
throughput genomic studies, which has led to remodeling 
of our understanding of gliomas including GBMs, was 
the identification of mutations in the metabolic enzymes 
isocitrate dehydrogenase 1 and 2 (IDH1/2) [123]. In this 
landmark paper, the majority of tumor samples bearing 
this mutation (5/6) were classified as secondary GBMs, 
suggesting that IDH1/2 mutation could serve as a genetic 
marker for this GBM type. Mutant IDH1/2 alleles identi-
fied in gliomas result in enzymes with a neomorphic func-
tion [31], whereby the mutant enzymes have acquired the 
ability to catalyze the NADPH-dependent reduction of 
α-KG to the (R)-enantiomer of 2-hydroxyglutarate (2-HG), 
that is the same stereoisomer of 2-HG seen in D-2-HG. 
In fact, Dang et al. [31] showed that IDH1/2 mutant cells 
had high levels of 2-HG, as is also found in primary IDH1 
mutant gliomas and in the serum of IDH1/2 mutant acute 
myeloid leukemia (AML) patients [54, 169].

It is thought that expression of mutant IDH1/2 proteins 
results in inhibition of α-KG-dependent dioxygenases 
by 2-HG. Enzymes that are α-KG dependent regulate a 

number of physiological processes such as hypoxia sens-
ing, histone demethylation, and changes in DNA methyla-
tion, among others [98]. A distinctive and nearly invari-
able feature of IDH1/2 mutant gliomas is the glioma CpG 
island methylator phenotype (G-CIMP) [117]. Baysan et al. 
[12] applied unsupervised clustering of TCGA methyla-
tion data from 368 GBM samples, showing that G-CIMP-
positive expression signatures were linked with mutant 
IDH1 expression and correlated with better prognosis. For 
the detection of IDH1/2 mutant gliomas—where approxi-
mately 15  % of cases are not detected using the IDH-
R132H antibody—DNA sequencing of antibody-negative 
cases has provided more accurate diagnosis and prediction 
of patient outcome and prognosis. This is especially use-
ful in younger GBM patients, as IDH1/2 mutation is more 
common in this patient group.

In addition to providing insights about the origin of 
gliomas, the mutational status of IDH1/2 serves as a prog-
nostic marker in patients with WHO grade II and III glio-
mas [58, 123, 141, 181] and GBMs [172]. While IDH1/2 
wild-type GBMs (as well as most anaplastic gliomas that 
do not have an IDH mutation) exhibit a pattern of genetic 
changes that are associated with primary GBMs—such 
as gain of chromosome 7, loss of chromosome 10, and 
EGFR amplification—this pattern is not characteristic of 
IDH1/2 mutant GBMs. Unresolved issues remain, related 
to understanding of the specific driver molecular changes 
in IDH1/2 wild-type GBM, made complex by the fact that 
some of the prototypical changes include gains and losses 
of whole chromosomes or chromosomal arms (e.g., losses 
of chromosome 10 and the short arm of chromosome 9, 
and gain of chromosome 7). Intertwined within this issue 
is the fact that the expression subtypes within IDH1/2 wild-
type GBM (e.g., proneural versus mesenchymal) often have 
largely similar genomic changes, with the exception of the 
classical subtype which harbors large-scale amplification 
of EGFR at the genomic level. One recent study attempted 
to address this issue in an interesting manner by using 
mathematical modeling of genomic changes in IDH1/2 
wild-type/G-CIMP-negative GBM using data available 
from TCGA coupled with experimental mouse modeling. 
Their results suggested that gain of PDGFA (chromosome 
7) and loss of PTEN (chromosome 10) are likely initial 
driver events, and that a hierarchy of expression subtypes 
exists. It is also likely that PDGFA drives a proneural phe-
notype, which can be followed by loss of NF1 function 
to promote a subsequent mesenchymal phenotype [122]. 
Taken together, the collective data clearly show, although 
histologically similar, IDH1/2-mutant and wild-type GBMs 
are clearly distinct diseases on a genomic basis and under-
standing the biological contribution of these mutations 
may help in the diagnosis and design of treatment strate-
gies (Fig.  3). On this point, the development of therapies 
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specific for mutant IDH1/2 appears to be a practical lead 
for molecularly driven therapies and show promising pre-
clinical results, either as a small molecular inhibitor or as a 
vaccine approach targeting the R132H protein as a tumor-
specific neoantigen [135, 144]. Additional clinical devel-
opment of these approaches, including plans to address 
blood–brain barrier penetration of these targeting agents, is 
likely to yield important information and hopefully thera-
peutic advances in the coming years.

Epidermal growth factor receptor (EGFR) 
and EGFRvIII

Approximately 40 % of primary GBMs carry amplification 
of the EGFR gene [70, 76, 143]. In addition, about 50 % of 
GBMs with EGFR amplification also harbor a mutation in 
this gene that codes for EGFRvIII—a constitutively active 
variant of EGFR that is supposed to promote tumor growth 
and is potentially associated with a worse clinical outcome 
[86, 87]. Interestingly, established prognostic factors in 
GBM, e.g., the Radiation Therapy Oncology Group’s recur-
sive partitioning analysis (RTOG-RPA) class, were not pre-
dictive of outcome in EGFRvIII-positive GBMs [127]. The 
EGFRvIII mutation involves an intragenic gene rearrange-
ment that is generated by an in-frame deletion of exons 
2–7, which encode part of the extracellular domain of this 
protein [40, 62, 147]. A number of studies have shown that 
ectopic overexpression of EGFRvIII in glioma cell lines 
results in constitutive autophosphorylation and activa-
tion of the Shc–Grb2–Ras and class I PI3 K pathways [69, 
113], induces tumorigenicity [69], cell proliferation [113], 
and resistance to apoptosis through modulation of Bcl-
XL gene expression [111]. Interestingly, the tumorigenic 
effects of EGFRvIII overexpression are not recapitulated 
by overexpression of the wild-type EGFR. Furthermore, 
both EGFRvIII and wild-type EGFR proteins have been 
detected in the nucleus and are thought to drive transcrip-
tional and signaling pathways that contribute to cell prolif-
eration and DNA damage repair [168]. Notably, although 
EGFRvIII is well known to induce cell proliferation, it is 
only expressed in a fraction of GBM cells [116]. A num-
ber of recent studies have suggested a model for functional 
heterogeneity, where a small number of EGFRvIII-positive 
cells not only drive their own proliferation but also enhance 
the proliferation of their neighboring cells that express 
wild-type EGFR. In a study conducted by Inda et al. it was 
found that wild-type EGFR-expressing cells exhibit accel-
erated proliferation due to a paracrine mechanism driven by 
EGFRvIII-expressing cells. They demonstrated that human 
glioma tissues, glioma cell lines, glioma stem cells, and 
immortalized mouse Ink4a/Arf (−/−) astrocytes express-
ing EGFRvIII also expressed cytokines such as IL-6 and/
or leukemia inhibitory factor (LIF), which in turn activate 

the cytokine co-receptor gp130, and thereby, induce the 
expression of wild-type EGFR in the neighboring cells 
[73]. Therefore, intratumoral heterogeneity and cooperativ-
ity may be the key for EGFRvIII function in GBM. Altera-
tions in the EGFR gene have been found in other cancer 
types such as non-small-cell lung cancer (NSCLC), but 
the type of genetic alterations found in EGFR in GBM 
are distinct from those associated with other cancers. For 
example, focal EGFR amplification occurs at an extremely 
high rate in gliomas (>20 copies) and the majority of other 
mutations—such as the EGFRvIII mutation and missense 
mutations—are located in the extracellular domain [23, 
93], while in most non-glioma cancers they are found in 
the intracellular domain [75]. It should be noted that EGFR 
amplification and EGFRvIII expression may not persist in 
cultured cells as in primary tumors, but recent studies have 
successfully passaged EGFRvIII-expressing GBM xeno-
grafts both in vivo as well as in vitro by growing them in 
stem cell culture conditions [153]. Therefore, long-term 
EGFRvIII expression may in fact be possible and is associ-
ated with differentiation and/or the developmental stage of 
the tumor.

The EGFRvIII mutation has become clinical rel-
evance as this deletion mutation generates a novel pep-
tide sequence that may serve as an immunogenic tumor-
specific target, which can be exploited in a peptide-based 
vaccination strategy. Initial results from single-arm trials 
employing EGFRvIII-specific vaccination provided prom-
ising results in comparison to historical controls [138]. 
The efficacy of EGFRvIII-targeted vaccination in newly 
diagnosed GBM patients is currently being investigated in 
the prospective randomized ACT IV trial (EUDRA-CT#: 
2011-006068-32).

Platelet‑derived growth factor alpha (PDGFRA)

In approximately 30  % of human gliomas, expression of 
genes associated with platelet-derived growth factor recep-
tor (PDGFR) signaling and genes involved in oligoden-
drocyte development (OLIG2, NKX2-2, and PDGF), are 
observed and are thought to be hallmarks of the proneural 
signature in GBM [17]. Amplification of the alpha-type 
PDGFR (PDGFRA) gene is found in 15 % of all tumors, 
mainly in the proneural subtype of GBM [129, 166] and 
approximately 40  % of tumors harboring gene amplifica-
tion contain an intragenic deletion in this gene, termed 
PDGFRAΔ8,9 [28], where in-frame deletion of 243 base 
pairs of exons 8 and 9 results in a truncated extracellular 
domain [121]. In addition to this deletion, in-frame gene 
fusion of the extracellular domain of KDR/VEGFR-2 and 
the intracellular domain of PDGFRA has also been found, 
and both of these mutant proteins were shown to be con-
stitutively active, display transforming ability and could be 
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inhibited using inhibitors of PDGFRA. Point mutations in 
PDGFRA have also been detected but are generally rare 
[23]. In addition, PDGFR signaling can be activated upon 
up-regulation of PDGF ligands (A–D) in approximately 
30 % of glioma tumor samples and cell lines. The expres-
sion of PDGFRB, however, seems to be limited to prolifer-
ating endothelial cells in GBM [33, 43, 64, 99, 150].

Similar to EGFR and EGFRvIII, amplification of PDGF 
and PDGFR seems to promote aggressive glioma growth. 
Assanah et al. [3, 4] demonstrated that transduction of cells 
of the subventricular zone (SVZ) of the lateral ventricle of 
neonatal rats with a retrovirus expressing PDGF yielded 
large, diffuse tumors that resembled GBM. They found that 
in these tumors, both infected and uninfected PDGFRα+-
expressing progenitors massively proliferated, suggesting 
that PDGF expression leads to tumor formation through 
both autocrine and paracrine signaling mechanisms, driv-
ing the evolution of heterogeneous malignant gliomas. 
These results raise the possibility that cells distinct from 
the initially transformed cells of origin within the tumor 
environment can eventually become tumor cells and sug-
gest a model of glioma evolution that is different from the 
generally accepted view of linear gliomagenesis [44].

Neurofibromatosis type 1 gene (NF1)

Large-scale sequencing analysis by the TCGA has shown 
that in approximately 15  % of glioma samples the NF1 
gene is inactivated by genetic loss or mutation [123], and 
NF1 mutations are most common in the mesenchymal sub-
type of GBM [166]. Inactivation of NF1 protein can also 
arise from excessive proteasomal degradation mediated 
by hyperactivation of PKC [23, 109]. Neurofibromin 1 is 
the product of NF1 gene and is a tumor suppressor that 
negatively regulates Ras and mTOR signaling pathways 
in astrocytomas. In fact, experiments using NF1-deficient 
primary murine astrocytes have revealed that loss of NF1 
causes increased cell proliferation and migration that is 
dependent on hyperactivation of mTOR mediated by Ras 
signaling. In this setting, mTOR induces rapamycin-sen-
sitive activation of Rac1 GTPase, independent of elonga-
tion factor 4E-binding protein 1(4EBP-1)/S6 kinase (S6 K) 
[140]. Stat3 is another downstream target of NF1 that is 
regulated in an mTORC1- and Rac1-dependent manner and 
increases cyclinD1 expression [9].

Using genetically engineered mouse models, it was 
found that targeted homozygous loss of NF1 in astrocytes 
is not sufficient to induce tumor formation, although it is 
sufficient to increase cell growth both in vitro and in vivo 
[8]. Furthermore, NF1−/− astrocytes were shown to develop 
optic gliomas in NF1+/− brains of mice [7, 184] and low 
levels of cAMP expression in the stroma cause induction 
of optic glioma formation in genetically engineered mouse 

models of NF1 [170]. Other studies using genetically 
engineered mouse models have shown that loss of NF1 in 
glial cells, in combination with a germ line TP53 muta-
tion, results in astrocytomas [183] and further progress to 
GBM upon deletion of PTEN [90]. More recent work has 
revealed that the same combination of genetic alterations 
in these tumor suppressor genes in neural stem/progenitor 
cells is necessary and sufficient to induce astrocytoma for-
mation [1]. Loss of NF1 gene function has been implicated 
in the development of the mesenchymal phenotype for 
GBM [166]. These findings emphasize the heterogeneity 
and the contribution of cell type-specific effects of various 
genetic alterations to the development of GBM.

MGMT promoter methylation

Promoters of several genes at specific loci are hypermeth-
ylated in GBM and frequently result in altered expression 
of tumor suppressor genes, such as cyclin-dependent kinase 
inhibitor 2A (CDKN2A), RB1, PTEN, and TP53, among 
others [2, 6, 29, 112]. One of the clinically most impor-
tant DNA methylation markers in GBMs is the promoter 
of MGMT (encoding O6-methylguanine-DNA methyltrans-
ferase), which is found in approximately 40 % of primary 
GBM patients and is associated with transcriptional silenc-
ing of the MGMT gene. Hypermethylation of the MGMT 
promoter was demonstrated to serve as a predictive marker 
for alkylating chemotherapy in GBMs [61, 174]. MGMT 
is a DNA repair enzyme and modulation of sensitivity to 
alkylating agents can be explained by the ability of this 
enzyme to restore guanine from O-6-methylguanine, which 
is the type of genomic lesion induced by alkylating agents 
used for chemotherapy drugs such as temozolomide (TMZ) 
(Fig. 4). A number of clinical trials and cohort studies have 
shown that promoter methylation of the MGMT gene is 
associated with prolonged progression-free and overall sur-
vival in patients who were treated with alkylating agents 
[41, 60, 61, 65, 172].

A seminal trial conducted by the EORTC examined con-
current/adjuvant TMZ treatment during and after radiother-
apy compared to radiotherapy alone for newly diagnosed 
GBM patients [155]. While the trial was overall positive, 
analysis of a subset of samples in this trial showed that 
patients with glioma tumors harboring MGMT promoter 
methylation benefited from chemotherapy almost exclu-
sively [61]. Similar results have been found in elderly 
patients, showing improved outcome with chemotherapy 
treatment in MGMT promoter-methylated tumors, while 
worse survival was associated with unmethylated tumors 
[105, 174], suggesting that MGMT promoter methylation is 
not a prognostic, but instead a predictive marker. Additional 
work has reconfirmed the predictive value of MGMT pro-
moter methylation for response to chemotherapy in IDH1/2 
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wild-type GBMs, while this marker is prognostic, albeit 
more commonly, in IDH1/2 mutant anaplastic gliomas 
[165, 173]. It is important to note that there is extensive 
overlap between MGMT methylation status and G-CIMP, 
and while MGMT methylation is present in a subset of 
G-CIMP-negative GBMs, it is found in almost all cases of 
G-CIMP-positive tumors [5]. Importantly, MGMT promoter 
methylation is a clinically important predictive marker for 
guiding adjuvant therapy in elderly GBM patients [61, 105, 
119, 174]. In this patient group, MGMT methylation sta-
tus has emerged as a predictive marker to determine best 
therapy and inclusion of TMZ. In this setting, the MGMT 
promoter methylation status helps to stratify patients into 
those who should be treated with radiotherapy only, i.e., 
patients with MGMT promoter unmethylated tumors, and 
those who should be treated with TMZ chemotherapy or 
combined TMZ/radiotherapy, i.e., patients with MGMT 
promoter-methylated tumors [61, 105, 119, 174]. How-
ever, the importance of MGMT methylation testing in non-
elderly GBM patients remains a matter of debate, as these 

patients are often treated with TMZ regardless of methyla-
tion status. However, MGMT methylation status may be 
useful in these patients to distinguish pseudoprogression 
(PsPD) from true progression [16]. PsPD is a pathological 
phenomenon in malignant glioma patients that are treated 
with combination radiotherapy and TMZ. PsPD generally 
occurs within a few months from radiochemotherapy and 
appears as an increase in tumor size in radiological imag-
ing; however, it is not accompanied with worsening of the 
neurological signs and symptoms. PsPD was recorded in 
21 (91 %) of 23 patients with methylated MGMT promoter 
and 11 (41  %) of 27 patients with unmethylated MGMT 
promoter (P = 0.0002). In pediatric gliomas, both the fre-
quency (16–50 %) [20, 35, 94, 152] and the prognostic or 
predictive significance of MGMT silencing remain to be 
determined [35, 94].

Epigenome-wide analysis of DNA methylation pat-
terns in glioma tumors has improved our understanding 
of glioma biology and has contributed to the advance-
ment of tumor classification [117, 156]. Recently, algo-
rithms have been developed that enable assessment of the 
three biomarkers, 1p/19q co-deletion, G-CIMP status, 
and MGMT promoter methylation, using Illumina Infin-
ium HumanMethylation450 (450  K) data [5, 117, 156]. 
Hybridization of tumor DNA to these arrays allows one to 
profile methylation of up to 450,000 CpG sites distributed 
across the human genome as well as analyzing genome-
wide copy number changes [5, 68, 156]. In addition, this 
method is suitable for analysis of formalin-fixed and par-
affin-embedded (FFPE) tissue samples [68]. Wiestler et al. 
[177] assessed the reliability and value of this technology 
and demonstrated its diagnostic and prognostic accuracy 
in determining G-CIMP, 1p/19q co-deletion, and MGMT 
promoter methylation status in the biomarker cohort of the 
prospective NOA-04 trial. Further optimization and eluci-
dation of MGMT methylation testing may yield additional 
clinical relevance of this important biomarker.

hTERT promoter mutation

Human telomerase is a ribonucleoprotein that regulates 
the length of telomeric DNA at the ends of chromosomes 
and therefore, plays an important role in cellular immor-
talization and oncogenesis. One of the hallmarks of cancer 
is deregulation of telomere maintenance and this process 
is regulated by the enzyme telomerase, which is active in 
90  % of all advanced cancers. Telomerase reverse tran-
scriptase (TERT) is the catalytic subunit of the telomer-
ase complex and its expression is associated with poor 
outcome in most tumors such as breast cancer, sarcomas, 
and brain tumors [37, 50, 102, 139, 159]. Recent findings 
have established frequent mutations in the promoter of 
TERT in a number of cancer types, including melanomas, 

Fig. 4   MGMT promoter methylation as a predictive marker for TMZ 
treatment. TMZ is an oral alkylating agent used as a chemotherapeu-
tic treatment for GBMs. TMZ causes DNA lesions such as O6-meth-
ylguanine (O6-meG), and N3-methyladenine and N7-methylguanine 
(N3-meA, N7-meG). O6-meG DNA methyltransferase (MGMT) 
restores the guanine to normal by removing the O6-alkylguanine, 
and thereby, promoting tumor cell survival. MGMT function may be 
impaired by gene deletion or suppression of its expression by hyper-
methylation of its promoter. Specifically in glioblastomas, IDH1/2 
mutations cause the CpG island methylator phenotype (CIMP) which 
may involve MGMT methylation as part of this phenomenon. Loss of 
MGMT-mediated DNA repair may lead to DNA strand breaks, apop-
tosis, autophagy, and tumor cell death
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liposarcomas, bladder cancer, and gliomas [53, 67, 81, 86, 
167]. Interestingly, genomic analysis of gliomas has shown 
that TERT promoter mutations occur in 70–80  % of pri-
mary GBMs and in more than 70 % of oligodendrogliomas, 
but are less frequent in IDH1/2 mutant diffuse and ana-
plastic astrocytomas as well as IDH1/2 mutant (secondary) 
GBMs that instead carry frequent ATRX mutations [11, 72, 
115]. TERT promoter mutations are also rare in pediatric 
GBMs characterized by histone H3.3 (H3F3A) mutations, 
which often are associated with TP53 and ATRX/DAXX 
mutations [160].

Recently, Killela et  al. [81] assessed the association 
between IDH1/2 mutation and TERT promoter mutations 
across several glioma subtypes. The joint influence of 
IDH1/2 mutation and TERT promoter mutation on over-
all survival (OS) was examined and three common glioma 
subtypes were delineated; astrocytomas of WHO grade II 
and III, oligodendrogliomas of WHO grade II and III, and 
GBMs. In general, TERT promoter mutations predicted 
poorer OS in GBMs without IDH1/2 mutations. Additional 
studies by Simon et al. and Labussiere et al. demonstrated 
that TERT promoter mutation signature could serve as a 
novel independent prognostic factor for poor outcome in 
primary GBMs. Their findings, however, suggest that the 
prognostic effect of TERT promoter mutation is independ-
ent of the mutation status of IDH1/2 in GBMs [91, 148]. 
On the other hand, TERT promoter mutations maybe asso-
ciated with longer survival in patients with IDH1/2 mutant 
gliomas, as they are closely linked with the prognostically 
favorable 1p/19q co-deletion in oligodendroglial tumors [3, 
152]. Analysis of TERT promoter mutation also serves as 
a novel prognostic marker for primary GBM patients and 
more recently, combined analysis of TERT promoter muta-
tion, EGFR amplification, and IDH1/2 mutation has ena-
bled identification of distinct classes of adult GBM [81]. 
TERT promoter mutation testing may have a dual role 
in molecular classification of gliomas based on IDH1/2 
mutation status: within the IDH1/2 mutant tumors, TERT 
mutation could possibly serve as a surrogate/confirmatory 
marker for 1p/19q co-deletion, as the two are highly corre-
lated. For the purposes of IDH1/2 wild-type GBMs, TERT 
mutation appears to be found in the majority of cases, but 
those which do not have promoter mutations (referred to in 
a recent report as “triple negative” (negative for all 3 mark-
ers: IDH mutation, 1p/19q co-deletion, and TERT muta-
tion) may be clinically distinct from those GBMs which are 
“single-positive” (TERT-mutant only) [39].

BRAF mutation

Activating missense mutations at the BRAF hotspot 
codon 600, most commonly the V600E, are common in 
several neuroepithelial tumors, including pleomorphic 

xanthoastrocytoma and one-third of gangliogliomas, and 
occasional pilocytic astrocytoma [142]. In GBMs, BRAF 
V600E mutations have been detected in approximately 
5  % of the cases [85, 142]. A higher frequency of BRAF 
mutation has been reported in GBMs with histological fea-
tures of epitheloid differentiation, i.e., “epitheloid GBMs”, 
which preferentially manifest in children and young adults 
and carry BRAF V600E mutations in more than 50 % of the 
cases (7 of 13) [84]. While treatment of pediatric low-grade 
astrocytoma patients with sorafenib, a multikinase inhibitor 
targeting BRAF, VEGFR, PDGFR, and c-KIT, resulted in 
unexpected acceleration of tumor growth, even in patients 
with BRAF mutant tumors [79], a recent case report showed 
complete regression of a BRAF V600E mutant pediatric 
GBM following treatment with the BRAF inhibitor vemu-
rafenib [134]. Thus, molecular testing for BRAF mutation, 
either by DNA sequencing or by immunohistochemistry 
using a BRAF V600E-specific antibody [24], may uncover 
a potentially active novel targeted therapy option in a small 
fraction of GBM patients.

Comparison of molecular features of GBMS 
in pediatric versus adult patients

Childhood GBM is much less common in absolute num-
bers than the adult form; however, it is relatively a much 
more frequent primary CNS tumor as a proportion of all 
brain tumors (children 0–19 years: GBMs, 2.9  %, malig-
nant gliomas NOS, 11.7 %; all age groups: GBMs 15.4 %) 
[120]. The 2-year survival rate for GBM in children is 
approximately 12  %, making this disease a leading cause 
of cancer-related deaths in children [19]. A number of stud-
ies have indicated that distinct genetic mechanisms play 
a role in the pathogenesis of pediatric and adult GBMs 
[42, 57, 126, 157, 179] and although in-depth analysis 
have demonstrated alterations in three key signaling path-
ways—including TP53, PI3 K/Akt, and Rb—and identified 
discrete transcriptional subtypes in adults, little is known 
about alterations in these pathways in pediatric GBMs. 
Two recent studies have attempted to identify somatic 
mutations specific to GBM patients who are younger than 
19 years of age at the time of diagnosis. These studies were 
the first ones to discover somatic mutations in the histone 
H3.3-alpha-thalassemia X-linked mental retardation pro-
tein (ATRX)–death domain-associated protein (DAXX) 
chromatin remodeling pathway that lead to changes in the 
chromatin architecture and play a major role in pediatric 
GBM pathogenesis in approximately 44 % of tumors [145, 
180]. Recurrent somatic mutations in H3F3A, the gene 
which encodes the replication-independent histone 3 (H3) 
variant H3.3, result in amino acid changes mainly in two 
residues within the histone tail; K27  M or G24R/G34 V. 
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This mutation was found predominantly in GBM and was 
more prevalent in children than adults; however, recent 
findings point to approximately 5 % of adult GBM patients 
also carrying this lesion [132] and likewise, H3F3A muta-
tion in adult GBM patients is associated with ATRX muta-
tions. In addition, somatic mutations in TP53 were found in 
54 % of all cases and in 86 % of cases harboring mutations 
in H3F3A and/or ATRX. The mutations in H3.3/ARTX/
DAXX/TP53 were also found to associate with changes 
in the telomere lengthening and specific gene expression 
profiles, suggesting that changes in the chromatin archi-
tecture contribute to the pathogenesis of childhood GBM. 
Other studies that analyzed molecular profiles of pediatric 
high-grade gliomas (HGG) have also suggested the exist-
ence of molecularly diverse subsets of pediatric GBMs [42, 
57, 125, 126]. Another alteration found in pediatric GBMs 
is a higher amplification frequency of the PDGFRA gene 
that is associated with activation of a PDGFRA-driven gene 
expression signature [125, 126, 130].

Another major difference between adult and pediatric 
GBM is the concomitant gain of chromosome 7 and loss 
of chromosome 10 in most adult tumors (on average 84 %) 
[18, 23]. Additional genomic abnormalities that occur at 
higher frequency in adult than in childhood GBMs include 
gains of chromosomes 19 and 20, and losses that affect 
chromosomes 9p, 22q, 13q, 14q, and 6q [18, 23]. Such 
chromosomal imbalances are generally found at lower 
frequency in childhood GBMs, and a proportion of these 
tumors (~15 %) does not contain any detectable copy num-
ber alterations [10, 78, 126, 156]. Pediatric tumors also 
display more frequent gain of chromosome arm 1q com-
pared to the adult counterparts, while they rarely harbor 
gain of chromosome 7 and loss of chromosome 10 (Fig. 5) 
[10, 126]. In addition, TERT promoter mutations occur at 
a much lower rate (3–11  %) in pediatric GBMs [81, 86], 
which instead frequently display mutations in the H3.3/
ATRX/DAXX and consequent alternative lengthening of 
telomeres (ALT) [59, 145]. With respect to DNA methyla-
tion signatures in pediatric GBMs, Sturm et al. [156] per-
formed genomic DNA methylation profiling of 59 pediat-
ric and 77 adult tumors and identified distinct epigenetic 
GBM subgroups that were closely linked to specific genetic 
alterations. One of the identified subtypes was the IDH1/2 
mutant group, which is directly associated with global 
hypermethylation (G-CIMP positive), while the H3F3A–
G34 group is linked to a hypomethylated signature of the 
genome (G-CIMP negative). In light of the identification of 
distinct genetic and epigenetic differences between pedi-
atric and adult GBMs, and the recently identified correla-
tion between these changes, it would be essential to fully 
understand the molecular differences between the adult and 
pediatric tumors to establish treatments specifically target-
ing GBMs in the two age groups. The substantial molecular 

differences between pediatric and adult tumors suggest 
that pediatric GBMs are in fact distinct entities on a bio-
logic level. Even though the histology overlaps between 
pediatric and adult GBM, the genetic signatures indicate 
that these should not be “lumped” together into a single 
entity. In addition, recent data show that tumors morpho-
logically classified as GBM in children actually represent 
very distinct subsets, based on molecular criteria (Illumina 
450  k methylation profiling, DNA copy number analysis, 
and mutational analysis). Specifically, pediatric GBM that 
showed evidence of amplification a known oncogene and/
or K27 M mutation in histone H3.3 showed a particularly 
poor prognosis, while tumors without evidence of these 
genetic lesions were prognostically more favorable, with a 
3-year overall survival rate of approximately 70 % [87].

Conclusion

Recently, aberrations in genes and molecular pathways in 
GBMs have provided a biological basis to establish appro-
priate clinically relevant biomarkers and point to the need 
for development of new therapeutic opportunities. We are 
at a point where progress in molecular classification of 
GBMs has provided useful insights for the development of 
more effective targeted therapeutics. Several clinically rel-
evant molecular markers are well established and serve in 
the clinic as standard of care for patients diagnosed with 
glioma tumors. For example, the status of MGMT promoter 
methylation in GBMs (especially those detected in elderly 

Fig. 5   Major classes of glioma based on differences in pediatric or 
adult genomic alterations. Somatic mutations in the histone H3.3/
ATRX/DAXX chromatin remodeling pathway are mainly found in 
pediatric glioma patients. Higher amplification frequency of PDG-
FRA gene and frequent gain of chromosome 1q are also common in 
pediatric gliomas. In adults, gain of chromosome 7 and loss of chro-
mosome 10 are highly prevalent, in addition to TERT promoter muta-
tion, EGFR amplification, and IDH1/2 mutation
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patients), 1p and 19q co-deletions in anaplastic oligoden-
drogliomas, and IDH1/2 mutations, now play major roles 
in tumor diagnostics and/or clinical decision making [21, 
105, 164, 174]. Meanwhile, multiplatform analyses of the 
genetic, epigenetic, and transcriptional profiles have proven 
useful in refining the classification of brain tumors and pre-
dicting patient outcome. Recent studies on pediatric GBM 
have demonstrated that these tumors, which are frequently 
driven by epigenetic changes in histone H3.3, may repre-
sent a 3rd major category of GBM, in addition to IDH1/2 
mutant (secondary) and IDH1/2 wild-type (primary) GBMs 
in adults. With these molecular insights, it is hoped that fur-
ther improvements in molecular assays would bring them 
to the clinic and be sought after as clinically indicated. 
These techniques might soon become more widely avail-
able, easier to standardize, and become more cost effective. 
Furthermore, the current histology-based diagnosis of brain 
tumors will increasingly be supplemented with molecular 
diagnostic tests to enable a biology-based classification and 
improve patient stratification that will hopefully be incor-
porated in carefully designed clinical trials. It is hoped that 
this approach of precision diagnostics–therapeutics can 
lead to step-by-step improvements of outcome where effec-
tive therapeutics are appropriately “matched” with molecu-
larly defined patient subsets. Even with the current excite-
ment in molecular classification, we remain a significant 
distance from substantive improvements, and ultimately a 
cure, for patients with GBM. Proper classification and bio-
logic understanding, while a key feature of personalized 
therapy, is only one component and in itself is of limited 
value unless matched by parallel successes in the develop-
ment of companion drugs and modalities for the overall 
goal of improved patient outcomes.
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