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GBM. To better understand the mechanisms underlying 
TMZ-induced mutagenesis and malignant progression, we 
explored the evolution of MGMT methylation and genetic 
alterations affecting MMR genes in a cohort of 34 treat-
ment-naïve LGGs and their recurrences. Recurrences with 
TMZ-associated hypermutation had increased MGMT 
methylation compared to their untreated initial tumors 
and higher overall MGMT methylation compared to TMZ-
treated non-hypermutated recurrences. A TMZ-associated 
mutation in one or more MMR genes was observed in five 
out of six TMZ-treated hypermutated recurrences. In two 
cases, pre-existing heterozygous deletions encompassing 
MGMT, or an MMR gene, were followed by TMZ-associ-
ated mutations in one of the genes of interest. These results 
suggest that tumor cells with methylated MGMT may 

Abstract Temozolomide (TMZ) increases the overall 
survival of patients with glioblastoma (GBM), but its role 
in the clinical management of diffuse low-grade gliomas 
(LGG) is still being defined. DNA hypermethylation of 
the O6-methylguanine-DNA methyltransferase (MGMT) 
promoter is associated with an improved response to 
TMZ treatment, while inactivation of the DNA mismatch 
repair (MMR) pathway is associated with therapeutic 
resistance and TMZ-induced mutagenesis. We previ-
ously demonstrated that TMZ treatment of LGG induces 
driver mutations in the RB and AKT–mTOR pathways, 
which may drive malignant progression to secondary 
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undergo positive selection during TMZ treatment in the 
context of MMR deficiency.

Keywords Low-grade glioma · Temozolomide · 
Hypermutator · Mismatch repair · MGMT

Introduction

Diffuse LGG are infiltrative brain tumors which include 
World Health Organization (WHO) grade II astrocytomas, 
oligodendrogliomas, and oligoastrocytomas [32]. Surgi-
cal resection is the primary therapeutic intervention, though 
LGG recur and may undergo malignant progression to a 
higher histological grade including grade IV secondary 
GBM. Therefore, in patients with clinical risk factors [41, 
50], postoperative adjuvant treatment is often utilized. The 
addition of TMZ to postoperative radiotherapy prolongs 
progression-free survival (PFS) and overall survival (OS) in 
high-risk LGG patients, and chemotherapy instead of irradia-
tion might be as effective [3, 45] and defers the risk of late 
radiation-induced cognitive deterioration [14]. Moreover, 
postoperative TMZ or irradiation of LGG has been associ-
ated with improved quality of life, better seizure control, and 
longer progression-free survival [6, 29, 37, 42, 48].

Temozolomide is an alkylating agent that methylates the 
O6 position of guanine. The DNA repair protein MGMT 
removes O6-methyl groups induced by TMZ. Initial studies 
assaying DNA methylation in the MGMT gene body rather 
than promoter showed a direct correlation between MGMT 
methylation and expression [19, 40]. When the MGMT 
promoter is hypermethylated, however, MGMT expres-
sion is decreased and TMZ-induced DNA damage persists 
[12, 13]. O6-methylguanine pairs with thymine instead of 
cytosine during DNA replication. MMR can recognize and 
repair these mismatches through MutS and MutL com-
plexes. MSH2 and MSH6 form the MutSα complex, which 
identifies base–base mismatches and small insertion–dele-
tion loops (IDLs). MSH2 and MSH3 form the MutSβ 

complex, which identifies large IDLs. MutS complexes 
directly with MutL, an MLH1/PMS2 dimer, to the site of 
DNA damage [20, 21]. Removal of the thymine that is base 
paired with O6-methylguanine is followed by repair synthe-
sis that reinserts thymine, leading to repeated attempts to 
repair the same base. This futile cycling of repair has been 
linked to DNA double-strand breaks and apoptosis, the 
apparent mechanism of TMZ-induced cytotoxicity [16].

Inactivation of the MMR pathway is a mechanism of 
resistance to TMZ in primary GBMs and also leads to TMZ-
induced mutagenesis [8, 18, 26, 62]. In MMR-deficient cells, 
the base pairing of O6-methylguanine with thymine persists, 
and upon DNA replication results in nucleotide transitions 
from guanine to adenine. TMZ-associated hypermutation 
has been observed in GBM [9–12], in cells treated with 
TMZ in vitro [8] and in unpaired post-treatment tissue sam-
ples [1, 5, 15, 16, 26]. In contrast to MMR, the impact of 
MGMT activity on the relative amount of cytotoxicity versus 
mutagenicity is much less clear. Furthermore, while MGMT 
methylation is associated with longer overall survival in 
GBM patients treated with TMZ [25], it is unclear whether 
this biomarker has the same prognostic value in patients with 
IDH1 mutated LGG [17, 53, 58].

We recently identified hypermutation in a subset of TMZ-
treated recurrent GBMs that arose from IDH1-mutant astro-
cytic LGG [28]. Post-TMZ recurrences had a 39- to 133-fold 
increase in the mutation rate relative to their treatment-naïve 
initial LGG, more than 98 % of which are C>T/G>A muta-
tions which are associated with TMZ-induced mutagenesis 
(Supplementary Table S1) [5]. TMZ-associated mutations 
resulted in deregulation of RB-mediated cell cycle control 
and hyperactivated AKT–mTOR signaling, suggesting TMZ-
induced hypermutation may drive malignant progression. 
However, it is unclear why hypermutation developed in only 
six of the ten LGG treated with TMZ. To better understand 
the mechanism of hypermutation, here we examined the 
stepwise development of DNA repair deficiency and subse-
quent TMZ-associated hypermutation using a cohort of 34 
initial LGG and their patient-matched recurrence, including 
23 pairs for which exome sequencing data were available. 
Because TMZ-induced hypermutation in LGG was associ-
ated exclusively with GBM recurrence, this study is impor-
tant for understanding and ultimately avoiding TMZ-associ-
ated hypermutation and malignant progression.

Methods

Sample acquisition

Patient inclusion in this cohort was dependent upon (1) an 
initial diagnosis of WHO grade II diffuse astrocytoma, oli-
godendroglioma, or oligoastrocytoma; (2) available tumor 
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tissue from an initial tumor and a subsequent recurrence; 
(3) information on post-surgical treatment. A majority of 
the samples have been used in previous studies (Supple-
mentary Table S2) [28, 55]. Tumor samples were fresh fro-
zen or formalin-fixed paraffin-embedded (FFPE) tissues. 
Sample use was approved by the Committee on Human 
Research at UCSF; the Ethics Committee of the University 
of Tokyo; and the Medical Ethics Committees of the Dutch 
hospitals VU University Medical Center Amsterdam, Rad-
boud University Medical Center Nijmegen, Isala Klinieken 
Zwolle and Erasmus Medical Center Rotterdam, and the 
Linköping University Hospital, Sweden.

DNA isolation

Genomic DNA from tumor and normal tissue samples of 
patients 01-38 was either extracted with the QIAGEN FFPE 
DNA extraction kit (Qiagen, Valencia, CA, USA) following 
the manufacturer’s instructions or isolated by a standard phe-
nol chloroform extraction as previously described [28]. FFPE 
blocks of initial tumor and recurrences of patients 90–302 
were cut into sections of 3–5 μm thickness for pathological 
evaluation on hematoxylin and eosin-stained slides. For each 
sample, an area was delineated that contained >60 % tumor 
cells. The corresponding area on subsequent sections of 
10 μm was used for DNA isolation extracted with the QIA-
GEN FFPE DNA extraction kit [55].

Bisulfite treatment, PCR, cloning and sequencing 
of MGMT

O6-methylguanine-DNA methyltransferase methylation sta-
tus was assessed for all patients (Fig. 1a and Fig. S1) [24]. 
DNA (>100 ng) was bisulfite treated for 2.5 h with the EZ 
DNA methylation Gold kit (Zymo Research, Irvine, Califor-
nia) according to the manufacturer’s instructions. Bisulfite-
converted DNA was amplified by PCR using the following 
primers corresponding to the MGMT promoter: forward 
GGATATGTTGGGATAGTT and reverse ATCGTTAATAA-
GTCAAGCTC. Gel extraction of the amplified DNA was 
performed with the QIAEXII gel extraction Kit (Qiagen, Ger-
mantown, Maryland). Four to six microliters of PCR prod-
uct was cloned using a pCR2.1/TOPO TA sequencing kit 
(Invitrogen, Carlsbad, CA, USA). Individual bacterial clones 
were subjected to PCR using vector-specific primers and a 
minimum of nine individual PCR clones were sequenced per 
tumor sample. Bisulfite sequence data of the MGMT promoter 
were analyzed with BISMA [47]. The bisulfite conversion rate 
was monitored in all reactions at non-CpG cytosines, which 
are typically unmethylated and converted. For comparison, the 
methylation status of the MGMT promoter in bisulfite-treated 
DNA was also determined in a subset of the samples by stand-
ard, non-quantitative methylation-specific PCR (MSP) [16].

Identification of somatic mutations and copy number 
aberrations in MGMT and MMR genes

The identification of MMR pathway alterations was limited 
to those for which sufficient tumor DNA and matched nor-
mal DNA was available for exome sequencing. The muta-
tional and copy number status of MGMT as well as the key 
MMR pathway genes MLH1, MLH3, MSH2, MSH3, MSH5, 
MSH6, PMS1, and PMS2 [27] were assessed from the exome 
sequencing data. For patients 01–24, somatic mutations and 
copy number aberrations in genes of interest were identified 
as previously described [28]. Nine new exome sequencing 
datasets were also generated for this study using the Agi-
lent SureSelect Target Enrichment System Protocol (Version 
1.0 September 2009) with the SureSelect Human All Exon 
50 Mb kit (Agilent Technologies) according to the manufac-
turer’s instructions. Paired-end reads of 76 or 100 bp in length 
were generated from Illumina HiSeq 2000 or 2500 instru-
mentation. Paired-end sequencing data from exome capture 
libraries were aligned to the reference human genome (build 
hg19) with the Burrows–Wheeler Aligner (BWA) 0.5.10 
[31]. Single-nucleotide variants (SNVs) were detected with 
MuTect [11], and indels were detected with Pindel [61], fol-
lowed by custom filters to remove false positives [28]. All 
candidate mutations were subsequently validated with PCR 
amplification of the target region from tumor and matched 
normal genomic DNA followed by conventional Sanger 
sequencing. Copy number segmentation was performed with 
an adaptation of circular binary segmentation (CBS) [28, 56]. 
We identified germline heterozygous SNPs from the matched 
normal exome of each patient tumor using the UnifiedGeno-
typer [34]. From only those SNPs present in dbSNP (Build 
ID: 132) (http://www.ncbi.nlm.nih.gov/SNP/) and with a 
coverage level of 10 or more reads, we calculated their minor 
allele frequency in all exomes of each patient (initial tumor, 
recurrence, and patient-matched normal) and used these to 
infer genomic regions with loss of heterozygosity (LOH). 
Regions of LOH were then correlated with DNA copy num-
ber alterations. For patients 171–296 copy number aberra-
tions at genes of interest were identified from low-coverage 
whole-genome sequencing as previously described [49, 55]. 
Copy number segmentation was performed by CBS [28] and 
gains and losses were identified using CGHcall [54].

Significance tests

For differences in methylation, the initial comparison 
between subgroups was done using the Kruskal–Wallis 
test (the nonparametric alternative to ANOVA), followed 
by subsequent post hoc testing using the Wilcoxon rank-
sum or signed-rank test (on data from tumor pairs) for two 
group analyses. P values below 0.05 were considered sta-
tistically significant.

http://www.ncbi.nlm.nih.gov/SNP/
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Results

Histological features and disease course of the cohort

Clinical and genomic data for many of the paired initial 
and recurrent tumor samples used in this study have been 

described previously [28, 55]. In total, we studied 87 sam-
ples from 34 LGG patients. Samples from spatially distinct 
regions of the tumor were available for six surgeries. Ten 
of the 34 patients received adjuvant TMZ. Accordingly, we 
divided the cohort into three groups based on the clinical 
and exome sequencing data; patients with recurrent tumors 
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Fig. 1  Comparison of MGMT methylation in different assays and 
across tumor regions. a Position of the MGMT bisulfite amplicon 
(light blue) encompassing the 23 CpGs assessed in this study, the 
position of the MGMT CpG island (green), and the enhancer region 
encompassing CpGs 10–16 (dark blue). TSS transcription start site. 
b Distribution of histological subtypes and grades of the recurrent 
tumors in the three groups. c Comparison of the binary outcome of 
MSP (x axis) to MGMT methylation level of CpGs 10–16 determined 

by bisulfite, PCR and sequencing of 10 or more independent clones 
(y axis). d The degree of variation in methylation levels was deter-
mined in replicate experiments from independent aliquots of the same 
genomic DNA isolation (y axis) with bisulfite and sequencing of the 
MGMT promoter in individual samples (x axis). e MGMT methyla-
tion levels (y axis) in spatially distinct regions of individual tumors (x 
axis). Sample designations are the patient (p) number followed by 0.1 
for initial tumor and 0.2 for the recurrent tumor
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displaying a TMZ-associated hypermutator phenotype (TMZ-
HM, n = 6), TMZ-treated patients without a TMZ-associated 
hypermutator phenotype (TMZ-non-HM, n = 4) and patients 
not treated with TMZ (non-TMZ, n = 24) (Supplementary 
Table S2). While the overall size of the cohort is relatively 
modest, very few studies have reported genomic and epig-
enomic evolution in similarly sized cohorts of paired initial 
LGG and recurrent tumors [57]. In the TMZ-HM group, all 
six tumors recurred with GBM histology. Relative to the 
TMZ-HM group, the number of recurrent tumors with GBM 
histology was variable in the TMZ-non-HM group and non-
TMZ group, (ANOVA, p value 0.013) (Fig. 1b).

MGMT methylation level is similar across assays, technical 
replicates and spatially distinct samples

Methyl-specific PCR (MSP) is used in clinical tests for 
MGMT methylation status and yields a low-resolution, 
non-quantitative binary call of methylated or unmethylated. 
However, MGMT methylation levels in tumors span a full 
range from unmethylated to fully methylated at each CpG. 
We therefore compared MSP to a more quantitative, single-
CpG resolution method involving bisulfite treatment, PCR, 
cloning and sequencing in 18 samples. The genomic region 
assessed by the bisulfite sequencing approach assesses 
methylation level at each of 23 CpG sites in the MGMT 
promoter and enhancer including the region covered by the 
MSP assay which spans CpG sites 10–16 [2, 33], a previ-
ously reported differentially methylated region 2 (DMR2) 
covered by CpGs 3–20 [33], and CpG site 13 which has 
prognostic value in GBMs [2] (Fig. 1a). In eight samples, 
classified as MGMT unmethylated by MSP, median meth-
ylation level was 25.4 % (range 1.6–28.6 %), and in ten 
samples that were methylated according to MSP, median 
methylation level was 37.4 % (range 6.5–98.6 %) (Fig. 1c). 
To test the reproducibility of bisulfite sequencing approach, 
experiments of seven samples were repeated on independ-
ent aliquots from the same genomic DNA isolation. Very 
little variation in methylation level was observed between 
replicate experiments (Fig. 1d). An analysis of spatially 
distinct regions in samples obtained from the same sur-
gery revealed that there was also very little variation in 
MGMT methylation levels within a tumor at a given time 
point (Fig. 1e). This limited intratumoral heterogeneity of 
MGMT methylation level provided evidence that the result 
of a single sample was likely to be representative for LGG, 
as previously shown in GBM [15, 21, 23].

Increase in MGMT methylation level associated 
with temozolomide-induced hypermutation

MGMT methylation levels varied widely between patients. 
Across the whole cohort, the median methylation level 

of initial tumors was 29.7 % (range 6.1–70.9 %) and the 
median methylation level of recurrent tumors was also 
29.7 % (range 3.9–79.1 %), (p value 0.49) (Supplementary 
Material). Between the three subgroups, median methyla-
tion levels in initial tumors were not significantly different 
(TMZ-HM 38.3 % vs. TMZ-non-HM 17.8 %, p value 0.15; 
TMZ-HM vs. non-TMZ 33 %, p value 0.33), while over-
all methylation level in recurrent tumors of the TMZ-HM 
group (median 55 %) was significantly higher compared 
to recurrent tumors of the TMZ-non-HM (median 20 %) 
and non-TMZ (median 28 %) groups (p value 0.013 and 
0.03, respectively) (Fig. 2). Patient 24 was not included in 
this analysis, as methylation data were confounded by low 
tumor purity in the initial and first recurrent tumor, compli-
cating the interpretation.

We explored how methylation levels changed over time 
by performing paired analysis in initial and recurrent tumors 
of the three subgroups TMZ-HM, TMZ-non-HM, non-TMZ. 
The change in methylation level from initial to recurrence in 
the TMZ-HM group was non-significant but showed a trend 
(p value 0.063). This is supported by the consistent increase 
in methylation level in this subgroup. This pattern was sig-
nificantly different from the variable patterns of change over 
time in the TMZ-non-HM and non-TMZ groups (TMZ-HM 
vs. TMZ-non-HM p value 0.050; TMZ-HM vs. non-TMZ 
p value 0.005) (Fig. 2). Eleven of 23 individual CpGs were 
significantly more methylated in the recurrent tumors of the 
subgroups TMZ-HM vs. TMZ-non-HM (CpGs 1–6, 8–10, 
12 and 13, p values 0.012–0.044).
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Fig. 2  Significantly elevated MGMT methylation in TMZ-associated 
hypermutated recurrent tumors that arise from LGG. MGMT meth-
ylation levels in initial (green) and recurrent (yellow) tumors of three 
patient subgroups. non-TMZ patients not treated with TMZ, TMZ-
non-HM patients treated with TMZ without a hypermutated recur-
rent tumor, TMZ-HM patients treated with TMZ with a hypermutated 
recurrent tumor
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Evolution of DNA repair deficiency in the TMZ-HM group

In the initial tumors of the TMZ-HM group (n = 6), no 
MMR gene mutations were detected, however, DNA 
repair may have been impaired by the heterozygous loss 
of MGMT in patient 01 and MLH1 in patient 10. In con-
trast, five of the six TMZ-HM GBMs contained a TMZ-
associated mutation in one of the MMR genes, concurrent 
with deletion of the other allele or deletion encompassing 
another MMR gene or MGMT (Fig. 3a, b, Fig. S2). We also 
identified a clonal TMZ-associated mutation in MGMT of 
unknown significance in the recurrent tumor of patient 18. 
In the initial and recurrent tumors of the TMZ-non-HM 
(n = 4) patients, MMR pathway genes were intact, but het-
erozygous loss of MGMT was detected in the initial tumor 
of patient 11 and the recurrent tumor of patient 17. Inter-
estingly, the recurrent tumor of patient 11 grew out from 
an earlier cell that retained both alleles of MGMT, while 
the recurrent tumor of patient 17 had decreased levels of 
DNA methylation at MGMT (initial 28.3 %, recurrence 
12.7 %), indicating that in both cases MGMT levels may 
not have been impaired during TMZ treatment and recur-
rence. In the non-TMZ group (n = 24), mutational analysis 
was performed in patients of which sufficient DNA from 
matched normal and initial and recurrent tumor was avail-
able (n = 7). In these seven cases, only one MMR mutation 
was detected, an MSH3 mutation in the initial tumor but 
not in the recurrent tumor of patient 07. DNA copy number 

status of MGMT and MMR genes was available for 21 of 
24 patients in the non-TMZ subgroup. Genomic loss affect-
ing the MGMT region was detected in five initial and seven 
recurrent tumors of the non-TMZ subgroup. Similarly, 
deletion encompassing an MMR gene was shared between 
the initial and recurrent tumors of five cases, while four 
patients acquired a deletion encompassing a MMR gene 
at recurrence (Supplementary Table S3). As these patients 
did not receive TMZ, it is not known how TMZ treatment 
may have affected MGMT methylation levels at recurrence, 
or if the identified genetic alterations to MGMT and MMR 
genes may indicate a susceptibility to hypermutation.

Discussion

We compared spontaneous and treatment-associated evolu-
tion of DNA repair deficiency in a cohort of 34 initial LGG 
and their patient-matched recurrences. Our data suggest 
MGMT and MMR-mediated DNA repair may be compro-
mised by sequential and coincident loss of heterozygosity, 
methylation [44], and TMZ-associated mutation, although 
repair activity could not be tested directly. Considering 
prior studies of TMZ-treated GBM patients [1, 8, 26, 62] 
and cells treated with TMZ in vitro [5], our results suggest 
that TMZ-induced hypermutation is the consequence of a 
TMZ resistance mechanism in LGG. This putative mecha-
nism is not fully understood, but may be induced directly 
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by the mutagenic action of TMZ on DNA repair genes, in 
combination with pre-existing and concurrent copy number 
alterations in cells with a higher level of MGMT methyla-
tion. The resistance mechanism appears to involve a switch 
from toxicity to tolerance of TMZ-induced DNA damage. 
The sequential acquisition of genetic and epigenetic change 
in MGMT and MMR genes in the TMZ-HM group differs 
notably from the patterns in patients who did not received 
TMZ, and in TMZ-treated but not hypermutated patients.

We observed a consistent increase over time in MGMT 
methylation level, which was not detected in LGG patients 
without a TMZ-associated hypermutator phenotype. The 
apparent positive selection of MGMT hypermethylated cells 
and a corresponding decrease in MGMT expression may 
predispose a cell to persistent O6-methylguanine lesions and 
acquisition of MMR gene mutation, enabling hypermutation 
from subsequent rounds of TMZ treatment (Fig. 4). MGMT 
activity also may be decreased by TMZ treatment itself, as 
the MGMT protein is not regenerated following repair [52].

Other studies have addressed temporal changes of MGMT 
methylation in smaller cohorts of grade II astrocytomas [22, 
30, 35] and GBMs [7, 9, 38] with MSP only, and without 
mutational and copy number analysis. In the present study, 
bisulfite sequencing of the MGMT promoter in 34 paired ini-
tial and recurrent tumors enabled detailed, quantitative anal-
ysis of temporal evolution in individual patients. Given the 
sample size, a meaningful comparison of MGMT methyla-
tion change was not possible for GBM recurrences that were 
HM (n = 6) versus GBM recurrences in the TMZ-non-HM 
subgroup (n = 1). We observed a distinct pattern of increased 
MGMT methylation level between initial and patient-
matched, TMZ-treated and hypermutated recurrences.

Exposure of cells to a mutagen such as TMZ will result 
in a different set of mutations in each cell within the pop-
ulation. However, our detection of somatic mutations in 
MMR-related genes in hypermutated DNA derived from 
bulk samples strongly suggests that these recurrences are 
derived from clonal expansion from a very small number of 
hypermutated cells [26]. The mutations are predominantly 
C>T/G>A transitions, the type of mutation known to be 
induced by TMZ treatment. Literature on the functionality 
of these mutations varies, for example somatic mutations 
MLH1 P648L and P640S in the TMZ-treated recurrent 
tumors of patients 1 and 10 also occur in the germline of 
families with hereditary nonpolyposis colon cancer, sig-
nificantly affect MLH1 protein function, and are predicted 
to be pathogenic [10, 20, 43, 51]. The splice site mutation 
in MSH3 of patient 18 leads to a single-nucleotide shift of 
the splice acceptor site, resulting in an out-of-frame tran-
script and premature truncation of the protein. However, 
the role of MSH3 in cancer is less clearly defined [39]. In 
MMR-deficient cells, futile cycling of MMR repair does 
not occur, enabling this type of mutation. The C>T/G>A 

mutation also occurs spontaneously, however, the extreme 
number of new mutations, the strong bias towards C>T/
G>A versus other mutations, and the occurrence of hyper-
mutation after TMZ treatment but not in patient-matched 
pre-treatment samples suggests TMZ is the predominant 
source. The proportion of tumors developing a hypermuta-
tion profile after TMZ treatment in our series is 60 % (6 out 
of 10). This cohort and others [1, 26] are too small to deter-
mine the actual incidence of hypermutated diffuse gliomas 
after alkylating agent chemotherapy.

Biomarkers of susceptibility to TMZ-associated hyper-
mutation could have significant clinical value. Rare ger-
mline and somatic MSH6 mutations that might affect how 
cells respond to TMZ have been detected in patients with 
untreated anaplastic oligodendrogliomas and GBMs [36, 
46]. Within our small cohort, we found that loss of hete-
rozygosity spanning MMR genes was unique to the TMZ-
HM group relative to TMZ-non-HM group. In three TMZ-
HM patients, the initial tumor showed deletion of MGMT 
or an MMR gene. The copy number data of two of the 
other initial tumors from the TMZ-HM group were ambigu-
ous. In a study of MMR protein expression assessed by 

proficient
mismatch
repair

deficient
mismatch
repair

temozolomide

MGMT unmethylated

MGMT methylated

Recurrence

Hypermutation

Initial tumor

Fig. 4  A working model of the effect of an impaired MMR system 
on clonal outgrowth of MGMT methylated cells during acquisition 
of the TMZ-associated hypermutator phenotype and TMZ-associated 
malignant progression. Left: when MMR is intact, TMZ treatment 
induces cell death in MGMT methylated cells. The histology of the 
recurrent tumor is variable. Right: when MMR is deficient, TMZ 
treatment fails to induce cell death and MGMT methylated tumor 
cells may expand, become hypermutated, and undergo malignant pro-
gression to GBM
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immunohistochemistry decreased expression was observed 
for MLH1, MSH2 and MSH6 in a subset of initial low- and 
high-grade astrocytomas, but DNA copy number status and 
paired recurrences were not assessed [46]. A larger cohort 
of paired samples will be needed to determine if loss of het-
erozygosity of MGMT and/or MMR genes in initial tumors 
has predictive or prognostic value. Contrary to primary 
GBM, where copy number loss of the entire chromosome 
10 is a frequent event [4], we observed variability in the size 
of the region lost in initial LGG and secondary GBM in our 
cohorts [55]. MGMT hypermethylation and corresponding 
impaired MGMT activity prior to TMZ treatment could also 
be a predisposing factor, but we did not detect statistically 
significant differences when analyzing MGMT methylation 
level alone between the initial tumors of the TMZ-HM and 
TMZ-non-HM subgroups. An alternative hypothesis is that, 
because TMZ-HM tumors appear to derive from a very lim-
ited number of cells, MGMT methylation in a small num-
ber of cells in the initial tumor may allow positive selection 
and hypermutation. Other studies with variable designs, and 
predominantly examining HGGs, were also unable to iden-
tify a correlation between MGMT methylation and MMR 
status [18, 36]. Similar to GBM [15, 21, 23], variation in 
MGMT methylation levels among multiple regions of the 
initial LGG of our patients was negligible, suggesting that 
single samples of the initial and recurrent tumor may be suf-
ficient to elucidate temporal patterns. However, because the 
TMZ-HM group had an increased level of MGMT methyla-
tion relative to more variable patterns in the other groups, 
recurrences in the TMZ-HM group may exhibit greater 
intratumoral heterogeneity if the initial tumor resection was 
incomplete and sampling at recurrence included hypermu-
tated and non-hypermutated regions.

The results presented here and in prior studies [1, 5], 
along with the well-established mechanisms of DNA repair 
by MMR and MGMT, further suggest that compromised 
DNA repair contributes to the onset of hypermutation and 
subsequent malignant transformation. Taken together, the 
data suggest a working model in which a hypermutated 
tumor arises through clonal expansion of cells with high 
levels of MGMT methylation, pre-existing loss of heterozy-
gosity of a key MMR gene and/or MGMT, and TMZ-asso-
ciated mutation in MMR genes. Tumor tissue and clinical 
data from LGG patients participating in clinical trials with 
TMZ treatment will be required to follow-up these initial 
findings [59, 60] and to assess the clinical relevance of the 
TMZ-associated hypermutator phenotype.

Data availability

Whole exome sequence data are uploaded to the Euro-
pean Genome-phenome Archive (EGA) for patients 

1–23 (accession number EGAS00001000579), and shal-
low whole-genome sequencing data of patients 90–296 
(EGAS00001000643). Data of patient 24 was deposited to 
the Japanese Genotype–phenotype Archive under accession 
number JGAS00000000004.
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