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loss within the nbM in AD brains. However, the findings in 
PD are less clear due to the limited number of studies per-
formed. Given the differing neuropsychiatric and cognitive 
deficits in Lewy body-associated dementias (PD dementia 
and dementia with Lewy bodies) as compared to AD, we 
hypothesise that a different pattern of neuronal loss will 
be found in the nbM of Lewy body disease brains. Under-
standing the functional significance of the subregions of the 
nbM could prove important in elucidating the pathogenesis 
of dementia in PD.

Keywords  Nucleus basalis of Meynert · Topography · 
Parkinson’s disease · Alzheimer’s disease · Neuropathology

Introduction

Although the identification of Lewy bodies (LB) and neu-
ronal loss in the substantia nigra is considered the gold 
standard for the neuropathological diagnosis of Parkinson’s 
disease (PD), these two pathological features were actu-
ally first recognised by Friedrich Lewy in the nucleus basa-
lis of Meynert (nbM) in 1913. Within the basal forebrain 
sublenticular region, there is a broad band of cell clusters 
commonly known as the nbM. Neuronal loss in the nbM 
is well established in dementing disorders; however, its 
pathological significance was first recognised in a series 
of patients with paralysis agitans (now known as PD) by 
Lewy where severe neuronal degeneration and intraneu-
ronal globose tangles were noted [63]. He also observed 
that concentric hyaline-rich “Kugeln” (balls, as originally 
identified in the globus pallidus) were found in surviv-
ing neurons in the nbM and dorsal motor nucleus of the 
vagus [89]. These intraneuronal inclusions were later given 
the name LB and the presence of LB became one of the 

Abstract  It has been well established that neuronal loss 
within the cholinergic nucleus basalis of Meynert (nbM) 
correlates with cognitive decline in dementing disorders 
such as Alzheimer’s disease (AD). Friedrich Lewy first 
observed his eponymous inclusion bodies in the nbM of 
postmortem brain tissue from patients with Parkinson’s dis-
ease (PD) and cell loss in this area can be at least as exten-
sive as that seen in AD. There has been confusion with 
regard to the terminology and exact localisation of the nbM 
within the human basal forebrain for decades due to the dif-
fuse and broad structure of this “nucleus”. Also, while top-
ographical projections from the nbM have been mapped out 
in subhuman primates, no direct clinicopathological cor-
relations between subregional nbM and cortical pathology 
and specific cognitive profile decline have been performed 
in human tissue. Here, we review the evolution of the term 
nbM and the importance of standardised nbM sampling for 
neuropathological studies. Extensive review of the litera-
ture suggests that there is a caudorostral pattern of neuronal 
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cardinal neuropathological features of PD. Lewy specu-
lated that the nbM neuronal loss was responsible for some 
of the motor deficits seen in PD and it was not until the 
1930s that Hassler suggested the pathological changes in 
the nbM were probably related to cognitive function defi-
cits in PD (in [94]). Subsequently, the nbM has been inves-
tigated extensively in many neuropsychiatric disorders 
including schizophrenia [4, 103], Pick’s disease [86], Alz-
heimer’s disease (AD) [2, 4–6, 17, 19, 25, 29, 46, 47, 64, 
65, 73, 74, 78–81, 85, 86, 94, 100–102, 105], Creutzfeldt–
Jakob disease [86], dementia pugilistica [96] and Down’s 
syndrome [18, 86]. The functional significance and connec-
tions of the nbM were unknown until the 1970s when the 
cholinergic hypothesis in AD was proposed [9]. The nbM 
was then found to be a cholinergic centre, with neurons 
providing cholinergic afferents to the entire neocortex [24, 
55, 67, 69]. Hence, the decrease in cortical acetylcholine 
levels seen in dementing disorders was thought to relate to 
cell death within the nbM.

The nbM is a broad and irregular “nucleus” in the human 
forebrain and functional subdivision of the nbM has been 
suggested, based on the topographical projection of cho-
linergic fibres from the nbM in non-human primates [69]. 
However, this topography is not directly translatable to the 
human brain. It is, therefore, important to revisit this ques-
tion of anatomical subdivision of the nbM for the investiga-
tion of possible clinicopathological correlations in different 
dementias.

With the advances in imaging of the basal forebrain, and 
the nbM potentially being the next target for neuromodu-
lation with deep brain stimulation (DBS) [37], we will 
review the history of the localisation of this basal forebrain 
nucleus and look at possible trends in clinicopathological 
correlation of different nbM subsectors.

Where exactly is the nbM?

The basal forebrain region located above and parallel to the 
optic nerve, with the medial boundary being the wall of the 
lateral ventricle was first described by Reil in 1809 as the 
unnamed medullary substance (Die ungenannte Marksub-
stanz) [84] (Fig. 1). This region was named substantia innom-
inata (SI) of Reil by Theodore Meynert [71]. However, the 
SI that we commonly refer to is actually more poorly defined 
anatomically and is known as the SI of Reichert. This is an 
unlabelled area with no boundaries within Reichert’s human 
brain atlas from the 1850s [27]. This region has evolved 
to be known as the anterior perforated substance by Bec-
cari and in a more modern human stereotaxic brain atlas by 
Schaltenbrand and Bailey simply as basalis to describe the 
sub-commissural region dorsal to the amygdala [88]. Despite 
the change in terminology, many current investigators still 

refer to the region as the SI. However, instead of labelling a 
region, some investigators describe the SI as discrete group 
of magnocellular neurons within the basal forebrain synony-
mous to the nbM we know today [104], reflecting a confu-
sion of terminology in this area.

Defining a “nucleus”

As mentioned above, Reil was the first to recognise the 
distinct group of basal forebrain neurons and labelled it 
as a “medullary substance”. In fact, Meynert described 
the group of cells as the ganglion of the ansa peduncula-
ris (ganglion der Hirnschenkelschlinge), which is found 
within the SI of Reil bound by the ansa lenticularis dor-
sally, the optic tract ventrally and the external capsule lat-
erally [71]. Koelliker coined the term ‘basal ganglion of 
Meynert’ (Meynert’sches Basalganglion) and extended 
Meynert’s finding to describe the ganglion in its rostrocau-
dal extent [59]. This extends from the mammillary bod-
ies posteriorly to the floor of the inter-hemispheric fissure 
anteriorly. This ganglion was later called the ganglion of 
the ansa lenticularis by Edinger (Reviewed in [77]). How-
ever, two problems arose from this terminology. First, the 
term “ganglion” should be used to describe a collection of 
cell bodies in the peripheral nervous system instead of the 
central nervous system. Thus, this collection of cells was 
more closely known as nucleus of the septal plane (Nucleo 

Fig. 1   A diagram of the human basal forebrain illustrating the loca-
tion of the substantia innominata (as outlined). AC anterior commis-
sure, Am amygdala, Cd caudate, GP globus pallidus, IC internal cap-
sule, LV lateral ventricle, Pt putamen, SI substantia innominata
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del piano settale) by Beccari [43] and nucleus of the 
ansa lenticularis by Ayala [8]. Second, the structures ansa 
peduncularis and ansa lenticularis were difficult to define 
and the collection of cells was more closely related to the 
former [77]. Thus, nomenclature associating these neurons 
to a particular structure was avoided and the term nucleus 
basalis or basal nucleus (Der Basalkern by Brockhaus) was 
established [15].

Subdividing the “nucleus”

The nbM is an “open” nucleus with no distinct bounda-
ries and it forms several clusters within the basal fore-
brain. Attempts have therefore been made to subdivide this 
‘nucleus’. Ayala observed two distinct clusters of magno-
cellular neurons, the first being the previously described 
nbM and the second located lateral to the anterior com-
missure and ventral to the putamen for which he coined 
the term nucleus subputaminalis (NSP) [8]. The NSP is 
also known as Ayala’s nucleus and it was proposed to be 
involved in speech function but there is currently no direct 
evidence to support this hypothesis [92]. Later, Brockhaus 
also tried to subdivide the nbM and he classified the more 
anterior part as the pars diffusa and a posterior portion as 
pars compacta [15].

nbM: the cholinergic nucleus

In the 1970s, retrograde horseradish peroxidase  (HRP) 
tracer experiments on subhuman primates identified that 
cortical cholinergic innervation originates from the nbM 
[68]. Using histochemical and immunohistochemical label-
ling for acetylcholinesterase (AChE) and choline acetyl-
transferase (ChAT), Mesulam and colleagues [69, 70] were 
able to identify the various cholinergic loci in the subhu-
man primates’ basal forebrain and introduced the nomen-
clature Ch1–Ch4 to describe four cholinergic cell groups 
rostrocaudally, with the cholinergic component of the nbM 
designated as Ch4 (Table 1).

Cholinergic topographical projection of the nbM

Mesulam and colleagues [69] found that over 90 % of the 
magnocellular neurons in the nbM are cholinergic and that 
the Ch4 group is the largest out of the four basal forebrain 
cholinergic groups. In humans, Ch4 is measured 13–14 mm 
antero-posteriorly and 16–18  mm medio-laterally within 
the SI [67]. Furthermore, the Ch4 can be subdivided into 
five groups in monkeys [69]—the anterior part (Ch4a) 
into anteromedial (Ch4am) and anterolateral (Ch4al); the 

intermediate part (Ch4i) into intermediodorsal (Ch4id) and 
intermedioventral (Ch4iv); and a posterior group (Ch4p). 
However, there is an additional sixth subsector of the Ch4 
in human as the transition between the anterior and inter-
mediate part is elongated, giving rise to the anterointerme-
diate (Ch4ai) region [67]. Prior to this classification, most 
studies involving the nbM stopped at the level of Ch4i, 
neglecting the caudal extension. In fact, according to Mey-
nert’s original description, the nbM is located at the plane 
of the intermediate Ch4 region.

Through HRP retrograde tracer and AChE co-localisa-
tion studies on macaques, the cortical topographical inner-
vations from the Ch4 subgroups have been mapped out 
(Fig. 2) [69]. In summary, the anterior Ch4 innervates the 
limbic regions—Ch4am projects to medial cortical regions 
including the cingulate cortex and Ch4al projects to fronto-
parietal opercular regions and amygdala; Ch4p projects to 
superior temporal and temporal polar regions; and Ch4i 
to the remaining cortical regions. It is not known whether 
these innervation patterns are similar to those in human 
brain but detailed clinicopathological studies relating to the 
subdivision of the nbM could provide some clues.

Problems with the Ch4 subsectors

As pointed out by Mesulam et al. [69], the basal forebrain 
cholinergic groups do not have strict anatomical boundaries 
and overlap considerably, in line with the concept that the 
nbM is an ‘open’ structure rather than a discrete nucleus. 
Furthermore, within the Ch4 group, some ChAT-immunop-
ositive cells were scattered in different interstitial locations 
including the anterior commissure, inter-medullary laminae 
of the globus pallidus, internal capsule, ansa lenticularis 
and ansa peduncularis. Also, not all magnocellular neurons 
within the basal forebrain are cholinergic and the terms 
nbM and Ch4 are therefore not interchangeable.

Ch4ai is a region unique to the human brain, as it is the 
“gap” between the Ch4a and Ch4i subsectors when results 
from subhuman primates were translated to humans. It 

Table 1   Basal forebrain cholinergic cell groups and their projections 
in the brain [69]

Cholinergic group Region Projection

Ch1 Medial septal nucleus Hippocampal complex

Ch2 Vertical limb of the 
diagonal band nucleus

Hippocampal complex

Ch3 Horizontal limb of 
the diagonal band 
nucleus

Olfactory bulb

Ch4 Nucleus basalis of 
Meynert

Cortex and amygdala
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could be speculated that this region is the caudal extension 
of Ch4a and the rostral extension of Ch4i due to the larger 
lateral surface area of the neocortex in human as compared 
with subhuman primates.

Ch4a and Ch4i were further divided into two clusters 
according to Mesulam. In Ch4a, a vessel or a rarefaction 
divides it into the medial and lateral sectors. However, with 
anatomical variation, a vascular structure might not be pre-
sent in certain planes [47, 87]. Also, the sizes of Ch4am and 
Ch4al seem not to stay constant throughout [92]. As one 
progress rostrocaudally, Ch4am appears and overlaps with 
Ch2 diagonal band nucleus. Then it gradually decreases in 
size while Ch4al enlarges and merges with Ch4ai. More 
caudally, the tract of ansa peduncularis is usually an ana-
tomical landmark that divides the Ch4i into dorsal and 

ventral subsectors, although it can be difficult to identify on 
thin nbM sections [28, 47]. However, the projection pattern 
of Ch4id and Ch4iv appears to be similar [69], so the Ch4i 
can effectively be considered as a single entity.

Establishment of a simplified nbM subdivisional 
scheme

Analysis of the entire nbM will not be possible in many 
studies, and thus a subdivisional scheme could be useful to 
simplify and standardise future work on the nbM. We have 
reviewed several human brain atlases and previous publi-
cations [10, 36, 67, 69, 83, 92, 104] and have elaborated 
a notional definition of anterior, intermediate and posterior 

Fig. 2   Projected innervation 
map of the various Ch4 regions 
(Ch4a, green; Ch4i, blue; Ch4p, 
red) in the human brain on the 
lateral surface (top left) and 
at the mid-sagittal plane (top 
right). Cortical projection from 
the Ch4ai (turquoise) is cur-
rently unknown in the human 
brain. Topographical innerva-
tion in different subsectors of 
the nbM according to Mesulam 
et al. (bottom) [67, 69]

Table 2   Proposed macroscopic and microscopic landmark for the definition of anterior, intermediate and posterior subsectors of the nbM

Region Macroscopic landmark Microscopic landmark Corresponding Ch4 regions

Anterior nbM AC at midline and subpallidal region  
(continuous or split)

Preoptic or supraoptic nucleus Ch4am, Ch4al

Intermediate nbM Globus pallidus divided into GPe and GPi
AC ventral to putamen (and GPe)

Supraoptic nucleus, periventricular nucleus,  
anterior hypothalamic nucleus,  
(ansa peduncularis)

Ch4al, Ch4i

Posterior nbM Tail end of AC ventrolateral to putamen
Level of mammillary body

Ch4i, Ch4p
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subsectors of the nbM (Table 2). The subdivisions we pro-
pose approximately correspond to the original Ch4 classi-
fication according to Mesulam, discarding the Ch4ai label 
with its lack of any reliable topographical correlate. This 
is depicted histologically with H&E and immunohisto-
chemical staining with choline acetyltransferase (ChAT) on 
the human basal forebrain (Fig. 3). A protocol for recom-
mended sampling at autopsy is given in Fig. 4.

The cholinergic hypothesis and the increased emphasis 
on nbM research

In the 1970s and 80s, a number of animal and human stud-
ies pointed to the importance of acetylcholine in cognition. 
Subsequently, the “cholinergic hypothesis” was proposed 
suggesting that a cortical cholinergic deficit leads to cog-
nitive decline in ageing and Alzheimer’s disease (AD) [9]. 
As the source of cortical cholinergic innervation, the nbM 
became one of the ‘hot topics’ in dementia research in the 
last two decades of the 20th century.

Alzheimer’s disease: a caudorostral pattern of neuronal 
loss in the nbM

Since Whitehouse and colleagues’ first account of 90  % 
nbM cell loss in a familial AD case [99], further studies 
have reported anything from 8 to 87 % cell loss in AD rela-
tive to controls [2, 4–6, 17, 19, 25, 29, 46, 47, 64, 65, 73, 
74, 78–81, 85, 86, 94, 100–102, 105]. The reason for such a 
large variation between studies could relate to varying dis-
ease severity, but one of the main causes is that neuronal 
loss is not homogenous throughout the nbM. Therefore, we 
reviewed the early reports on the neuropathological cor-
relations of nbM in AD with particular emphasis on the 
region of nbM sampled. Using the aforementioned guide-
line to divide the nbM into the anterior, intermediate and 
posterior subdivisions, we identified the regional suscepti-
bility to neuronal loss in AD (Table  3). It appears that in 
AD, there is a caudorostral gradient of nbM neuronal loss 
with the posterior sector being the most severely affected. 
As the posterior nbM contains Ch4p providing choliner-
gic innervation to the temporal pole and superior temporal 
cortex [69], this correlates well with memory loss and lan-
guage impairment in AD.

This pattern of cell loss was supported by some studies 
where the entire nbM was examined [5, 73, 101]. However, 
Doucette and colleagues reported that in moderate AD, the 
anterior nbM had a 50 % neuronal loss while the decrease 
in cell number was not significant in intermediate and pos-
terior nbM [25]. Similar findings were reported by Iraizoz’s 
group where the greatest decline was found in anterior 

followed by posterior nbM [47]. The disagreement con-
cerning the caudorostral pattern of nbM loss in AD could 
be due to differences in the criteria used to define an nbM 
neuron for cell counting, as nbM neuronal shrinkage has 
also been reported in AD [97]. Also, in some of the studies 
where sections slightly rostral to the anterior commissure 
decussation were taken, the distinction between Ch4a and 
Ch2 could be difficult to define. As Ch2 neurons provide 
innervation to the hippocampus, which is severely affected 
in AD, the greater loss in the anterior sector of the nbM 
could be due to the loss of Ch2 rather than Ch4a neurons, 
although Ch1/2 cell loss in AD has been reported to be 
minimal [62, 72] or even insignificant [32] compared with 
age-matched controls.

Revisiting the nbM in Parkinson’s disease

As mentioned previously, cell loss in the nbM was first 
identified in PD by Lewy, early in the 20th century. How-
ever, quantification of neuronal loss was not attempted until 
the 1980s where studies reported up to 80 % depletion in 
the nbM of PD cases (Table  4). When directly compar-
ing PD and AD cases, the loss is comparable [86] or more 
extensive in PD than in AD [17, 20, 79] and the loss was 
more apparent among PD with dementia (PDD) cases. 
Therefore, it is perhaps not be surprising that PDD patients 
have good neuropsychiatric responses to anticholinesterase 
medication such as rivastigmine and galantamine (review 
by [1]). Furthermore, recent imaging studies using cholin-
ergic makers to label acetylcholinesterase have reported 
significant cortical cholinergic deficits in PD and PDD 
patients [11–13, 44, 60, 90, 91]. This suggests that apart 
from the dopaminergic deficit, a decrease in cholinergic 
tone also contributes to cognitive impairment in PD, as sup-
ported by the dual syndrome hypothesis where executive 
dysfunction and visuospatial impairment in PD correspond 
to dopaminergic and cholinergic deficits, respectively [53].

The cognitive picture of PDD is commonly considered 
as a “subcortical” type since patients typically present with 
dysexecutive signs without significant impairment in stor-
age memory as in “cortical” AD-type dementia [20, 23]. 
Hence, with varying cortical regions affected in PD and AD 
the differing clinical profiles may correlate with neuronal 
loss in particular nbM subsectors. However, only a small 
number of studies have investigated PDD separately and 
the different subregions within the nbM have not been com-
pared in PDD cases. We reviewed the literature, estimated 
the regions sampled in various studies as mentioned before 
(Table  5) and found a slightly greater deficit in the inter-
mediate nbM region. This supports a recent imaging study 
[58] which reported a posterior–anterior gradient of corti-
cal cholinergic deficit and this could be due to the extensive 
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Fig. 3   Formalin-fixed, paraffin-embedded basal forebrain sections 
available from the Parkinson’s UK Tissue Bank at Imperial College, 
London, stained with H&E (a–c; g–i) and serial sections stained with 
choline acetyltransferase (ChAT) immunohistochemistry (Millipore 
AB144P, 1:100 with pressure cooker pretreatment in pH 6.0 citrate 
buffer) (d–f; j–l). Six subdivisions of the basal forebrain were defined 
and arranged rostrally (top left) to caudally (bottom right). a, d Level 
at nucleus accumbens. This level is defined by the absence of anterior 
commissure and the presence of a large caudate head with nucleus 
accumbens. b, e Pre-anterior nbM level. Anterior commissure appears 
in this section but it is located ventral to the globus pallidus and is ros-
tral to decussation level. A large ventral striatum could be seen clearly 
with ChAT immunohistochemistry. c, f Most rostral anterior nbM level. 
This level is defined by the decussation of the anterior commissure. 
Ch4 neurons are defined by their location being lateral to the supraop-
tic nucleus and they are orientated at the medial–lateral axis parallel 

to the basal border of the section. g, j Most caudal anterior nbM level. 
The anterior commissure is split into two parts with medial end still 
decussating and lateral end located ventral to the globus pallidus. h, k 
Intermediate nbM level. At this level, the globus pallidus is split into 
the external and internal components by an inter-medullary lamina. 
The anterior commissure is located ventral to the putamen and some-
times the infundibulum could be seen. i, l Posterior nbM level. This is 
defined by the presence of mammillary body, small or absence of cau-
date and internal capsule occupying the medial half of the tissue. Aster-
isk denotes area of maximal density of ChAT-immunopositive cells in 
the nbM. Zoomed-in figure showing the ChAT-immunopositive neu-
rons in the nbM at ×10 objectives. AC anterior commissure, Cd cau-
date, fx fornix, GP globus pallidus, GPe globus pallidus externa, GPi 
globus pallidus interna, ic internal capsule, inf infundibulum, mb mam-
millary body, nAcc nucleus accumbens, ot optic tract, Pt putamen, son 
supraoptic nucleus, VS ventral stratum
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cell loss in the Ch4i affecting the cholinergic innervation to 
occipital–parietal cortical regions.

A dichotomous pattern of nbM cell loss in PD and AD

Amyloid-beta (Aβ) plaques and tau neurofibrillary tangles 
(NFT) are hallmark neuropathological features of AD, 
the latter being more closely associated with cognitive 
decline [7]. It has been well recognised that LB- and AD-
type pathologies frequently co-exist in the brains of PDD 
and dementia with Lewy bodies (DLB) [49] and that there 
may be synergistic relationships between the two types of 
pathologies in the development of dementia [21, 48].

Cullen and Halliday [22] proposed that the cause of neu-
ronal loss in the nbM could differ between PD and AD. 
They studied cell loss and NFT pathology within the nbM 
of AD and LB disease with concomitant AD. Severe cell 
loss in the nbM of AD cases was accompanied by abundant 
extraneuronal NFT pathology. However, cases of LB dis-
ease with AD have equally severe nbM depletion, despite 
the relatively milder NFT pathology. This suggests that the 
alpha-synuclein pathology could also be involved in nbM 
neuronal death in cases with LB pathology. This dichoto-
mous disease process affecting the nbM in PD and AD was 
also described by Candy and colleagues. They reported 
that nbM neuronal loss in PD was more extensive than 
in AD in the absence of co-existing cortical NFT pathol-
ogy [17]. Similarly, Gaspar and Gray noted that in 5 of 
6 PDD cases, there was severe nbM neuronal depletion 

despite relatively little or no cortical AD-type pathology 
[34]. They concluded that cortical AD pathologies did not 
seem to affect the reduction of cholinergic cortical afferents 
in PD. In addition, Nakano and Hirano reported that neu-
ronal loss in the nbM of PD is not associated with NFT in 
the cortex, hippocampus or in the nbM [76]. Therefore, in 
order to study nbM loss in ‘pure’ PD, cases with severe AD 
pathologies should be excluded. In the studies we reviewed 
(Tables 4, 5), most [17, 19, 20, 34, 79, 80, 95] but not all [4, 
86, 98, 105] have excluded cases with severe co-existing 
AD pathologies.

Striatal Aβ has been suggested to contribute to the 
development of dementia in PD and DLB, independently 
of comorbid AD pathologies [51, 52]. Although a couple 
of studies reported striatal Aβ as specific to DLB not PDD 
[39, 50], and subsequently concluded Aβ load in the stria-
tum affects the temporal relationship between dementia and 
PD motor symptoms rather than presence of dementia, con-
troversies remain as to whether the severity of striatal Aβ 
could differentiate PDD from DLB.

Other basal forebrain cholinergic nuclei such as the 
medial septal nucleus (Ch1) and the vertical limb of the 
diagonal band nucleus (Ch2) also show differential suscep-
tibility in AD and LB disorders. Fujishiro and colleagues 
reported the loss of Ch1 and Ch2 ChAT-positive neurons 
in DLB but not AD cases compared with controls [32]. 
However, a recent study reported no significant change in 
Ch1 and Ch2 ChAT-positive neurons in PD and PDD [38]. 
So further work is needed to identify the potentially sub-
tle pathological differences between PDD and DLB. One 

Fig. 4   Photographs showing the anatomical landmarks for the ante-
rior, intermediate and posterior levels of the nucleus basalis of Mey-
nert (nbM, as indicated by asterisk). At dissection, the first coronal 
slice is made through the mammillary body (MB), revealing the pos-
terior nbM. Using a 0.5-cm cutting guide two further coronal slices 
will reveal the intermediate and anterior levels. These are specifi-

cally identified by the presence of discernible globus pallidus externa 
(GPe) and interna (GPi), and midline anterior commissure (AC), 
respectively. With normal anatomical variation between individuals, 
this general 0.5 cm interval may need slight modification, depending 
on brain size
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further consideration, as mentioned previously, is that other 
neurotransmitter deficits could contribute to cognitive 
decline in PD. Cell loss in the nbM happens in parallel with 

dopaminergic neuronal loss in the substantia nigra and ven-
tral tegmental area; and noradrenergic neuronal loss in the 
locus coeruleus [54]. Hence, the basal forebrain depletion 

Table 3   Studies of the nbM in AD. Studies where a caudorostral pattern of nbM neuronal loss is found are indicated by [●]

n.s. Not significant
a  Familial AD
b  Moderate AD
c  Poor definition of nbM region. According to diagram in the study, area included indicates Ch4a and Ch4i
d  NGFR immunohistochemistry as marker for cholinergic neurons in the nbM

Alzheimer’s disease

Study n % Loss relative to control

Anterior nbM Intermediate nbM Posterior nbM Not specified/Entire nbM

Whitehouse et al. [99]a 1 90 % (Ch4)

Perry et al. [81] 6 33 %

Whitehouse et al. [100] 5 73 % (Max density)
79 % (Mean density)

Arendt et al. [4] 14 54 % (Max density)
71.7 % (Mean density)

Candy et al. [17] 5 35 %

Nagai et al. [75] 3 66 % (Ch4)

Tagliavini and Pilleri [94] 9 63 %

Wilcock et al. [102] 6 49 % (Ch4a or Ch4i)

Mann et al. [64] 22 58.9 %

McGeer et al. [65] 6 33-69.7 % (Ch4)

● Arendt et al. [5] 5 46 % (Ch4am)
51.4 % (Ch4al)

62.6 % 64.2 % 57 % (Ch1–Ch4)

Perry et al. [79]b 8 8 % (Moderate AD)

● Rogers et al. [86] 3 64.7 % (Total cell count/
section)

44.4 % (Max density)

74.9 % (Total cell count/
section)

66.4 % (Max density)

Doucette et al. [25] 8 50 % (Moderate AD)
70 % (Severe AD)

n.s. (Moderate AD)
65 % (Severe AD)

n.s. (Moderate AD)
80 % (Severe AD)

● Etienne et al. [29] 10 73 % 87 %

Rinne et al. [85] 7 22 %
64 %

Allen et al. [2] 7 61 % (Nissl; Ch4i or Ch4p)
29 % (Neuron specific 

enolase staining; Ch4i or 
Ch4p)

Chan-Palay et al. [19]c 12 24 % (Ch4a or Ch4i)

● Wilcock et al. [101] 13 13 % (n.s.) (Ch4am)
52 % in (Ch4al)

41 % 57 %

● Mufson et al. [73]d 7 35.1 % in (Ch4am)
76.4 % in (Ch4al)

62.1 % 76.5 %

Iraizoz et al. [47] 6 43 % 25 % 30.5 % 31 % (Ch4)

Perry et al. [80] 4 39.3 % (Not specified)

Arendt et al. [6] 64 63.7–86.6 % (Ch4)

Iraizoz et al. [46] 21 48 % 40 % 56 % 40 % (Ch4)

Zarow et al. [105] 86 41.1 %

Range 13–76.4 % 25–87 % 30.5–80 % 8–86.6 %
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could also be associated with the decrease in dopaminergic 
and noradrenergic innervation in PD. Finally, serotoniner-
gic dysfunction, dysregulation of excitatory amino acid and 
purinergic interactions in PD [93] should not be neglected 
as they might also contribute to non-motor symptoms 
including cognitive impairment in PD.

Possible functional correlate to subdivisional neuronal 
loss in the nbM in PD

Correlation relating specific cognitive deficits in PD with 
subsector pathology in the nbM has not been achieved, 
in part because of a lack of detailed neuropsychological 

Table 4   Studies of the nbM in PD

n.s. Not significant
a  Did not distinguish PDD from PD

Parkinson’s disease

Study n % Loss relative to control

Anterior nbM Intermediate nbM Posterior nbM Not specified/entire nbM

Arendt et al. [4]a 5 87 % (Total count)
70 % (Max density)

Candy et al. [17] 3 Greater loss in PD than AD

Whitehouse et al. [98] 4 33.4 % (n.s.)

Gaspar and Gray [34] 14 32 % (Mean cell count)
34 % (Mean density)

Nakano and Hirano [76] 11 60.0 % (Mean density)
52.2 % (Max density)

Tagliavini et al. [95] 3 39.8 %

Perry et al. [79] 4 17.3 % (Ch4)

Rogers et al. [86] 1 39.8 % (Total cell count/ 
section)

19.0 % (Max density)

39.7 % (Total cell count/ 
section)

32.8 % (Max density)

Chan-Palay et al. [19] 3 7.7 % (Ch4a or Ch4i)

Perry et al. [80] 7 67.9 % (Not specified)

Zarow et al. [105]a 19 37.3 %

Range 19.0–39.8 % 32.8–87 % – 7.7–67.9 %

Table 5   Studies of the nbM in PDD

Parkinson’s disease dementia

Study n % Loss relative to control

Anterior nbM Intermediate nbM Posterior nbM Not specified/entire nbM

Whitehouse et al. [98] 2 77.1 % (Total cell count)
53.1 % (Max density)

Gaspar and Gray [34] 18 60 % (Mean cell count)
58 % (Mean density)

Perry et al. [79] 10 72.2 % (Ch4; PDD and  
DLB not distinguished)

74.7 % (Ch4; PD with AD)

Rogers et al. [86] 3 44.3 % (Total cell count/ 
section)

36.5 % (Max density)

72.3 % (Total cell count/ 
section)

62.2 % (Max density)

Chui et al. [20] 3 66.1 %

Chan-Palay et al. [19] 6 47.4 % (Ch4a or Ch4i)

Perry et al. [80] 14 41.7 % (Ch4; PDD and  
DLB not distinguished)

Range 36.5–66.1 % 53.1–77.1 % – 41.7–74.7 %
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testing in extant postmortem brain studies. An exception 
is from one study by Chui and co-workers in which three 
neuropathologically confirmed PD cases with dementia had 
undergone extensive neuropsychiatric tests before death 
and detailed cognitive profiles for the patients were avail-
able [20]. Their cognitive impairment included the pres-
ence of hallucination, visuospatial impairment and atten-
tional deficits typical in PD cases. When the cell count of 
nbM (apparently Ch4a) was compared against AD cases, 
a greater decrease in mean density was observed in PDD 
(66.1 % loss) than in AD (61.9 % loss). On the other hand, 
the correlation between cognitive impairment in LB disor-
ders and regional cortical involvement has been well sup-
ported by various functional imaging studies. In particu-
lar, atrophy and hypometabolism in the occipito-parietal 
region and, to a lesser extent, the frontal cortex in PDD 
patients relative to controls have been reported [35]. One 
study has compared the specific cognitive impairment in 
PD with regional fluorodeoxyglucose (FDG) uptake [33]. 
The degree of executive dysfunction in PD patients cor-
related positively to hypometabolism score in the frontal 
lobe, whereas visuospatial function impairment correlated 
to occipito-parietal reduction in FDG uptake.

Hence, one could speculate that pathology in Ch4a cor-
relates with executive dysfunction in PDD due to frontal 
and limbic cortical innervation from the anterior Ch4 area. 
Moreover, anosmia in PD and PDD has been shown to be 
associated with limbic cortical cholinergic denervation, 
which could again correlate with Ch4a pathology [14]. 
Similarly, visuospatial impairment in PDD or even in early 

PD would possibly be due to neuronal loss in the Ch4i sub-
sector. As PD/PDD patients typically have a less amnestic 
profile than AD, we would expect Ch4p to be relatively 
spared. However, visual hallucination in PD is a more com-
plex phenomenon which might be due to a combination of 
occipito-parietal hypometabolism [45] and the presence of 
LB in the temporal lobe [40]. Therefore, pathology in the 
Ch4i and Ch4p regions may play a role in this character-
istic element of cognitive dysfunction in PDD/DLB, along 
with other brain centres.

In addition, in earlier studies, no distinction was made 
between PDD and DLB [79, 80], as DLB is a more recently 
established clinical entity [66], and it would be of interest 
to investigate whether the pattern of cell loss within the 
nbM subregions differs in PDD and DLB.

Conclusion and future work

Following our literature review on the studies of the nbM 
above, we also revisited the original work by Friedrich 
Lewy [30] and found that the area he defined as the nbM 
was from the optic tract to septum pellucidum. This would 
equate to the anterior/intermediate Ch4 region according 
to modern classification and thus historical evidence illus-
trates that LB and severe neuronal depletion were first 
described in the anterior portion of nbM. Along with the 
collective evidence and our speculation that there is a rela-
tive sparing of posterior nbM involvement in PD patients, 
it could be hypothesised that pathology in the nbM begins 

Fig. 5   Projected schema of 
anatomical progression of 
pathology within the nbM with 
possible clinicopathological 
correlations. Hypothesised pro-
gression is indicated by dashed 
arrows
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in the anterior portion and progresses caudally in PD. This 
anatomical progression supports the prion-like propaga-
tion hypothesis [3, 16, 26, 31] and the dual-hit hypothesis 
of alpha-synuclein [41, 42] where pathology starts in the 
olfactory bulb and spreads towards the basal forebrain 
region (Fig. 5). However, further studies investigating the 
topographical innervation pattern from different subsec-
tors of the human nbM to target regions and reciprocal 
connectivity are needed, particularly with the advance-
ment in tractography and other high-resolution imaging 
techniques.

With the increasing number of imaging studies focusing 
on basal forebrain changes [56, 57] there is a need for this 
nucleus to be revisited in pathological studies. The poten-
tial for neuromodulatory treatment targeting the nbM is 
now being realised, in particular deep brain stimulation in 
dementia [37, 61] and stereotactic gene delivery of trophic 
factors [82]. However, it is important to note that there 
are many caveats to consider, including distinctly varying 
pathogenesis of dementia in PD and AD. Better clinico-
pathological correlations have to be established, especially 
in relation to the different subregions of the nbM. This will 
improve our understanding of the pathological basis for dif-
ferent forms of dementing disorders and the role of fore-
brain cholinergic mechanisms in normal cognition as well 
as in the setting of cognitive decline.
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