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1p/19q codeletion in a series of 405 adult patients. Among 
the WHO 2007 classified tumors were 152 astrocytomas, 61 
oligodendrogliomas, 63 oligoastrocytomas and 129 glioblas-
tomas. Following the concepts of the “ISN-Haarlem”, we 
rediagnosed the series to obtain “integrated” diagnoses with 
155 tumors being astrocytomas, 100 oligodendrogliomas and 
150 glioblastomas. In a subset of 100 diffuse gliomas from 
the NOA-04 trial with long-term follow-up data available, the 
“integrated” diagnosis had a significantly greater prognostic 
power for overall and progression-free survival compared 
to WHO 2007. Based on the “integrated” diagnoses, loss of 
ATRX expression was close to being mutually exclusive to 
1p/19q codeletion, with only 2 of 167 ATRX-negative tumors 

Abstract  Diffuse gliomas are represented in the 2007 
WHO classification as astrocytomas, oligoastrocytomas 
and oligodendrogliomas of grades II and III and glioblasto-
mas WHO grade IV. Molecular data on these tumors have a 
major impact on prognosis and therapy of the patients. Con-
sequently, the inclusion of molecular parameters in the WHO 
definition of brain tumors is being planned and has been 
forwarded as the “ISN-Haarlem” consensus. We, here, ana-
lyze markers of special interest including ATRX, IDH and 
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exhibiting 1p/19q codeletion. All but 4 of 141 patients with 
loss of ATRX expression and diffuse glioma carried either 
IDH1 or IDH2 mutations. Interestingly, the majority of glio-
blastoma patients with loss of ATRX expression but no IDH 
mutations exhibited an H3F3A mutation. Further, all patients 
with 1p/19 codeletion carried a mutation in IDH1 or IDH2. 
We present an algorithm based on stepwise analysis with ini-
tial immunohistochemistry for ATRX and IDH1-R132H fol-
lowed by 1p/19q analysis followed by IDH sequencing which 
reduces the number of molecular analyses and which has a 
far better association with patient outcome than WHO 2007.

Keywords  ATRX · IDH · Diffuse glioma · Glioblastoma · 
Oligodendroglioma · Astrocytoma · 7p/10q · H3F3A · 
1p/19q

Introduction

Brain tumor classification of diffuse astrocytic 
and oligodendroglial tumors

The classical way of diagnosing diffuse astrocytoma and 
oligodendroglial tumors adheres to the World Health Organ-
ization (WHO) 2007 guidelines [29]. Along these lines, 
the calling of oligoastrocytoma poses great problems best 
seen in the extensive interobserver variance regarding use 
of this diagnosis [13, 14, 37]. Ever since the association of 
1p/19q loss with more favorable prognosis was proposed 
[9], a dramatic increase of the diagnosis “oligoastrocytoma” 
has been observed and deserves critical questioning [7]. 
On the other hand, clinical studies have repeatedly demon-
strated the 1p/19q status of oligodendroglial tumors to be of 
more prognostic or predictive value than the differentiation 
between oligodendroglioma and oligoastrocytoma [8, 45, 
50]. Further, a recent study demonstrated that the majority 
of IDH-mutated oligoastrocytoma can be resolved as either 
astrocytoma or oligodendroglioma by histological methods 
[40]. A novel approach for more stringently diagnosing dif-
fuse astrocytoma and oligodendroglial tumors has been out-
lined in the recently published “ISN-Haarlem” guidelines.

“ISN‑Haarlem” guidelines

To discuss the inclusion of molecular data into the next 
World Health Organization (WHO) classification of central 
nervous system tumors, a meeting under sponsorship of the 
International Society of Neuropathology (ISN) has been 
held in Haarlem, the Netherlands [30]. Central to the con-
sensus “ISN-Haarlem” guidelines is the proposal to define 
diagnostic entities as narrowly as possible and to include, 
where applicable, molecular data to come up with an “inte-
grated diagnosis”. This could lead, for example, to a classi-
fication separating astrocytoma and oligodendroglioma into 
groups based on IDH1/IDH2 mutation and 1p/19q status, 
leaving aside a probably small group of tumors tentatively 
called “diffuse glioma, not otherwise specified”.

IDH1 and IDH2 and G‑CIMP

IDH1 mutations were first reported in an exome sequenc-
ing study on glioblastoma, predominantly in the so-called 
secondary glioblastoma with a history of a lower grade 
precursor tumor [36]. A high incidence of IDH1 mutations 
was subsequently established for diffuse astrocytoma, oli-
goastrocytoma and oligodendroglioma [2, 6, 19, 48, 55]. 
IDH2 mutations are much less frequent but occur in the 
same set of brain tumors [17, 55]. The relevance of IDH1 
mutations as a favorable prognostic marker has been dem-
onstrated in several studies [16, 41, 49, 50]. Since IDH1 
mutations of the R132H type constitute more than 90 % of 
all IDH1 and IDH2 mutations in glioma [17], the develop-
ment of a mutation-specific antibody greatly advanced the 
determination of IDH1 status in neuropathological diagno-
sis [12]. Due to the extraordinarily high lineage specific-
ity of IDH1 and IDH2 mutations for diffuse astrocytoma, 
oligoastrocytoma and oligodendroglioma, IDH1 immuno-
histochemistry (IHC) is widely applied and has developed 
into a backbone for differential diagnosis of glioma [10, 
11].

The glioma-CpG island methylator phenotype 
(G-CIMP) was initially identified in glioblastomas, strati-
fying into a G-CIMP positive cluster with better outcomes 
and a G-CIMP negative cluster with worse prognosis [34]. 
All tumors with IDH mutations exhibited a G-CIMP posi-
tive phenotype which is due to IDH mutation-induced pro-
duction of 2-hydroxyglutarate and its subsequent effects on 
DNA methylation [54]. Thus, a G-CIMP positive pheno-
type in glioblastoma is highly suggestive for presence of an 
IDH1 or IDH2 mutation.

1p/19q codeletion

The detection of frequent losses of chromosomal arm 19q 
in oligodendroglioma [47] was followed by the detection of 
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1p losses in these same tumors [4], and the recognition that 
these alterations frequently cooccur [3, 27, 39]. The pres-
ence of 1p and 19q deletions was later identified as a deci-
sive predictor for overall survival and response to chemo-
therapy [9, 43]. However, subsequent studies demonstrated 
that partial losses of 1p were associated with much poorer 
survival than loss of the entire arm [20]. Thus, it is now 
believed, that the combined and entire loss of the chro-
mosomal arms 1p and 19q (1p/19q loss) is the parameter 
associated with favorable prognosis. The basis of combined 
1p/19q loss is believed to be an unbalanced t(1;19) translo-
cation event [15, 21].

ATRX

Somatic mutations in the alpha thalassemia/mental 
retardation syndrome X-linked (ATRX) gene were first 
detected in pancreatic neuroendocrine tumors (PanNET) 
[23], followed by pediatric glioblastomas [42]. Mutation 
analysis of ATRX in series of adult gliomas revealed a 
high incidence of this alteration in diffuse astrocytomas 
opposed by a lower incidence in oligodendrogliomas, 
oligoastrocytomas and glioblastomas [22, 24, 25]. ATRX 
status in combination with 1p/19q and IDH1/IDH2 sta-
tuses has been used to generate a molecular diagnostic 
algorithm which turned out to be superior to classical 
neuropathological techniques in building patient groups 
with different times to treatment failure [51]. Com-
monly, ATRX mutation results in a truncated protein and 
in abrogated protein expression [18, 28]. These findings 
suggest a considerable potential for ATRX IHC in distin-
guishing between diffuse astrocytic and oligodendroglial 
tumors.

Aim of the study

Several studies have identified ATRX IHC as promising 
tools for classifying brain tumors. However, their conclu-
sions lack the desirable precision for diagnostic use due to 
heterogeneity of the tumor series examined with problems 
including underdiagnosed glioblastomas, the wide varia-
tion in diagnosing oligoastrocytomas and the shortcoming 
of precisely differentiating between partial and complete 
losses on chromosomal arms 1p and 19q. The current series 
examines ATRX expression on tumors stringently analyzed 
for molecular alterations and classified according to the 
Haarlem consensus concepts of the International Society 
of Neuropathology for nervous system tumor classification 
[30]. The study has two primary aims: first to establish a 
technical standard for ATRX IHC and second to establish 
an algorithm for using ATRX, IDH1-R132H IHC, 1p/19 
analyses and IDH sequencing in the diagnosis of diffuse 
gliomas.

Materials and methods

Tissue selection

Tumor tissues were obtained from the archives of the 
Departments of Neuropathology at the University Medical 
Centers of Heidelberg and Tuebingen and the Neurologi-
cal Institute/Edinger Institute Frankfurt/Main (Germany). 
Research use of tissues and anonymization of data were in 
accordance with local ethical approvals. The series contains 
tumor tissues from 405 patients. All tumors were initially 
classified and graded according to the current WHO 2007 
guidelines [29]. The series consisted of 152 astrocytomas, 
61 oligodendrogliomas, 63 oligoastrocytomas and 129 glio-
blastomas including 93 ordinary glioblastomas, 12 glioblas-
tomas with oligodendroglial component, 7 secondary glio-
blastomas 3 giant cell glioblastomas and 14 gliosarcomas. 
Inclusion criteria were the availability of tissue blocks and 
availability of an Illumina Infinium HumanMethylation450 
BeadChip (450k)-based copy number profile. 100 cases 
from the NOA-04 trial were included [50]. Since only ana-
plastic gliomas were included in NOA-04, there is an over 
representation of anaplastic gliomas (WHO grade III) in 
comparison to the WHO grade II counterparts. All tumors 
were reevaluated in knowledge of the 1p/19q, 7p/10q and 
IDH status. This reevaluation was based on the Haarlem 
consensus concepts of the International Society of Neuropa-
thology for nervous system tumor classification [30]. Final 
and initial diagnoses are provided in supplementary Table 1.

Determination of 1p/19q codeletion, 7p gain, 10q loss, 
EGFR amplification, MGMT promoter methylation 
and G‑CIMP phenotype by 450k array analysis

The Illumina Infinium HumanMethylation450 BeadChip 
(450k) array was used to obtain the DNA methylation status 
of 482,421 CpG sites (Illumina, San Diego, USA) accord-
ing to the manufacturer’s instructions at the Genomics and 
Proteomics Core Facility of the DKFZ. The array data were 
used to calculate a low-resolution copy number profile as 
previously described [44]. The probability of MGMT pro-
moter methylation from 450k array data was estimated as 
previously described [1]. 334 cases were scored as meth-
ylated or unmethylated, in 71 cases the methylation status 
was unsure. Further, the data were analyzed as previously 
described to allot the tumors to either a G-CIMP or a non-
G-CIMP cluster [53].

IDH1/IDH2, H3F3A and TERT promoter mutation 
analyses

Primer design for sequencing was based on accession 
numbers NM_005896 for IDH1, NM_002168 for IDH2, 
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NM_002107.4 for H3F3A (http://www.ncbi.nlm.nih.
gov). Primers for H3F3A: forward 5′-CATGGCTCGTA-
CAAAGCAGA-3′; reverse 5′-CAAGAGAGACTTTGTC-
CCATTTTT-3′. PCR and sequencing was performed as 
previously described [17]. A 163 bp fragment of the TERT 
promoter region spanning the hotspot mutations at positions 
1,295,228 and 1,295,250 on chromosome 5 was amplified 
using GoTaq G2 Hot Start Polymerase (Promega, Madison, 
USA) and the primers hTERT-short-for 5′-CAGCGCTGC-
CTGAAACTC-3′ and hTERT-short-rev, 5′-GTCCTGCCC-
CTTCACCTT-3′ as previously described [26]. Sequences 
were determined using a semi-automated sequencer (ABI 
3100 Genetic Analyzer, Applied Biosystems, Foster City) 
and Sequence Pilot version 3.1 (JSI-Medisys, Kippenheim, 
Germany) software.

Immunohistochemistry

Immunohistochemistry was conducted on 4-µm-thick 
formalin-fixed, paraffin-embedded (FFPE) tissue sections 
mounted on StarFrost Advanced Adhesive slides (Engel-
brecht, Kassel, Germany) followed by drying at 80 °C for 
15 min. Immunohistochemistry was performed on a Bench-
Mark Ultra immunostainer (Ventana Medical Systems, 
Tucson, AZ, USA). Sections were stained with anti-IDH1-
R132H antibody H09 (Dianova, Hamburg, Germany) as 
previously described [11].

For ATRX immunohistochemistry, we tested several 
commercially available antibodies. In our hands the anti-
body with best specificity for diagnostics is HPA001906 
(Sigma-Aldrich, St. Louis, MO; USA). In brief, after depar-
affinization, slides were pretreated at 95 °C in Cell Condi-
tioning 1 buffer (Ventana) for 90  min. The sections were 
incubated with primary antibody (diluted 1:200) for 2  h. 
Standard Ventana signal amplification was used. The pro-
tocol is provided in supplementary file 2. To test for speci-
ficity, we used tumors with ATRX mutations confirmed by 
DNA sequencing. Loss of nuclear ATRX expression was 
scored as specific if tumor cell nuclei were unstained while 
nuclei of non-neoplastic cells such as endothelia, micro-
glia, lymphocytes and reactive astrocytes were strongly 
positive. Of note, moderate staining of tumor cell cyto-
plasm may occur which most likely is unspecific. However, 
cytoplasmic staining does not hamper the interpretation of 
nuclear staining. Parameters to augment staining intensity 
are increase of antibody concentration, prolongation of 
pretreatment and of first antibody incubation times. Occa-
sionally, ATRX staining is limited to circumscribed regions 
of the tissue, most likely due to artificial tissue damage. 
Evaluation of these partially stained cases seems to be still 
meaningful because heterogeneous ATRX staining is virtu-
ally never observed. In the present study, only a single case 
of gliosarcoma showed a focal loss of ATRX positivity.

Reagents and staining protocols for IDH1-R132H and 
ATRX are listed in supplementary file 1.

Statistics

Kaplan–Meier estimator and Cox proportional hazards 
regression were performed to assess survival data. To com-
pare the performance of Cox regression models, integrated 
Brier scores displayed as prediction error curves over time 
were generated using the R package pec [33] (using the 
“Boot632plus” split method with 1,000 iterations). Briefly, 
the Brier score represents a weighted (roughly based on the 
probability of being censored) average of the squared error 
between estimated survival probability at each time point 
and observed survival status. All analyses were carried out 
using R version 3.11 [38]. Fisher’s exact test was used to 
explore associations between ATRX status and tumor enti-
ties or molecular markers.

Results and discussion

Several studies have pointed towards the role of ATRX 
analysis for the diagnosis of diffuse glioma. Especially, 
ATRX immunohistochemistry has shown promising results 
[51]. To test the impact on routine diagnostic neuropathol-
ogy we here analyzed a series of 154 astrocytomas, 100 
oligodendrogliomas and 150 glioblastomas by immuno-
histochemistry for ATRX expression. Immunohistochemi-
cal results were compared with the hallmark markers 
IDH1/IDH2, 1p/19q codeletion, 7p gain, 10q loss, TERT 
promoter, EGFR amplification and H3F3A status.

Detection of combined 1p/19q loss and detection of IDH 
mutations

Detection and scoring of combined 1p/19q losses relies on 
different methods. FISH is probably the most frequently 
used because this method needs the fewest adaptations to 
what is available in routine diagnostic laboratories. How-
ever, FISH has a major conceptual weakness because reli-
able information on the integrity of the analyzed chromo-
some is only obtained on the region the FISH probe is 
hybridizing to. Thus, it cannot be used to clearly distin-
guish between partial and complete losses of a chromo-
somal arm. Classical microsatellite analysis with several 
probes spanning the targeted chromosome may mostly 
circumvent this shortcoming; however, this is a tedious 
approach requiring time, labor and DNA for several rounds 
of PCR [31]. Multiplex ligation-dependent probe amplifi-
cation (MLPA) reduces needs for time and material but 
frequently yields ambiguous results in our hands. The most 
comprehensive approach allowing data collection on a 
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large set of chromosomal regions is array technology with 
multiple companies offering solutions. We have adopted an 
algorithm allowing the generation of a copy number pro-
file (CNP) from hybridizing bisulfite converted DNA to 
450K Illumina chips. These CNP provide information on 
473 regions on chromosomal arm 1p and 166 regions on 
chromosomal arm 19q, allowing us to distinguish normal 
copy number and partial or complete underrepresentation 
of chromosomal arms with high confidence. Comparison 
of MLPA and 450k-CNP-based 1p/19q analysis indicated 
that the latter method more accurately assessed 1p/19q 
status [52]. Comparable CNP can also be calculated from 
exome or genome sequencing data sets, but these are more 
costly and require greater analytical expertise, and are also 
not so readily applicable to FFPE DNA. Of importance 
for 1p/19q evaluation is the extent of the deletions on 1p 
and 19q: There is now general agreement that these losses 
need to encompass the entire arms, as partial losses have 
been observed frequently in other gliomas. For example, 
partial losses of 1p are frequent in glioblastoma and partial 
losses of 19q are frequently seen in anaplastic astrocytomas 

WHO grade III [46]. Further, partial losses on 1p have 
been shown to be associated with poorer survival, in con-
trast to the favorable prognostic association of entire loss 
of 1p in oligodendroglioma [20]. Only tumors with loss 
of both, the entire arms of chromosome 1p and 19q were 
scored as codeleted for 1p/19q (1p/19q codel) in this study. 
All other tumors exhibiting balanced profiles, loss of only 
either 1p or 19q, partial losses of either 1p or 19q, or any 
combination of these were scored as non-codeleted for 
1p/19q (1p/19q noncd). Typical examples for CNP exhibit-
ing 1p/19q codel (tumor 1180) or partial losses on 1p and 
19q (tumor 1024) are given in Fig. 1.

We have generated CNP profiles based on 450k array 
analysis for all 405 cases included in this study. Com-
bined 1p/19q loss was detected in 100 cases (supplemen-
tary Table  1). All 405 cases were subjected to IHC using 
antibody H09 directed at IDH1-R132H protein. Binding 
of H09 was taken as proof for an IDH1-R132H mutation. 
205/405 tumors carried an IDH1-R132H mutation. All 
astrocytomas and oligodendrogliomas not binding H09 
were subjected to sequencing of exon 4 of both, IDH1 and 

Fig. 1   Two typical copy 
number profiles: tumor 1180 
exhibits 1p/19q codel. Note 
that the entire chromosomal 
arms are missing. In addition, 
this tumor also exhibits gain on 
chromosome 16. Tumor 1024 
exhibits partial losses on both, 
1p and 19q. These losses do 
not qualify for the oligodendro-
glioma defining 1p/19q codel. 
In addition, this tumor also 
exhibits gains on 7p, 7q and 
19p and EGFR amplification 
(arrow) as well as losses on 9p, 
10p, 10q and 17q
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IDH2. The 16 glioblastomas with a G-CIMP positive phe-
notype were also subjected to IDH1 and IDH2 sequencing. 
Altogether, we detected 35 rare IDH1 and 13 IDH2 muta-
tions. 15/16 GBM with G-CIMP tested positive for an IDH 
mutation (supplementary Table 1).

Establishing the “integrated” diagnosis

All tumors were evaluated by two neuropathologists (DR, 
AvD) and initially classified according to the current WHO 
guidelines [29]. We then deviated from the current WHO 
by not accepting the diagnosis of oligoastrocytoma but 
reclassifying these tumors either as astrocytomas or oli-
godendrogliomas. We have previously shown that the vast 
majority of the so-called oligoastrocytoma can be separated 
into astrocytoma and oligodendroglioma based on IDH1-
R132H, ATRX immunohistochemistry and analysis of 
1p/19q status [40]. Our reevaluation was carried out in the 
knowledge of 1p/19q, 7p/10q and IDH1/IDH2 status.

Cases with 1p/19q codel were defined as oligoden-
droglioma and 1p/19q noncd gliomas were diagnosed as 
astrocytoma or glioblastoma depending on the presence of 
necrosis. Our approach eliminated oligoastrocytomas and 
glioblastomas with oligodendroglial component (GBMo) 
from our initially WHO 2007 diagnosed series. Anaplastic 
astrocytomas without IDH mutation and with 7p gain and 
10q loss were defined as glioblastomas. These two lesions 
have been recognized for a long time as characteristic 

alterations in GBM [5] and have recently been proposed 
as the first molecular events in non-IDH-mutated GBM 
[35].

Our concept adheres to the ideas of the Haarlem consen-
sus guidelines of the International Society of Neuropathol-
ogy for nervous system tumor classification which will be 
the basis for discussion on the forthcoming update of the 
WHO Classification [30]. This revision aims at building up 
more clearly defined tumor entities and at the inclusion of 
molecular data where applicable.

Thus, after reevaluation our series contained 42 diffuse 
astrocytomas WHO grade II, 113 anaplastic astrocytomas 
WHO grade III, 28 oligodendrogliomas WHO grade II, 72 
anaplastic oligodendrogliomas WHO grade III, 150 glio-
blastomas WHO grade IV including 14 of each gliosar-
coma and glioblastoma with IDH mutation and 3 giant cell 
glioblastomas WHO grade IV (Table 1). The initial and the 
integrated diagnoses for individual patients are provided in 
supplementary Table 1. A diagram demonstrating the diag-
nostic shift is given in Fig. 2. 

ATRX expression

We tested several antibodies and staining conditions. In 
our hands, best results were obtained with “HPA001906” 
and processing on a Ventana Benchmark. For the evalua-
tion of ATRX immunohistochemistry, only nuclear stain-
ing was assessed. Loss of ATRX in tumor cells presents 

Table 1   Distribution of alterations on 1p/7p/10q/19q, IDH1/IDH2 and ATRX in 405 cases

a  Only cases with a clear-cut MGMT promoter status (methylated or unmethylated) are listed

“Integrated” diagnosis Astrocytoma Oligodendroglioma Glioblastoma Gliosarcoma

Grade WHO II WHO III WHO II WHO III WHO IV WHO IV

Number 42 113 28 72 136 14

Combined complete 1p/19 loss 0/42 0/113 28/28 72/72 0/136 0/14

1p loss or 19q loss or combination with either or both losses being  
partial

11/42 21/113 0/28 0/72 29/136 2/14

Combined complete 7p gain/10q loss 1/42 0/113 0/28 1/72 81/136 13/14

7p gain or 10q loss including partial alterations 9/42 33/113 2/28 7/72 123/136 13/14

No 7p gain and no 10q loss 32/42 80/113 26/28 64/72 11/136 1/14

EGFR amp 0/42 0/113 0/28 0/72 38/136 1/14

ATRX loss 38/42 101/113 0/28 2/72 25/136 1/14

And IDH1/2 mutation 37/38 99/101 2/2 13/25 0/1

And H3F3A mutation 1/101 8/25 0/1

IDH1-R132H positive 33/42 79/113 22/28 60/72 12/136 0/14

IDH1 mutation 38/42 102/113 22/28 67/72 13/45 0/1

IDH2 mutation 0/42 1/113 6/28 5/72 1/50 0/1

TERT promoter mutation 1/21 2/85 16/18 52/61 62/90 13/14

MGMT promoter methylationa 24/27 71/83 22/22 70/70 56/119 3/13
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with a typical pattern—all tumor cell nuclei are completely 
unstained while nuclear positivity is seen in vessels, micro-
glia, reactive astrocytes and entrapped neurons. ATRX 
immunohistochemistry is significantly affected by the 
quality of material—tumor portions not sufficiently fixed 
or thermally altered do not provide satisfactory results. In 
our experience, however, most tissue blocks contain areas 
with tumor tissue of sufficient quality for evaluation. In 
regard to tumor cell content in a sample for ATRX evalu-
ation: We did not systematically assess ATRX loss in the 
infiltration zone of astrocytoma, however, we advise to 
perform such analysis preferably in solid tumor tissue. We 
consider this method not suitable for the analysis of single 
cells. We detected only one single case with focal ATRX 
loss that could not be attributed to suboptimal quality of the 
material. Thus, we assume focal loss of ATRX expression 
to be diagnostic if internal controls in these regions such 
as endothelia or microglia demonstrate nuclear staining. In 
our series, 38/42 (90 %) of WHO II and 101/113 (89 %) 
of WHO III astrocytomas presented with loss of ATRX 
expression. In contrast, 0/28 (0 %) oligodendrogliomas and 
2/72 (3 %) anaplastic oligodendrogliomas showed loss of 
ATRX. This difference is significant (p  =  1.70  ×  10−50; 
Fisher’s exact test). Further, 25/136 (18  %) of glioblasto-
mas and 1/14 (7 %) gliosarcomas displayed loss of ATRX. 
Loss of ATRX and mutation of the TERT promoter were 
almost mutually exclusive in this series (p = 9.88 × 10−47; 
Fisher’s exact test). Typical examples for ATRX staining 
are given in Fig. 3.

ATRX association with tumor entity depends on diagnostic 
approach

Diffuse astrocytoma grade II (AII) diagnosed by WHO 
2007 exhibited nuclear ATRX loss in 34/47 (72  %) and 
anaplastic astrocytoma (AIII) in 72/105 (69  %) of the 
cases. Applying the “integrated” approach, 36/37 (97  %) 
AII-IDHmut and 100/103 (97 %) AIII-IDHmut exhibited nuclear 
ATRX loss. In contrast, only 2/5 of the rare AII-IDHwt and 
4/10 (40  %) AIII-IDHwt exhibited nuclear ATRX loss. Oli-
godendroglioma grade II (OII) diagnosed by WHO 2007 
exhibited nuclear ATRX loss in 3/25 (12  %) and ana-
plastic oligodendroglioma (OIII) in 5/36 (14  %) of the 
cases. Applying the “integrated” approach, 0/28 OII and 
2/72 (3 %) OIII exhibited nuclear ATRX loss. OAII diag-
nosed by WHO 2007 exhibited nuclear ATRX loss in 5/9 
and OAIII in 20/54 (37 %) of the cases. Our “integrated” 
approach does not recognize the diagnosis of oligoastrocy-
toma anymore. This distribution clearly shows the poten-
tial of ATRX status to differentiate astrocytoma from oli-
godendroglioma in IDH-mutated tumors and demonstrates 
the mixed composition of the WHO 2007 oligoastrocytoma 
groups. Independently of the diagnostic approach, the dif-
ferences in ATRX association with a tumor entity were 
remarkably stable across tumor grades. This in fact, holds 
true also for 1p/19qcodel and IDH mutations.

Association of ATRX expression with 1p/19q and IDH 
status

Inclusion of an additional molecular basis for the genera-
tion of an integrated diagnosis in our set of 405 tumors 
resulted in 6 groups. Within these groups, there is strik-
ingly little overlap of the genetic lesions. AII and AIII 
typically carry IDH mutations and exhibit loss of nuclear 
ATRX expression. OII and OIII carry 1p/19q codel and 
IDH mutations and only two of these tumors exhibited loss 
of nuclear ATRX expression. Interestingly, both of these 
cases had a wild-type TERT promoter and this is typical for 
astrocytoma, whereas the vast majority of oligodendroglio-
mas carry a TERT promoter mutation [25, 26]. GBM and 
GS typically exhibit the combination of 7p gain and 10q 
loss accompanied by absence of IDH mutations and main-
tenance of nuclear ATRX expression. A set of 23 GBM 
demonstrated nuclear ATRX loss and among these 11 car-
ried an IDH mutation. Interestingly, H3F3A mutations (4 
cases with K27M and 4 cases with G34R) in glioblastoma 
were only seen in combination with nuclear ATRX loss and 
without IDH mutation—providing evidence for a GBM 
subset in adult patients with molecular similarities to pedi-
atric GBM [44]. In each of the groups, a few cases did not 
match the expected pattern: One AII and 6 AIII with IDH 
mutation did not exhibit ATRX loss. These observations 

O
61 63 152 93 12 7 3 14

O

100 119 14 3 14

A sMBGAO GBM GBMo gcGBM GS

A-IDHwt GBM-IDHmutGBM gcGBM GSA-IDHmut

139 16

ini�al diagnosis

integrated diagnosis

Fig. 2   Changes from initial to integrated diagnosis in 405 adult 
patients with supratentorial glioma. Width of bars indicates relative 
proportions of the initial tumor groups. A astrocytoma, OA oligoastro-
cytoma, O oligodendroglioma, GBM glioblastoma, GBMo glioblas-
toma with oligodendroglial component, GBMs secondary glioblas-
toma, gcGBM giant cell glioblastoma, GS gliosarcoma
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may be explained by hypothesizing that these tumors may 
carry an ATRX mutation not resulting in the abrogation of 
protein expression (e.g., a damaging missense mutation). 
Nine astrocytomas had neither IDH mutation nor ATRX 
loss. We assume these tumors not to represent a distinct 
biological entity but to be a mixture of rarer variants of 
astrocytic tumors lacking some or all known hallmark alter-
ations. Many of these IDH-wt astrocytomas are likely to 
be variants or early manifestations of glioblastoma which 
finds support in one exhibiting 7p gain and 10q loss and 
one an H3F3A mutation. In six astrocytomas with ATRX 
loss, no IDH mutation could be identified, however, one of 
these had an H3F3A mutation. A group of 30 GBM did not 
exhibit any of the mutations tested for in the present study. 

An overview of these groups and the molecular alterations 
is given in Fig. 4.

Significant differences in “overall survival” in NOA‑04 
patients depending on diagnostic approach

Comparison of survival plots from 100 NOA-04 study 
patients demonstrates a significant difference between the 
WHO 2007 and the “integrated” diagnostic approaches. 
In regard to both overall survival and time to treatment 
failure, the “integrated” approach separates groups more 
stringently. In light of the intermediate position of oligoas-
trocytoma in the WHO 2007 classification it is of inter-
est that this increase of stringency is achieved although 

Fig. 3   Examples of ATRX 
staining. Diffuse (a 1313; b 
1043) and anaplastic astrocy-
tomas (c 1368; d 1383) with 
loss of ATRX staining in tumor 
cell nuclei. The number of 
non-neoplastic cells, which 
serve as internal controls, varies 
markedly between samples but 
endothelial cells are always 
positive. Oligodendroglioma (e 
1073) and anaplastic oligo-
dendroglioma (f 1308) with 
strong nuclear ATRX staining. 
g Glioblastoma (1188) with 
strong nuclear ATRX expres-
sion. Necrotic cells may stain 
negative. h Glioblastoma (1187) 
with thermally damaged tissue 
in which ATRX staining is 
artificially lost
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oligoastrocytoma are not diagnosed anymore using the 
“integrated” diagnosis. The shift in diagnosis in WHO 2007 
compared to the “integrated” approach is demonstrated in 
Fig. 5. With classification aiming at prediction of outcome 
the “integrated” approach proves much more successful in 
this series (Table  2; Fig.  6). To compare the performance 
of Cox regression models based on either the WHO 2007 
classification or the “integrated” diagnosis, we calculated 
the integrated Brier score over time for both models and 
endpoints (time to treatment failure and overall survival) 
as well as the R2 for all models (supplementary Table 2), 
which showed a markedly improved prediction accuracy 

(based on the bootstrapped Brier scores) and model fit (R2) 
for the “integrated” diagnosis.

The combination of ATRX loss and IDH mutation 
defines the most frequent type of diffuse astrocytoma 
and progressions thereof

The single finding of most diagnostic potential is the 
mutual exclusivity of 1p/19q loss and loss of ATRX 
expression, with the latter found overwhelmingly in IDH-
mutated astrocytomas and IDH-mutated glioblastomas. 
This makes the combination of IDH mutation and ATRX 

Fig. 4   Overview of molecular alterations in 405 patients with “inte-
grated” diagnosis. Each column represents a patient. Red boxes tested 
positive; dark gray tested balanced for chromosomal status or nega-

tive for mutations; light gray IDH1-R132H mutation tested nega-
tive, not tested for rare mutations; white not tested. Asterisk indicates 
1p/19q status set per definition
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loss the typical molecular fingerprint of diffuse astrocy-
toma including its manifestation having progressed towards 
glioblastoma. Likewise, the combination of IDH mutation 
and ATRX loss virtually excludes the presence of complete 
1p/19q loss and thus the diagnosis of oligodendroglioma 
in its narrower ISN-Haarlem boundaries. The combination 
of IDH mutation and ATRX loss is, therefore, expected to 
reduce the need for 1p/19q analysis by a significant fraction 
of tumors.

Oligoastrocytoma

Oligoastrocytoma is a well-established diagnosis in WHO 
2007. Diagnosing tumors on the basis of IDH, ATRX and 

1p/19q analysis according to the present suggestion groups 
these tumors either to astrocytoma or oligodendroglioma. 
The demonstration of 1p/19q status being of much more 
relevance to prognosis and treatment response than the 
morphological differentiation between astrocytoma, oli-
goastrocytoma and oligodendroglioma clearly warrants 
such an approach. Further, we recently demonstrated on a 
series of IDH1-R132H mutated oligoastrocytomas diag-
nosed at different institutions that these cases could be reli-
ably allotted either to astrocytoma or oligodendroglioma 
based on molecular data [40], and an epigenome-wide anal-
ysis of a large cohort of anaplastic glioma further substanti-
ated that there is no biological basis for the diagnosis of an 
oligoastrocytoma [53].

Glioblastoma with oligodendroglial differentiation

Four of 12 tumors with initial diagnosis of GBMo exhibited 
1p/19q codel, and were therefore classified as anaplastic oli-
godendroglioma. The remaining 8 tumors were reclassified 
as GBM, one of which carried an IDH mutation. Separation 
of these tumors is further supported by the observation that 
GBMo appears to have a more favorable prognosis, that 
gliomas with 1p/19q codel nearly inevitably carry an IDH 
mutation and that IDH mutations are the single most prog-
nostic marker in GBM [49]. Our approach aims at classifi-
cation, however, it does not solve grading problems. Inter-
estingly, the presence of necrosis appears to be no predictor 
for poorer overall survival in anaplastic oligodendroglioma 
[32]. Whether the GBMo reclassified as anaplastic oligo-
dendroglioma should be allotted a WHO grade higher than 
III needs to be addressed in further studies.

An “integrated” diagnostic approach alters the frequency 
of astrocytoma and oligodendroglioma diagnoses

Up to WHO 2007, the frequency with which astrocytoma, 
oligoastrocytoma and oligodendroglioma were diagnosed 

AO OA

A-IDHmut -IDHwt

41 8

O A GBM

ini�al diagnosis

integrated diagnosis

16 37 47

37 14

Fig. 5   Changes from initial to integrated diagnosis in 100 patients 
with anaplastic astrocytomas, oligoastrocytomas and oligodendro-
gliomas diagnosed according to WHO 2007 from the NOA04 study. 
Width of bars indicates relative proportions of the initial tumor 
groups. A astrocytoma, OA oligoastrocytoma, O oligodendroglioma, 
GBM glioblastoma

Table 2   Comparison of 
WHO 2007 and “integrated” 
diagnostic approaches with 
clinical outcome in 100 NOA-
04 patients

(def) This parameter is 
employed for definition of the 
“integrated” diagnosis

n/r not reached

Diagnosis WHO 2007 “Integrated” diagnosis

A OA O A-IDHmut O A-IDHwt GBM-IDHwt

Number 47 37 16 41 37 8 14

1p/19-codel 3 23 11 0 (def) 37 (def) 0 (def) 0 (def)

IDH-mut 30 34 14 41 (def) 37 0 (def) 0

7p-gain 13 4 2 4 2 2 11

10q-loss 19 4 2 7 2 2 14

7p-gain/10q-loss 10 1 0 0 0 0 (def) 11 (def)

EGFR-amp 7 1 0 0 0 0 (def) 8 (def)

ATRX loss 27 12 3 36 2 4 0

Mean OS 1,536 2,182 n/r 2,182 n/r 1,883 706

Mean TTF 1,175 1,840 1,684 1,691 n/r 1,325 374
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demonstrated a great inter-institutional variation. Most of 
this variation was accounted for by the use of the diagno-
sis oligoastrocytoma. Linking the definition of astrocytoma 

and oligodendroglioma more strongly to biological param-
eters and omitting the use of the diagnosis oligoastrocy-
toma will reduce this inter-institutional variation. In our 
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Fig. 6   OS (panels on left) and TTF (panels on right) of 100 NOA-
04 patients with anaplastic astrocytomas, oligoastrocytomas and oli-
godendrogliomas diagnosed according to WHO 2007 (upper panels) 
and receiving an “integrated” diagnosis (middle panels). Lower pan-
els show prediction error curves for OS (left) and TTF (right), depict-

ing the Brier score over time. A higher prediction error indicates a 
greater difference between observed (known) survival status of 
patients and the survival probabilities calculated from the respective 
Cox model, i.e., less prediction accuracy. OS overall survival, TTF 
time to treatment failure
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own experience based on diagnoses from the Department 
of Neuropathology in Heidelberg, the major part of tumors 
formerly diagnosed oligoastrocytoma fall into the “inte-
grated” diagnostic group of oligodendroglioma and approx-
imately one-third of all diffuse glioma are diagnosed as oli-
godendrogliomas, whereas two-thirds of diffuse glioma are 
diagnosed as astrocytomas.

The integrated approach influences classification, it has 
less impact on grading of these tumors apart from anaplas-
tic oligoastrocytomas which in our series sometimes were 
rediagnosed as OII and sometimes as OIII while amongst 
those rediagnosed as astrocytomas all were anaplastic. 
This underlines the concept that classification recognizes 
biological origin while grading reflects to a stage in tumor 
progression.

Practical approach for diagnosing astrocytomas 
and oligodendrogliomas using the “integrated” approach

The routine approach to all diffuse astrocytic and oli-
godendroglial gliomas begins with performing IHC for 
ATRX and IDH1-R132H expression. Almost all of the 
tumors exhibiting loss of nuclear ATRX staining are astro-
cytic. The majority of these tumors will stain positive for 
IDH1-R132H and nearly all of those which will not are 
subsequently found to harbor a rare IDH1 or IDH2 or 
an H3F3A mutation. In contrast, all tumors with nuclear 
ATRX expression are subjected to 1p/19q analysis. The 
tumors without a combined deletion of 1p/19q are astro-
cytic tumors, independent of their IDH status. This group 
should be sequenced for rare IDH1 and IDH2 mutations 
based on the important impact of IDH status on prognosis. 

Astrocytic tumors without ATRX loss, wild type for 
1p/19q and without IDH mutation have a strong likelihood 
of being glioblastoma. Further molecular analyses such as 
determining 7p/10q status, EGFR or CDK4 amplification 
are useful.

All tumors exhibiting 1p/19q loss are oligodendroglio-
mas. Oligodendrogliomas without IDH1-R132H positiv-
ity need not be sequenced for rare IDH mutations, which 
would almost certainly be detectable in all of them. A diag-
nostic scheme is provided in Fig. 7.

Conclusions

The present data provide an approach to build an “inte-
grated diagnosis” for adult astrocytic and oligodendro-
glial glioma based on histology and molecular parameters. 
ATRX immunohistochemistry constitutes an important 
parameter for this approach. The “integrated” diagnosis 
results in stringent separation of astrocytoma from oligo-
dendroglioma, omitting the need for diagnosing oligoastro-
cytoma or ‘glioblastoma with oligodendroglial component’. 
Stepwise analysis of the molecular parameters significantly 
reduces the number of molecular tests required for une-
quivocal diagnosis.
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