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we describe how further refinements of reprogramming 
technology resulted in the generation of patient-specific 
induced neurons, which have also been used to model neu-
rodegenerative changes in vitro.
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Introduction

Neurodegenerative diseases include a variety of neuropsy-
chiatric and neurological disorders with limited therapeu-
tic options. Advanced age is the biggest risk factor for the 
development of neurodegenerative changes, and because 
people are living increasingly longer life spans, treatment 
of patients with neurodegenerative diseases results in an 
increasingly significant socio-economic impact on soci-
ety. For example, the global cost of dementia comprised 
604 billion US dollars in 2010 (Alzheimer’s Disease Inter-
national). Hence, both medically and economically, it is 
urgently necessary to identify the mechanisms of neurode-
generation and to develop novel treatments to protect neu-
rons against pathologic changes.

Directly studying living patient neurons is severely lim-
ited by the inaccessibility of the human brain. As a result, 
postmortem analyses of brain tissue have been performed, 
which yielded extensive insights into end-stage disease 
pathology. In order to study disease development, alterna-
tive approaches have been applied, which include the anal-
ysis of patients’ fibroblasts or transformed cell lines that 
harbor disease-associated mutations. Although the ability 
to easily culture transformed cell lines has enabled detailed 
mechanistic studies to be carried out, the biology of cell 
lines does not resemble the biology of primary neurons. As 
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a result, it is often unclear whether the mechanisms studied 
are directly comparable to patients’ pathology.

Another method of studying neurodegenerative disease 
is the creation of transgenic animal models—especially 
mice. For example, human mutations that cause familial 
forms of neurodegenerative diseases can be inserted into 
mice, and mechanisms of disease development can be stud-
ied. However, these models often do not accurately reca-
pitulate human disease, as typical phenotypes are often 
underrepresented or even lacking [114]. As an example, 
in animal models of Alzheimer’s disease (AD), overex-
pression of the human mutated amyloid precursor protein 
(APP) resulted in abundant plaque deposition and amyloid-
associated pathology, but neurofibrillary tangles and sig-
nificant neuronal loss as additional hallmarks of AD were 
not detected [69, 143]. Furthermore, animal models of the 
sporadic forms of neurodegenerative diseases cannot easily 
be established due to species-related differences in genetic 
susceptibility factors.

Therefore, understanding the mechanisms caus-
ing human neurodegeneration and developing effective 
therapies may require human-specific models, which 
more closely recapitulate human pathogenesis. Stem cell 
technologies enable the development of such models 
and encompassed the analysis of disease-affected human 
embryonic stem (eS) cells. eS cells are derived from the 
inner cell mass of pre-implantation stage embryos and, 
as pluripotent stem cells, have the ability of potentially 
unlimited self-renewal and of spontaneous differentia-
tion into cells of the three germ layers: mesoderm, endo-
derm and ectoderm [180]. By applying sophisticated 
differentiation protocols, high numbers of functional 
neurons can be derived from undifferentiated eS cells, 
which behave similarly to primary neurons and which 
have been widely used in cell culture assays [9, 36, 44, 
138, 169] (Fig. 1).

The most obvious approach to modeling neurodegenera-
tive diseases with human eS cells is to use neurons derived 
from stem cells carrying disease-causing mutations. How-
ever, because eS cells are derived from embryos, this would 
involve using pre-implantation genetic diagnostic (PGD) 
testing to identify embryos harboring a genetic disease, as 
has been done for Huntington’s disease (HD) or Down syn-
drome (DS). Neurons have been differentiated from these 
eS cells to analyze disease-associated phenotypes [19, 115, 
123, 124, 186]. For instance, aggregates of Aβ42 protein or 
increased expression of phospho-tau have been observed in 
stem cell-derived neurons using this approach (Table S1). 
However, in addition to ethical concerns [60], the isola-
tion of eS cells during PGD can only be used for diseases 
with very specific mutations and not for the vast majority 
of neurodegenerative diseases, which are sporadic and not 
clearly associated with a specific mutation. Thus, deriving 

human eS cells from embryos analyzed by PGD cannot 
be a standard procedure for modeling neurodegenerative 
diseases.

One alternative to PGD is to insert disease-causing muta-
tions into existing human eS cell lines using endonuclease-
mediated gene targeting (Fig. 1). For instance, zinc-finger 
nucleases introduce a double-strand break at a specific tar-
get sequence in the genome, which enables the insertion of 
specific donor sequences through homologous recombina-
tion as the cell repairs the break. Using this technique, the 
Parkinson’s disease (PD)-associated mutations A53T and 
e46K were inserted into the α-synuclein (SNCA) locus of 
two different eS cell lines [168] (Table S1). These modified 
eS cells did not carry any additional off-site genetic modi-
fications other than the targeted alteration within the SNCA 
locus and thus, the parental and modified eS cell lines were 
isogenic and differed only by a single mutation. As a result, 
whole-genome expression profiling of these stem cells 
demonstrated that isogenic eS cell lines had a much more 
similar expression profile compared with unrelated eS cell 
lines [168]. A major disadvantage of this technology, how-
ever, is related to the fact that cells of a patient may carry 
specific disease-associated genetic variants in addition to a 
specific mutation, which cannot be established in the gene-
targeted stem cell and thus, mechanisms of disease devel-
opment may not be modeled properly. Furthermore, this 
technique could not be applied to model sporadic diseases. 
Therefore, while these studies highlight the usefulness of 
human eS cells for research on neurodegenerative diseases, 
an alternative approach is needed that uses cells directly 
derived from patients with the disease of interest. This was 
accomplished by the application of patient-specific induced 
pluripotent stem (iPS) cells or the derivation of human 
induced neurons (iN cells) from patients, as reviewed in 
this article (Fig. 1).

Human stem cell models of neurodegeneration using 
patient‑derived iPS cells

In 2006, Takahashi and Yamanaka [175] demonstrated a 
revolutionary technology in which fibroblasts could be 
reprogrammed into iPS cells simply by expressing the 
pluripotency-associated transcription factors Oct4, Klf4, 
Sox2 and c-Myc (Fig. 1). These iPS cells share the main 
characteristics of pre-implantation embryo-derived eS 
cells including the ability of unlimited self-renewal and the 
potential to differentiate into cells of the three germ layers. 
As a result, it is possible to derive fibroblasts from a patient 
with a neurodegenerative disease, to reprogram them into 
iPS cells and to expand them into large numbers. By apply-
ing differentiation protocols used for eS cells, iPS cells 
can be directed to differentiate into functional neuronal 
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subtypes such as midbrain dopaminergic (DA) neurons 
[36, 44, 96, 122, 138, 139], glutamatergic cortical neurons 
[159], striatal GABAergic neurons [9] or cholinergic motor 
neurons [117, 138], which are at risk in PD, AD, HD or 
amyotrophic lateral sclerosis (ALS), respectively (Fig. 2). 

Because these differentiated neurons were generated from 
cells of a specific patient, the resulting phenotype of these 
cells can be used to model the pathology of neurons within 
the same individual. In addition, since iPS cells can pro-
duce specialized neurons in very large quantities, it is 

Fig. 1  In vitro modeling of neurodegenerative diseases using human 
embryonic stem cells, induced pluripotent stem cells and induced 
neurons. I Human eS cells are derived from human blastocysts after 
isolation and dissection of the inner cell mass and can be differen-
tiated into mature neurons. It is possible to genetically modify eS 
cells and to introduce a disease-specific mutation in order to model 
neurodegenerative diseases after differentiation into disease-affected 
neurons. An alternative, but a less suitable approach, is to analyze eS 
cells already carrying a genetic defect. II Skin fibroblasts of patients 
can be reprogrammed into induced pluripotent stem (iPS) cells by 
ectopic expression of the transcription factors Oct4, Sox2, Klf4 and 
c-Myc. These patient-specific iPS cells can be differentiated into 

disease-affected neuronal subtypes. In cases of known genetic abnor-
malities causing the neurodegenerative disease, gene targeting can 
be applied to repair the genetic mutation thereby establishing iso-
genic control iPS cell lines. In addition, these genetically corrected 
iPS cells can be differentiated into neurons and, at least theoretically, 
subsequently used for cell replacement therapy. Alternatively, iPS 
cells derived from healthy individuals serve as a source of healthy 
control neurons. III Skin fibroblasts from patients with neurodegen-
erative diseases or from healthy individuals can be directly transdif-
ferentiated into neuronal cells (so-called induced neurons or iN cells) 
through ectopic expression of transcription factors such as Ascl1, 
Brn2, Myt1l and NeuroD1
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possible to apply these models to conduct detailed mecha-
nistic studies, to develop cell therapies, or to identify new 
drug candidates [46, 73, 84, 111, 133].

The first iPS cell lines from patients with neurodegen-
erative diseases were described in 2008 [57, 128], and to 
date, more than 50 reports on iPS cell-based models of neu-
rodegeneration have been published, most of which focus 
on familial forms of disease caused by specific mutations 
(Table S2). However, iPS cell models of sporadic forms 
of neurodegenerative diseases have also been established 
(Table S2). Interestingly, despite the usually late manifes-
tation of degenerative changes in patients, disease pheno-
types were described in patient-iPS cell-derived neurons 
only after a few weeks of culture and appeared either 
spontaneously or after challenge with stress-inducing com-
pounds mimicking cumulative age- and disease-related 
insults to neurons in vivo.

Models of Alzheimer’s disease using patient-derived iPS 
cells

AD is the most common neurodegenerative disease and the 
most common cause of dementia, affecting more than 30 
million people worldwide [11]. Patients suffer from severe 
cognitive decline with progressive loss of memory function 
and of abilities to perform basic daily procedures prop-
erly. Pathologic hallmarks of AD are extracellular deposits 
of Aβ protein forming amyloid plaques and intracellular 

neurofibrillary tangles composed of aggregated and hyper-
phosphorylated tau protein [56, 72]. These pathologic 
changes within and around forebrain neurons have been 
modeled with AD patient-derived iPS cells in different 
studies.

AD caused by mutated APP

AD-specific iPS cells have been derived from patients 
with familial forms of AD (fAD) carrying a duplication 
of the APP locus (APPdp) [80] or the e693Δ mutation 
in APP [94] (Table S2). APP is a transmembrane protein 
with important physiological functions including cell 
signaling, synapse formation and neurogenesis [100]. 
However, when gene dosage is increased or in the case 
of certain point mutations, the amyloidogenic pathway 
generates more pathologic Aβ protein with subsequent 
deposition of senile Aβ-positive plaques [177]. Similarly, 
APPdp-AD and e693Δ-AD patient-derived iPS neurons 
expressed increased levels of Aβ40 protein when com-
pared to neurons from non-demented control individu-
als [80, 94]. Furthermore, APPdp-AD-iPS cell-derived 
neurons expressed higher amounts of active GSK-3β and 
phosphorylated tau protein at Thr231 indicating neurode-
generative changes within patient-derived neurons in vitro 
[80]. Also, APPdp-AD-derived neurons contained signifi-
cantly increased numbers of RAB5-positive endosomes, 
which is in line with observations that RAB5-positive 

Fig. 2  Differentiation of human iPS cells into neural subtypes in 
vitro. By applying improved differentiation protocols, human iPS 
cells can be differentiated into several mature neuronal subtypes. 
a Dopaminergic neurons co-expressing tyrosine hydroxylase (TH) 
and βIII-tubulin (TUJ1) and b midbrain-like dopaminergic neu-
rons co-expressing TH and FoxA2. c Striatal neurons co-expressing 
βIII-tubulin and the dopamine and cAMP-regulated phosphoprotein 

DARPP-32. d Motor neurons positive for microtubule-associated pro-
tein-2 (MAP-2), choline acetyltransferase (ChAT) and non-phospho-
rylated neurofilament H (SMI-32). e Peripheral neurons expressing 
peripherin and βIII-tubulin. f Human iPS cells can also be directed 
to differentiate into astrocytes expressing glial fibrillary acidic protein 
(GFAP) and S100



155Acta Neuropathol (2014) 127:151–173 

1 3

endosomes accumulate within neurons of a subset of AD 
patients [33, 34, 80]. These pathologic changes could 
be significantly reduced after application of β-secretase 
inhibitors to patient-derived neurons. However, the appli-
cation of γ-secretase inhibitors only significantly reduced 
the level of Aβ40 protein, but not the levels of active 
GSK-3β and phospho-tau protein, indicating that products 
of APP processing other than Aβ40 protein may regulate 
the induction of GSK-3β activity and phospho-tau protein 
in AD [80].

Since APP is encoded on chromosome 21, a duplication 
of the APP gene is present also in neurons from individuals 
with DS, which is caused by trisomy of chromosome 21. 
AD-like neurodegenerative changes have been described 
in people with DS [25], which could be due to duplication 
of the APP gene and/or due to duplication of other genes 
such as Dyrk1A kinase, known to phosphorylate tau pro-
tein at Thr212 [192]. DS-iPS cell-derived cortical neurons 
expressed higher amounts of both Aβ40 and Aβ42 protein 
with an increased Aβ42/Aβ40 ratio, formed insoluble intra-
cellular and also extracellular amyloid aggregates, accumu-
lated AT8-positive phosphorylated tau protein and secreted 
phospho-tau, thereby mimicking changes seen in patients 
with AD [158].

AD caused by mutant PS1 and PS2

Mutations in the presenilin 1 gene (PS1) and in the pre-
senilin 2 gene (PS2) are common causes of fAD [48, 
157] and have been described to enhance the production 
of Aβ protein, especially of Aβ42 [153]. AD-iPS cells 
have been derived from a patient with the A246e muta-
tion in the PS1 gene and from a patient with the N141I 
mutation in the PS2 gene [193] (Table S2). when differ-
entiated into neurons, both PS1-AD-iPS cells and PS2-
AD-iPS cells secreted Aβ40 and Aβ42 into the medium 
supernatant with an increased Aβ42/Aβ40 ratio as seen 

in postmortem tissue from fAD patients [193]. These 
changes could be reversed by γ-secretase inhibition 
[193].

Sporadic AD

Most AD patients suffer from the sporadic, non-familial 
form of AD, which is not linked to a specific genetic muta-
tion. However, genetic risk variants have been discovered 
in genome-wide association studies, among which apoli-
poprotein e isoform E4 showed the highest consistency. 
Other genes include Picalm, CR1, Clusterin and SORL1 
[74, 99, 144, 196]. IPS cells were recently generated from 
two individuals with sporadic AD [80]. Neurons from one 
of the patients behaved like non-demented control neu-
rons, while neurons from the other sporadic AD patient 
showed the same AD pathology as seen in cells from the 
APPdp-AD patients described above [80] (Table S2). It will 
be very interesting to analyze pathologic neurodegenera-
tive changes in iPS cell-derived neurons from sporadic AD 
patients with different genetic risk variants for apolipopro-
tein e isoform E4, CR1, Clusterin and SORL1 and to use 
these stem cells to obtain better mechanistic insights into 
the pathogenesis of different forms of sporadic AD.

Models of Parkinson’s disease using patient-derived iPS 
cells

Among all neurodegenerative diseases, PD has been mod-
eled most frequently with iPS cells (Fig. 3; Table S2). PD 
is the second most common neurodegenerative disease 
and affects approximately 1 % of people over 60 years 
of age and approximately 4 % of people over 80 years of 
age [50]. A minor fraction of PD patients, about 5–10 % 
have a familial form of PD (fPD), which is the result of 
inheriting specific mutations. Mutations in SNCA were 
the first to be linked to fPD and cause pathology in an 

Fig. 3  Statistics on human iPS cell models of neurodegeneration. a 
Number of articles published on human iPS cell models of neurode-
generative diseases. PD Parkinson’s disease, ALS amyotrophic lateral 
sclerosis, HD Huntington’s disease, oTRD other triplet repeat dis-
eases, SMA spinal muscular atrophy, SD storage diseases, FTD fron-

totemporal dementia, AD Alzheimer’s disease. b Number of articles 
describing (partial) rescue of disease phenotypes through different 
approaches. c Number of articles published from 2008 to 2013. Aster‑
isk as of November 2013
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autosomal-dominant fashion [131]. Subsequently, muta-
tions in Leucine-Rich Repeat Kinase 2 (LRRK2) were 
identified as causing autosomal-dominant PD and are the 
most common known genetic causes of PD [43]. Muta-
tions in PTeN-induced Putative Kinase 1 (PINK1), DJ-1 or 
PARKIN result in autosomal-recessive fPD (for review see 
[105]). In addition, duplication and triplication of the SNCA 
locus cause fPD [105, 163]. However, the majority of PD 
patients suffer from sporadic PD, which is most likely 
caused by a combination of environmental and genetic sus-
ceptibility factors. Indeed, genome-wide association stud-
ies revealed that variants in the gene loci of SNCA, MAPT, 
PARK16 and LRRK2 comprise risk factors for sporadic PD 
[105, 162]. Histopathologically, severe degeneration of DA 
neurons within the substantia nigra pars compacta is typical 
and Lewy bodies, which comprise intracellular aggregates 
of proteins including SNCA, are seen in most, though not 
all PD patients [43, 172].

Sporadic PD

The first PD-specific iPS cell lines were derived from a 
donor with sporadic PD [128] (Table S2). Derivation of 
additional iPS cell lines from five sporadic PD patients 
demonstrated that the neuronal differentiation potential of 
these cells was comparable to those of control iPS cells 
from healthy donors [167]. However, PD patient-derived 
neurons had a reduced number and length of neurites, 
expressed significantly increased levels of cleaved caspase 
3 protein after prolonged culture in vitro and were more 
vulnerable to MPP+, a neurotoxin to midbrain DA neu-
rons [147]. These findings were attributed to an accumula-
tion of autophagic vacuoles due to an impaired maturation 
of autophagosomes into autophagolysosomes in patient-
derived DA neurons [147].

PD caused by mutant LRRK2

Mutations in LRRK2 result in a late-onset form of PD with 
clinical symptoms comparable to those of patients with 
sporadic PD. LRRK2 encodes a multidomain protein with 
kinase and GTPase activities, which are mediated through 
a kinase domain and a ras of complex GTPase domain, 
respectively [43]. To date, more than 50 mutations in the 
LRRK2 gene have been described in PD patients, but the 
most common is G2019S, which occurs within the kinase 
domain and results in increased kinase activity [43]. Con-
sequently, disease phenotypes were analyzed in G2019S-
LRRK2-iPS cells, which had been differentiated into neu-
ral progenitor cells [108] and into DA neurons [45, 122, 
126, 138, 139, 147, 148] (Table S2).

As seen in neurons from patients with sporadic PD, 
G2019S-LRRK2 neurons also showed impaired neurite 

outgrowth [122, 139, 147]. This observation is consistent 
with studies linking mutant LRRK2 protein to altered neu-
rite extension [112] and linking LRRK2 overexpression 
to depolymerization of microtubules [107]. Furthermore, 
iPS cell-derived G2019S-LRRK2 DA neurons showed 
an increased expression of cleaved caspase 3 protein and 
the oxidative stress-response genes HSPB1, NOX1 and 
MAOB [122, 147]. These neurons revealed increased dam-
age of mitochondrial DNA [148] and were more suscepti-
ble to toxins such as hydrogen peroxide, 6-hydroxydopa-
mine, rotenone, MPP+, valinomycin, concanamycin A and 
MG-132, when compared to control cells from healthy 
donors [45, 122, 138, 139, 147]. These findings indicated 
an increased vulnerability of G2019S-LRRK2 DA neurons 
to stressors due to disturbances in pathways involving the 
mitochondrial oxidative complexes I and Iv, the clearance 
of mitochondria via autophagosomes and the degradation 
of proteins through the proteasome complex, respectively. 
In addition, G2019S-LRRK2 DA neurons had impaired 
autophagosome clearance and an increased expression of 
stress-response genes, even when cultured over prolonged 
period of time and without application of oxidative stress-
ors as similarly described for iPS cell-derived DA neurons 
from patients with sporadic PD [147]. An application of 
the antioxidant coenzyme Q10, the pro-survival AKT acti-
vator rapamycin and the LRRK2 inhibitors Gw5074 and 
IN1 could partially rescue stress phenotypes in G2019S-
LRRK2 iPS cell-derived neurons [45, 139].

iPS cell-derived G2019S-LRRK2 neurons accumulated 
SNCA protein, a major component in Lewy bodies in sub-
stantia nigra DA neurons of PD patients [122, 139, 147]. 
This is consistent with previous findings linking LRKK2 
mutation to increased SNCA expression in human cells 
[32] and is in line with the observation that most patients 
with LRRK2 mutations present with α-synucleinopathy 
[43]. The accumulation of SNCA protein in G2019S neu-
rons could be related to defects in autophagy [126, 139] 
and proteasomal function [139], which were observed in 
differentiated G2019S-LRRK2-iPS cells.

Further mechanistic insights into G2019S-mediated 
PD pathogenesis were provided by a recent publication 
by Reinhardt et al. [139] on patient-specific iPS cells. The 
expression of CPNE8, MAP7, ANXA1 and CADPS2, genes 
that are implicated in neurotransmission and microtubule 
dynamics [24], was significantly increased in G2019S-iPS 
cell-derived midbrain DA neurons and siRNA-mediated 
knockdown of these genes was followed by decreased DA 
neurodegeneration. Phosphorylated microtubule-associated 
protein tau was also significantly upregulated in G2019S-
DA neurons, further supporting a critical role of LRRK2 
in microtubule function and cellular integrity. In contrast, 
e3 ubiquitin ligase UHRF2, which is involved in clear-
ance of polyglutamine aggregates [81], was significantly 
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downregulated in G2019 DA neurons. UHRF2 could have 
a similar function in protein clearance in midbrain DA 
neurons, which might be impaired in G2019S neurons 
from patients with PD. In line with the observation that 
the G2019S mutation causes an increased activity of the 
kinase domain [43], dysregulated expression of CPNE8, 
UHRF2 and CADP2 in G2019S DA neurons was caused by 
LRRK2-dependent eRK phosphorylation [139]. Observed 
disease phenotypes were ameliorated by inhibition of eRK 
protein in G2019S neurons and by zinc finger-mediated 
correction of the genetic defect in G2019S-LRRK2-iPS 
cells. These observations are particularly important since 
they show that phenotypes appeared as a result of the 
genetic defect and not due to any unspecific confounding 
factors [139].

Mutations in the GTPase domain of the LRRK2 gene 
have also been identified in fPD [43]. when compared to 
control cells, R1441C-iPS cell-derived DA neurons pre-
sented with dysfunctional intracellular transport of mito-
chondria [45], again highlighting an important role of 
LRRK2 in microtubule function. Furthermore, R1441C 
neural cells presented with increased damage of mitochon-
drial DNA [148] and with increased cell death after appli-
cation of valinomycin and concanamycin A, as similarly 
seen for G2019S iPS cell-derived neural cells. These find-
ings indicated enhanced vulnerability of PD patient-derived 
R1441C cells through mechanisms, which, at least in part, 
are also involved in degeneration of neural cells carrying 
the G2019S LRRK2 mutation [45].

PD caused by mutant SNCA

SNCA point mutations A53T, A30P and e46K [106, 197] 
and the more frequent SNCA duplications and triplica-
tions cause an early-onset form of PD [163]. One study 
reported the derivation of iPS cells from a patient with 
the A53T SNCA mutation and was the first to demonstrate 
that patient-derived iPS cells can be genetically modified 
via zinc finger-mediated gene transfer to replace the muta-
tion-bearing sequence with a healthy sequence thereby 
generating isogenic control iPS cell lines [168]. In a fol-
low-up study, disease phenotypes were discovered in iPS 
cell-derived A53T cortical neurons and comprised an accu-
mulation of nitric oxide (NO), increased levels of endoplas-
mic reticulum (eR) stress and an accumulation of eR-asso-
ciated substrates, such as glucocerebrosidase and nicastrin 
[39]. These substrates were also elevated in postmortem 
cortical tissue from a patient carrying the A53T-SNCA 
mutation [39]. elevated levels of NO and eR-associated 
substrates in A53T-iPS cell-derived neurons were changed 
to normal levels after application of NAB2, which has pre-
viously been identified as a compound to rescue SNCA-
mediated toxicity [178].

Three independent groups reported the derivation of 
iPS cells from patients with a SNCA triplication [27, 53, 
194] (Table S2). DA neurons differentiated from iPS cells 
with triplicated SNCA contained significantly increased 
amounts of SNCA protein compared to healthy controls 
[27, 53, 194]. In addition, these neurons expressed elevated 
levels of DNAJA1, HMOX2, UCHL1, HSPB1 and MAO-A 
mRNA [27], suggesting increased oxidative stress in the 
PD-derived DA neurons. Consistent with this observation, 
DA neurons with the SNCA triplication expressed higher 
levels of cleaved caspase 3 protein in response to H2O2 
when compared to healthy controls [27].

PD caused by mutant PINK1 or PARKIN

Mutations in the PINK1 and PARKIN genes cause fPD in 
an autosomal-recessive fashion. PINK1 encodes a kinase 
localized at the outer mitochondrial membrane, while PAR‑
KIN encodes an e3 ubiquitin ligase found in the cytosol 
[119, 161, 188]. Mitochondrial damage activates PINK1 
kinase activity, which recruits PARKIN protein and stimu-
lates autophagy of the damaged mitochondria [120, 188]. 
Consequently, models of PD induced by mutant PINK1 or 
PARKIN examined mitochondrial function as well as neu-
rodegeneration [45, 79, 85, 155] (Table S2).

DA neurons differentiated from mutant PINK1 iPS cells 
demonstrated significantly reduced translocation of PAR-
KIN to mitochondria when treated with the mitochondrial 
stressor valinomycin [155]. Furthermore, these valinomy-
cin-treated neurons showed an increased mitochondrial 
DNA copy number as well as increased biogenesis of mito-
chondria, which could indicate compensatory mechanisms 
for impaired mitochondrial function [155]. The mitochon-
drial disease phenotypes could be rescued by viral delivery 
and expression of wildtype (wT) PINK1 in patient-derived 
neurons [155].

In addition, iPS cells have been derived from PD 
patients with either a homozygous deletion of exon 3 [85], 
exons 2-4 [79], exons 6 and 7 [79] or with a compound 
heterozygous deletion of exons 3 and 5 of PARKIN [85]. 
DA neurons with mutant PARKIN had increased sponta-
neous DA release and decreased DA uptake compared to 
healthy controls [85]. These neurons also expressed higher 
levels of MAO-A and MAO-B mRNA, which produce sig-
nificant amounts of reactive oxygen species through the 
oxidative deamination of DA [85, 160]. As demonstrated 
for iPS cells with mutant PINK1, the cellular phenotypes in 
mutant PARKIN iPS cell-derived neurons could be reversed 
by overexpression of wT PARKIN [85]. Together, these 
results indicated that PARKIN suppresses DA oxidation and 
controls neurotransmission in human midbrain DA neu-
rons. Furthermore, mutant PARKIN DA neurons revealed 
an increased response to oxidative stress, showed altered 
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morphology of mitochondria and impaired mitochondrial 
homeostasis [79], and expressed higher levels of NRF2 
and NQO1 proteins, which are part of the same cytoprotec-
tive pathway and are activated in postmortem tissue of PD 
patients [79, 136]. Interestingly, the extent of disease phe-
notypes in iPS cell-derived DA neurons was directly corre-
lated with postmortem pathology within the donor’s brain. 
Indeed, the accumulation of SNCA protein was only found 
in those iPS cell-derived neurons with mutant PARKIN, 
whose donor presented with SNCA-positive Lewy bodies. 
SNCA pathology was not detected in iPS cell-derived DA 
neurons generated from a family lacking Lewy body for-
mation [79].

Models of amyotrophic lateral sclerosis using 
patient-derived iPS cells

ALS is a rapidly progressing neurodegenerative disease 
with a prevalence of 2 in 100,000 people affecting motor 
neurons in the spinal cord and the motor cortex. while the 
majority of patients suffer from the sporadic form of ALS, 
about 10 % of patients present with familial ALS caused 
by mutations in one of at least 32 known genetic loci [174] 
including superoxide dismutase 1 (SOD1; [145]), TAR 
DNA-binding protein 43 (TDP-43; [5, 121]), fused in sar-
coma (FUS; [98, 185]) and C9ORF72 [51, 141].

ALS caused by mutant SOD1

Mutations in the SOD1 gene are found in about 20 % of 
patients with familial ALS and in approximately 2 % of 
all ALS patients [17, 23]. SOD1-related ALS has been the 
most studied form of ALS and presents with motor neu-
ron degeneration as a result of mitochondrial dysfunction, 
protein misfolding, defects in axonal transport and dis-
turbed signaling through the IGF1/PI3K/AKT pathways 
(for review see [88]). The first ALS-iPS cell lines were 
derived from two siblings, an 82- and an 89-year old, with 
an L144F mutation within the SOD1 gene [57] (Table S2). 
These iPS cells were differentiated into HB9+ and islet-1+ 
motor neurons and into GFAP+ astrocytes in vitro but dis-
ease phenotypes were not analyzed. In a follow-up study, 
the same group published additional iPS cell lines with the 
L144F mutation and also iPS cell lines with a G85S muta-
tion in the SOD1 gene, and the neural differentiation poten-
tial of six ALS-iPS cell lines was compared to ten control 
iPS cells lines from healthy donors [18]. No differences in 
motor neuron differentiation were observed between these 
lines, although two ALS-iPS cell lines and one control iPS 
cell line could be differentiated into motor neurons only 
using an alternative differentiation protocol including dual 
inhibition of SMAD signaling in differentiating cells [18]. 
Furthermore, ALS-iPS cells carrying the L144F mutation 

were used to test the effect of a substance, kenpaullone, 
which appeared to be neuroprotective in a high-throughput 
screen of about 5,000 different compounds on motor neu-
rons derived from mouse eS cells [195]. In this study, ken-
paullone, an inhibitor of GSK-3 and HGK kinases, strongly 
improved the survival of motor neurons derived from 
L144F-SOD1-ALS-iPS cells and was more active than two 
compounds that recently failed in clinical trials on ALS 
patients [195]. These results highlight that patient-derived 
iPS cells may play a crucial role in drug discovery and in 
pre-clinical drug testing for the benefit of patients with neu-
rodegenerative diseases.

As both cell-autonomous and non-cell-autonomous 
mechanisms of neurodegeneration have been found to con-
tribute to ALS pathogenesis, stem cell-based models have 
been applied to address these effects in vitro. It is known 
that mutant SOD1 in astrocytes causes mitochondrial dys-
function and oxidative stress in neighboring motor neurons 
(non-cell-autonomous mechanism), while initiation of neu-
ronal degeneration in SOD1-ALS is thought to be caused 
by an intrinsic, cell-autonomous mechanism within motor 
neurons themselves [15, 17, 55]. Non-cell-autonomous, 
mutant SOD1-mediated detrimental effects on motor neu-
rons were shown in mouse [55] and also human [54] pluri-
potent stem cells that had been differentiated into mature 
motor neurons in vitro. Indeed, these studies demonstrated 
that pluripotent stem cell-derived motor neurons had an 
increased vulnerability and showed increased cell death 
when co-cultured with astrocytes derived from mice carry-
ing the SOD1-G93A mutation [54, 55].

ALS caused by mutant TDP‑43

TDP-43 is the transactive response (TAR) DNA-binding 
protein with a molecular weight of 43 kDa, a nuclear pro-
tein that plays a significant role in RNA metabolism includ-
ing RNA transcription, splicing and transport [101, 130, 
182]. Furthermore, TDP-43 is found in proteinaceous inclu-
sion bodies in the cytosol of motor neurons in most forms 
of ALS, and mutations in the TDP-43 locus have been 
linked to the development of familial and sporadic ALS 
[173]. Indeed, more than 30 different mutations, including 
the M337v mutation, have been described in ALS patients 
so far [89, 173]. As seen in independent studies, motor neu-
rons derived from M337v-TDP-43-iPS cells were more 
susceptible to cellular stress and showed increased vulner-
ability in different in vitro-culture assays including growth 
factor withdrawal, antagonism of the PI3K pathway or the 
application of the cytotoxic stressor arsenite [13, 63, 195] 
(Table S2). However, contradictory results were obtained 
regarding the viability of M337v-TDP-43 neurons under 
basal culture conditions eliciting discussions about clonal 
variations and the use of appropriate viability assays in 
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the context of iPS cell-based disease modeling [13, 14, 63, 
64]. M337v-TDP-43 motor neurons contained significantly 
higher amounts of soluble [13] and detergent-resistent, 
insoluble TDP-43 protein [13, 63] and demonstrated redis-
tribution of TDP-43 protein from the nucleus to the cytosol 
with the formation of cytosolic TDP-43+ pre-inclusion-like 
aggregates [63]. In line with the role of TDP-43 in RNA 
metabolism, gene expression profiles in purified TDP-
43-iPS cell-derived motor neurons revealed alterations in 
pathways mediating RNA processing, binding and splic-
ing [63]. As seen in postmortem tissue of ALS patients, 
ALS-iPS cell-derived motor neurons expressed cytoskeletal 
intermediate filaments at lower levels when compared to 
control neurons and had impaired neurite outgrowth as sim-
ilarly seen in a zebrafish model of ALS [63, 89]. Interest-
ingly, these changes were also observed in iPS cell-derived 
motor neurons from ALS patients with the Q343R and the 
G298S TDP-43 mutations, which are also located within 
the glycine-rich domain of the TDP-43 protein [63, 129]. 
Similarly, intracellular TDP-43 aggregates were recently 
observed in iPS cell-derived motor neurons from patients 
with sporadic ALS [26]. Notably, a reversal of disease phe-
notypes in TDP-43-iPS cell-derived motor neurons could 
be achieved through the application of anacardic acid, an 
inhibitor of histone acetyl transferase [63].

while non-cell-autonomous effects have been demon-
strated for SOD1-ALS, it is still unclear, if such mecha-
nisms would also apply to other forms of ALS. Recently, 
a study by Serio et al. [156] addressed this topic and inves-
tigated the influence of M337v-TDP-43-iPS cell-derived 
astrocytes on healthy iPS cell-derived motor neurons. As 
shown for motor neurons with the M337v-TDP-43 muta-
tion, M337v-TDP-43-iPS cell-derived astrocytes were 
more vulnerable and contained increased levels of soluble 
TDP-43 protein that was mislocalized from the nucleus to 
the cytoplasm [13, 156]. when co-cultured with M337v-
TDP-43-iPS cell-derived astrocytes, however, healthy 
motor neurons did not show an increased vulnerability 
but behaved like neurons that had been co-cultured with 
healthy iPS cell-derived astrocytes. These iPS cell-based 
results demonstrated that neurodegeneration did not occur 
in a non-cell-autonomous fashion in M337v-TDP-43-ALS 
[156].

Models of frontotemporal dementia using patient-derived 
iPS cells

Pathological TDP-43 has also been linked to the develop-
ment of frontotemporal lobe degeneration (FTLD-TDP), 
an ubiquitin-positive but tau- and SNCA-negative form 
of frontotemporal dementia (FTD). FTD is the second 
most common pre-senile dementia after AD and is clini-
cally characterized by deficits in cognition, language and 

behavior due to pronounced atrophy in the frontal and tem-
poral lobes [166]. In addition to mutations in the TDP-43 
locus, mutations in the progranulin (PGRN) gene, intronic 
hexanucleotide repeat expansions within the C9ORF72 
locus and mutations in the MAPT gene, besides others, 
have been linked to the development of FTD (for review 
see [135]).

FTD caused by mutant progranulin

PGRN mutations are seen in about 10 % of all FTD cases 
and cause haploinsufficiency of the PGRN gene with 
concomitant loss of PGRN function [6, 10, 47]. A recent 
publication by Almeida et al. [3] investigated pathologic 
alterations in iPS cell-derived cortical neurons from spo-
radic FTD patients and from FTD patients with the het-
erozygous S116X PGRN mutation (Table S2). This study 
demonstrated that patient-derived cortical neurons from 
both sporadic and S116X-PGRN-FTD patients were more 
susceptible to tunicamycin, an inhibitor of protein N-gly-
cosylation within the eR, and to lactacystin, an inhibitor 
of the proteasome. Furthermore, S116X-PGRN-FTD-iPS 
cell-derived cortical neurons were more vulnerable towards 
staurosporine, towards the two PI3K-inhibitors wortman-
nin and LY294002 and towards the MeK/MAPK inhibitor 
PD98059 [3] demonstrating involvement of these path-
ways in PGRN-FTD pathogenesis. Interestingly, FTD-iPS 
cell-derived neurons exhibited stress-induced transloca-
tion of nuclear TDP-43 protein to the cytoplasm and this 
translocation of TDP-43 was observed in PGRN-FTD-iPS 
cell-derived neurons even in the absence of cellular stress-
ors. These findings are in line with observations that the 
brains of FTD patients with PGRN mutations have TDP-
43 pathology including accumulation of TDP-43 protein 
within the cytoplasmic compartment [6, 121]. As seen for 
other iPS cell models of neurodegeneration involving loss 
of gene function due to genetic mutations (e.g. PARKIN or 
PINK-1), genetic correction of PGRN haploinsufficiency 
through lentiviral overexpression of PGRN in PGRN-FTD-
iPS cell-derived neurons resulted in reversal of most of the 
phenotypes described above [3].

FTD caused by mutant MAPT

Mutations in MAPT encoding the microtubule-associated 
protein tau constitute another cause of familial FTD and 
result in the accumulation of phosphorylated tau in neurons 
and glia in several brain areas including the frontal and 
temporal cortex as well as the substantia nigra [132, 165, 
171]. Fong et al. [67] derived iPS cells from an individual 
with a heterozygous A152T MAPT mutation and generated 
isogenic control iPS cell lines using zinc-finger technology 
(Table S2). with this approach, pathologic changes were 
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observed, which comprised increased fragmentation and 
enhanced phosphorylation of tau protein (Ser 202 and Thr 
205) in mutated iPS cell-derived neurons, which were sig-
nificantly reduced in gene-corrected cells [67]. On the other 
hand, introducing a second mutation in patient-derived 
iPS cells instead of genetic correction resulted in homozy-
gous A152T MAPT and in even more pronounced patho-
logic changes in iPS cell-derived neurons, as evidenced by 
increased phosphorylation and enhanced fragmentation of 
tau protein [67].

FTD caused by mutant C9ORF72

The most common mutation in FTD and ALS is the 
GGGGCC hexanucleotide repeat expansion in the noncod-
ing region of C9ORF72 [51, 113, 141]. Recently, several 
research groups generated iPS cells from patients carrying 
expanded C9ORF72 GGGGCC repeats and described dis-
turbed RNA metabolism as a contributing pathogenic fac-
tor in C9ORF72-FTD/ALS [2, 58, 152] (Table S2). Indeed, 
while GGGGCC repeats showed instability upon repro-
gramming and during neuronal differentiation [2], a subset 
of patient-derived iPS cells [2] and neurons [2, 58, 152] 
exhibited nuclear RNA foci containing GGGGCC repeats, 
which were not detected in healthy control cells but have 
been described in some patients with C9ORF72-FTD [51]. 
To characterize potential binding partners of these intra-
nuclear GGGGCC RNA transcripts, a proteome analysis 
on 16,368 proteins was performed on C9ORF72-iPS cell-
derived neurons [58]. This screen revealed 19 candidates 
and included the RNA-binding protein ADARB2, which 
also colocalized to GGGGCC RNA foci in postmortem 
CNS tissue of C9ORF72 patients [58]. C9ORF72 neurons 
contained non-ATG translation (RAN) di-peptide (poly-
Gly-Pro) repeats [2, 58], that have recently been observed in 
patients with FTD/ALS [8, 118]. These data indicated that 
pathologic changes in C9ORF72-FTD/ALS patients could 
be modeled in patient-specific iPS cells. That was further 
supported by the fact that C9ORF72-iPS cell-derived neu-
rons revealed dysregulation of specific genes, which were 
similarly misexpressed in CNS tissue of C9ORF72 patients 
including NEDD4L, FAM3C, CHRDL1, SEPP1 and SER‑
PINE2 [58]. Neurons also accumulated p62, a component 
in neuronal inclusions in C9ORF72 patients and a substrate 
of the autophagy pathway [1, 2]. In line with that, neurons 
had compromised autophagy function, as indicated by an 
increased vulnerability after exposure to the autophagy 
inhibitors chloroquine and 3-MA [2], and revealed an 
increased susceptibility to excitotoxic stress induced by 
glutamate [58]. Importantly, C9ORF72-associated RNA 
toxicity could be rescued by application of antisense oligo-
nucleotides (ASO) targeting either the intronic GGGGCC 
repeat sequence or a C9ORF72 downstream sequence 

in exon 2 and appeared to be independent of C9ORF72 
mRNA levels and accumulating RAN products [58]. An 
ASO-mediated rescue of repeat-associated neuronal dis-
ease phenotypes was similarly described in an independent 
study on C9ORF72-iPS cells [152].

Models of Huntington’s disease using patient-derived iPS 
cells

HD is a monogenetic, autosomal-dominant disease caused 
by CAG trinucleotide expansions in exon 1 of the hunting-
tin (HTT) gene [41]. It is characterized by a degeneration of 
medium-sized spiny projection neurons within the striatum 
and, at later stages of the disease, also by degeneration of 
neurons within the cerebral cortex [137].

IPS cells have been generated from patients carry-
ing enhanced numbers of CAG repeats within the HTT 
gene ranging from 45, 60, 72 and 109 to 180 repeats [4, 
29, 35, 38, 42, 84, 128, 198] (Table S2). In addition, iPS 
cells have been derived from patients with rare homozy-
gous HTT CAG extensions (39/43 and 42/44 CAG repeats, 
respectively; [29]). These studies revealed disease pheno-
types, which have previously been tied to HD pathogenesis, 
validating these stem cell-based models of HD. Indeed, it 
has been demonstrated that mutant HTT, through interac-
tion with other HTT-binding proteins, causes decreased 
levels of intracellular ATP and increased caspase activity, 
disturbed mitochondrial function, impaired signaling by 
brain-derived neurotrophic factor (BDNF), perturbation of 
Ca2+ signaling and eventually excitotoxicity [49, 75, 199]. 
Likewise, HD-iPS cell-derived neurons showed increased 
caspase activity and cell death after prolonged culture 
or upon growth factor deprivation [4, 35, 42, 198], espe-
cially after removal of BDNF from the cell culture medium 
[42]. Furthermore, these cells presented with a decreased 
oxygen consumption rate along with decreased intracellu-
lar ATP concentrations, indicating an impairment of mito-
chondrial bioenergetics in patient-derived cells [4, 42]. 
In addition, HD-iPS cell-derived neural cells were more 
susceptible to H2O2-mediated oxidative stress and to exci-
totoxicity induced by pulsatile or chronic treatment with 
glutamate [42]. This effect was accompanied by disturbed 
Ca2+ homeostasis in challenged cells [42]. Finally, HD-iPS 
cell-derived neurons revealed an increased basal lysoso-
mal activity [29] and an increased susceptibility to 3-MA 
[42]. These findings are in line with the observation that 
an increased number of autophagosome-like structures and 
thus disturbed protein clearance is found in the brains of 
HD patients [49, 150].

Disease-associated changes in stress-response lev-
els could already be detected in undifferentiated iPS cells 
from HD patients [4, 35]. Comparative proteomic analysis 
among heS cells, healthy donor-derived iPS cells and iPS 
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cells from HD patients revealed 26 proteins that were dys-
regulated in patient-derived cells. Among these proteins, 
the antioxidant enzymes SOD1, glutathione transferase 
(GST) and glutathione peroxidase 1 (Gpx1) were signifi-
cantly downregulated, while the oxidative stress-response 
proteins Prx1, Prx2 and Prx6 were found in higher quan-
tities in undifferentiated HD-iPS cells [35]. Notably, simi-
lar findings have also been observed in the striatum of HD 
patients [170]. Furthermore, gene array analysis was per-
formed on undifferentiated iPS cells from HD patients that 
had been genetically corrected through bacterial artificial 
chromosome (BAC)-mediated homologous recombina-
tion to derive isogenic control lines [4]. This study dem-
onstrated that TGF-β pathway molecules, cadherin family 
members and caspase-related signaling molecules were sig-
nificantly altered in non-corrected HD-iPS cells as opposed 
to gene-corrected HD-iPS cells [4]. These pathways were 
also altered in alternative models of HD and in the brain of 
HD patients [12, 90, 140].

whole-genome expression analysis was also performed 
on control- and HD-iPS cells that had been differentiated 
into neural precursor cells in vitro [42]. In this study, 1,601 
genes were differentially regulated between control and 
patient-derived neural precursor cells and gene ontology 
analysis revealed dysregulated pathways involved in pro-
liferation, cell cycle regulation, cell signaling, axonal guid-
ance and cellular assembly [42]. Consistent with alterations 
in postmortem tissue from HD patients and HD transgenic 
mice, dysregulated genes in HD-iPS cell-derived neural 
precursor cells included UCHL1, EGFR (epidermal growth 
factor receptor), TRK (tyrosine kinase) receptors, p53, Syn‑
decan4, SRPX and also the HMG box protein 1, which was 
found to accumulate in the brains of patients suffering from 
AD [42, 176].

The onset of HD and disease severity are dependent on 
the number of CAG repeats within the HTT gene. Thus, 
an interesting question was if disease phenotypes in HD-
iPS cell-derived neural cells were also dependent on the 
length of CAG repeats. This question was addressed by the 
HD iPSC Consortium by comparing disease phenotypes 
in iPS cells derived from HD patients with either 60, 109 
or 180 CAG repeats [42]. They found that all HD-iPS cell 
lines shared a similar cumulative risk of cell death and an 
impaired energy metabolism when compared to the con-
trol lines but they also observed that certain disease pheno-
types such as responses to BDNF withdrawal and toxicity 
upon glutamate exposure were much more pronounced and 
robust in the HD-iPS cell line carrying the highest number 
(180) of CAG repeats in the HTT gene [42]. These results 
were thus consistent with observations and models of HD 
pathogenesis.

Intracytoplasmic and intranuclear aggregates of HTT 
protein are pathological hallmarks of HD [7]. Hence, it was 

examined if such changes also occur in differentiated iPS 
cells from HD patients. while intracellular aggregates did 
not appear under normal differentiation conditions in vitro, 
such inclusions were induced through the application of the 
proteasome inhibitor MG-132 to differentiating HD-iPS 
cells [38, 84]. Furthermore, intracellular aggregates of HTT 
protein were observed 33 weeks after injection of differ-
entiated HD-iPS cells into the lateral ventricle of postnatal 
P2 mice [84]. These data show that pathological hallmarks 
were elicited in patient-derived neural cells and underscore 
that genetic correction of cells prior to transplantation 
might be necessary if cells were to be used for cell replace-
ment therapy in regenerative paradigms. In this context, it 
should be noted that gene-corrected HD-iPS cell-derived 
neurons survived after transplantation in the striatum of 
R6/2 HD mice [111] and that HD-iPS cell-derived neurons 
mediated functional recovery in the quinolinic acid model 
of HD [84].

Models of spinal muscular atrophy using patient-derived 
iPS cells

Spinal muscular atrophy (SMA) is an autosomal-reces-
sive neurodegenerative disease caused by mutations in 
the survival motor neuron 1 gene (SMN1) [104]. These 
mutations result in a significant reduction of the SMN1 
protein and cause a selective degeneration of lower motor 
neurons within the anterior horn of the spinal cord. The 
SMN protein has several functions, including splicing of 
pre-messenger RNA and the biogenesis of small nuclear 
ribonucleoprotein particles [68, 82]. It also interacts with 
the 3′-untranslated region of β-actin mRNA in the axonal 
compartment of motor neurons [146]. Although SMA 
patients carry an intact SMN2 gene encoding an SMN2 
protein with overlapping function to the SMN1 protein, 
only about 10 % of the SMN2 protein remains functional 
due to alternative splicing and degradation of truncated 
SMN2 protein, which cannot compensate for significantly 
reduced SMN1 protein levels in patients. The first human 
iPS cell models of SMA were published in 2009 by ebert 
et al. [62] (Table S2). In this study, iPS cells were derived 
from a 3-year-old boy suffering from SMA. IPS cells 
from his unaffected mother served as controls. Quantifi-
cation of full-length SMN1 protein revealed significantly 
decreased levels in SMA-patient-derived fibroblasts and 
iPS cells, while the levels of alternatively spliced SMN2 
gene transcripts were unchanged in these cells. Thus, 
these findings highlighted that the typical transcriptional 
regulation of the SMN1 and SMN2 genes found in SMA 
patients in vivo was also reflected in patient-derived iPS 
cells in vitro [62]. The SMA- and control iPS cells were 
differentiated into HB9+, SMI-32+ and ChAT+ motor 
neurons, and motor neuron degeneration was observed in 
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SMA-patient-derived cultures after 8, but not 4 weeks of 
differentiation [62]. This was indicated by reduction of 
the size, percentage and synaptic coverage of SMA motor 
neurons when compared to control iPS cell-derived neu-
rons. These findings could be reproduced by other groups 
[37, 46] and also with iPS cells from a second patient, a 
23-month-old boy with SMA [37, 151]. In addition, these 
studies demonstrated reduced neurite outgrowth in SMA-
iPS cell-derived motor neurons [37, 46] and showed that 
motor neuron degeneration was associated with increased 
expression of the pro-apoptotic marker molecules cleaved 
caspase-3, cleaved caspase-8 and Fas ligand but not Bax, 
Bcl-2, cleaved caspase-9 or the apoptosis-inducing factor 
AIF [151]. These findings indicated death-receptor-medi-
ated apoptosis rather than mitochondria-associated apop-
tosis in SMA-iPS cell-derived motor neurons [151]. In 
addition, SMA-iPS cell-derived astrocytes showed mor-
phological changes and functional impairment, support-
ing the hypothesis that glial pathology might contribute 
to SMA development [116]. Some of the observed neu-
ronal disease phenotypes could be rescued by the appli-
cation of valproic acid and tobramycin to SMA-iPS cells 
[62], which increased the level of SMN protein in the 
context of SMA [22, 190], further indicating that SMA-
iPS cells may constitute a suitable cell population for in 
vitro drug testing and screening in SMA. An overexpres-
sion of SMN protein in SMA-iPS cells resulted in correc-
tion of impaired neurite outgrowth and improved survival 
of SMA-iPS cell-derived motor neurons [37]. Further-
more, genetic modification of the SMN2 locus towards 
a more SMN1-like state was followed by the rescue of 
several disease phenotypes [46]. In this report, single-
stranded DNA oligonucleotides with coding sequences 
of the SMN1 gene were introduced into undifferentiated 
SMA-iPS cells to generate isogenic control iPS cell lines 
with increased amounts of functional full-length SMN1 
protein. This approach not only resulted in prevention of 
iPS cell-derived motor neuron degeneration but also in 
increased formation of neuromuscular junctions between 
motor neurons and myotubes in in vitro-co-culture assays 
[46]. Furthermore, gene array analysis on gene-corrected 
cells revealed rescued expression of differentially regu-
lated genes involved in RNA metabolism, axonal guid-
ance and motor neuron development. Notably, gene-
corrected SMA-iPS cell-derived motor neurons showed 
improved engraftment after intraspinal transplantation 
into a mouse model of SMA and caused prolonged sur-
vival of these animals when compared to the transplan-
tation of non-modified SMA-iPS cell-derived motor neu-
rons [46]. These data again highlight the regenerative 
potential of gene-corrected patient-iPS cell-derived neu-
rons in the context of cell therapy in neurodegenerative 
diseases.

Models of other rare neurodegenerative diseases using 
patient-derived iPS cells

IPS cell models of other monogenetic neurodegenerative 
diseases included models of triplet repeat diseases, lysoso-
mal storage diseases and additional rare degenerative dis-
eases of the central or peripheral nervous system (Table S2).

Triplet repeat diseases other than Huntington’s disease

Spinocerebellar atrophy type 3 (SCA-3) or Machado–
Joseph disease is a slowly progressive neurodegenerative 
disease caused by CAG repeat expansions in the ataxin 3 
(ATXN3) gene, which lead to deficits in gait coordination 
and to poor control of speech, eye and hand movements 
[70]. SCA-3-iPS cells were derived from four patients 
ranging between 38 and 42 years of age and were differen-
tiated into mature neurons along with healthy control iPS 
cells. This report demonstrated formation of ATXN3-pos-
itive, SDS-insoluble aggregates in patient-iPS cell-derived 
neurons, which are typically found in patients’ tissue. The 
formation of aggregates was dependent on l-glutamine-
induced excitation and on functional Na+ and K+ chan-
nels in addition to functional ionotropic and voltage-
gated Ca2+ channels. Indeed, formation of SDS-insoluble 
ATXN3 aggregates was not observed in SCA3-fibroblasts, 
undifferentiated SCA3-iPS cells or SCA3-iPS cell-derived 
glial cells, consistent with the neuron-specific phenotype 
in SCA3. Furthermore, this report provided mechanistic 
insights into aggregate formation, as excitation-induced 
aggregation was preceded by Ca2+-dependent proteolysis 
of ATXN3. Notably, these SDS-insoluble ATXN3 aggre-
gates disappeared after inhibition of calpain, but not after 
caspase inhibition, confirming a significant role of calpain 
protease in ATXN3 aggregation in the context of SCA3-
disease development [93].

Friedreich ataxia (FA) is a disease with progressive spi-
nocerebellar neurodegeneration due to GAA·TTC repeat 
expansions in the first intron of the frataxin (FXN) gene [31]. 
This mutation causes reduced expression of FXN protein 
within mitochondria and leads to altered cellular iron metab-
olism, mitochondrial dysfunction and increased sensitivity to 
oxidative stress [30, 154]. Several groups derived iPS cells 
from FA patients [61, 76, 97, 109] and found epigenetic 
silencing of the FXN locus [97] and decreased levels of FXN 
transcripts in undifferentiated [76, 97, 109] and differentiated 
iPS cells [76]. In addition, neurons presented with delayed 
maturation and decreased mitochondrial membrane potential 
[76]. Furthermore, these studies demonstrated instability of 
GAA·TTC repeats during reprogramming with extensions 
[61, 76, 97, 109] and contractions [76, 109] of these repeats, 
and also described GAA·TTC repeat extensions during pro-
longed culturing of iPS cells in vitro [61, 76]. These changes 
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were associated with increased expression of the mismatch 
repair enzymes MSH2 and MSH6, as shRNA-mediated 
silencing of these two factors resulted in reduced GAA·TTC 
extensions during culture in vitro [61, 97]. These findings 
were consistent with the fact that GAA·TTC repeats in FA 
are genetically highly unstable and with the observation that 
mismatch repair enzymes are involved in the instability of 
trinucleotide repeat diseases [59, 95, 110]. Notably, such 
instability was not found in other iPS cell models of triplet 
repeat diseases including models of SCA-3 [93], spinal and 
bulbar muscular atrophy [125] or dentato-rubral-pallido-luy-
sian dystrophy [125] (Table S2).

Storage diseases

Gaucher’s disease (GD) is a lysosomal storage disease 
caused by a mutation in the GBA-1 gene encoding acid-
β-glucocerebrosidase [87]. This enzyme cleaves glucosyl-
ceramide into glucose and ceramide [20]. However in GD 
patients, the enzymatic activity is significantly decreased 
leading to the accumulation of glucosylceramide and gluco-
sylsphingosine in lysosomes as well as to cellular degener-
ation in multiple brain areas [191]. So far, stem cell models 
of the acute (type 2) and the chronic (type 3) neurono-
pathic form of GD have been published [128, 181] (Table 
S2). while iPS cells from type 3 GD patients were char-
acterized only at the undifferentiated stage [128], Tiscornia 
et al. [181] derived iPS cells from type 2 GD patients and 
described decreased levels of acid-β-glucocerebrosidase in 
iPS cells and differentiated DA neurons. Decreased acid-
β-glucocerebrosidase activity in neurons was rescued by 
enzyme overexpression in undifferentiated cells and by the 
application of the two chaperone compounds 6S-AdBI-NJ 
and NOI-NJ, which were suggested to stabilize protein 
levels and to facilitate protein trafficking to the lysosome 
[181]. Thus, such iPS cell models could be useful in find-
ing and testing potential small molecules as alternatives 
to enzyme replacement and substrate reduction therapy in 
GD patients. Other stem cell models of storage diseases 
included models of Pompe disease [78], Niemann–Pick 
type C1 disease [183] and X-linked adrenoleukodystrophy 
[83, 189]. Notably, intracellular accumulation of disease-
specific products such as glycogen in Pompe disease [78], 
cholesterol in Niemann–Pick type C1 disease [183] or very 
long chain fatty acids in X-linked adrenoleukodystrophy 
[83] was recapitulated in patient-derived iPS cells, neurons 
or oligodendrocytes, respectively (Table S2).

Other rare degenerative diseases of the central or 
peripheral nervous system

Hereditary spastic paraplegia (HSP) is a group of neurode-
generative diseases associated with spasticity of the lower 

limbs as a result of degeneration of corticospinal motor 
neurons and the pyramidal tract [66]. The most common 
form of HSP (SPG4) is caused by an autosomal-dominant 
mutation in the SPAST gene encoding spastin. Similar to 
neurons in the brains of HSP patients [91], HSP-iPS cell-
derived forebrain neurons presented with axonopathic 
changes including axonal swelling and an impairment of 
fast axonal transport of mitochondria along axons [52]. 
Interestingly, axonopathic changes in iPS cell-derived neu-
rons could be rescued by vinblastine, which has previously 
been applied to reduce axonal swelling in SPG4-deficient 
primary neurons [65].

Familial dysautonomia (FD) is associated with a degen-
eration of neurons of the peripheral nervous system and is 
caused by a mutation in the I-κ-B kinase complex-associ-
ated protein (IKBKAP) [77]. As a consequence, missplic-
ing of IKBKAP and a decrease of normal IKBKAP tran-
scripts lead to impaired migration of disease-affected cells 
[40]. Several FD-iPS cell lines were differentiated into 
neural crest precursor cells and peripheral neurons [102]. 
Interestingly, FD-iPS cell-derived neural precursor cells 
also showed defects in IKBKAP splicing and impairment 
of migration in scratch wound assays. In addition, these 
cells presented with impaired differentiation into periph-
eral neurons, altogether providing an excellent human in 
vitro-model of FD. In an initial experiment, the plant hor-
mone kinetin [164] proved successful in reducing the level 
of misspliced IKBKAP transcripts in FD-iPS cell-derived 
neural crest precursor cells. Furthermore, kinetin improved 
the differentiation of FD-iPS cells into peripheral neurons 
[102]. Based on this study, the same group performed high-
throughput screenings on FD-iPS cell-derived neural crest 
precursor cells with approximately 7,000 compounds and 
found eight substances that decreased the levels of mis-
spliced IKBKAP transcripts, while increasing the levels of 
wT-IKBKAP transcripts [103]. This study also unraveled 
the molecular targets of one of these hits, compound SKF-
86466, highlighting the usefulness of patient-derived iPS 
cells for large-scale screening of compounds for the poten-
tial treatment of neurodegenerative diseases [103].

Human cell culture models of neurodegeneration using 
iN cells

During the last few years, progress has been made towards 
generating neuronal cell types from fibroblasts with-
out passing through a stage of pluripotency. This can be 
achieved by transduction of fibroblasts with the neural tran-
scription factors Ascl1, Brn2, Myt1l and NeuroD1 resulting 
in the derivation of functional neurons, which were termed 
induced neurons or iN cells [127] (Fig. 1). These iN cells 
were electrophysiologically active and expressed typical 
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neuronal marker molecules such as MAP2, NeuN and syn-
apsin [127]. Importantly, this technology can be applied 
to adult human fibroblasts isolated from skin biopsies of 
patients or healthy control individuals and thus has been 
used, with slight modifications, to model neurodegenera-
tive changes in vitro (Table S3).

One report demonstrated the derivation of iN cells from 
two patients with familial forms of AD, who carried the 
A246e mutation in the PS1 gene or the N141I mutation in 
the PS2 gene, respectively [134]. These AD-iN cells were 
generated within 3 weeks of culture through transduction 
with the transcription factors Ascl1, Brn2, Myt1l, Olig2 
and Zic1. AD-iN cells and control iN cells expressed mark-
ers of glutamatergic forebrain neurons and formed synaptic 
connections in in vitro-co-culture assays [134]. In com-
parison to their parental fibroblasts, iN cells from the AD 
patients and iN cells from control individuals expressed 
higher levels of APP and sAPPβ, while only the AD-iN 
cells expressed significantly higher amounts of Aβ40 and 
Aβ42 protein. Importantly, the Aβ42/Aβ40 ratio was sig-
nificantly enhanced in AD-iN cells when compared to con-
trol iN cells, thus mimicking findings obtained from studies 
on AD-iPS cell-derived neurons described above. Likewise, 
AD-iN cells presented with an enlarged endocytic compart-
ment with increased numbers of APP+ intracellular punc-
tate [134]. Notably, this disease phenotype was rescued by 
transfection of AD-iN cells with a plasmid encoding non-
mutated PS1 [134].

iN cells have also been derived from two patients with 
PD [28]. One patient carried a duplication of the SNCA 
locus, while the other PD patient had a mutation in the 
PARKIN gene. This study highlighted that functional DA 
neurons can be derived from human fibroblasts by direct 
transdifferentiation, which was achieved by transduction of 
fibroblasts with doxycycline-inducible lentiviruses encod-
ing Ascl1, Nurr1 and Lmx1a. These DA-iN cells expressed 
typical DA marker molecules such as TH, ALDH-1A1, 
AADC, vMAT2 and DAT and showed electrophysiological 
activity [28]. Since DA-iN cells from PD patients and from 
control individuals were derived with similar efficiencies, 
these cells provide a suitable cell source for an in-depth 
analysis of disease-related phenotypes as described above 
for iPS cell-based models of PD.

These studies show that important progress has been 
made towards modeling neurodegenerative diseases using 
human cell-based systems. As iN cells are generated within 
only weeks by direct transdifferentiation of patients’ fibro-
blasts, disease modeling assays can be performed in a 
shorter time frame when compared to assays using iPS 
cells. However, due to rapid cell-type conversion, it is pos-
sible that cells do not properly pass through a neuronal 
step-by-step maturation program and that unconverted 
fibroblasts and partially reprogrammed cells remain in 

culture, which may influence outcomes of disease mod-
eling assays using iN cells (for reviews see [149, 187]). 
Current research addresses these challenges. For instance, 
further development of this technology led to the deriva-
tion of neural progenitor cells termed induced neural stem 
cells (iNSCs), which can be propagated over long periods 
of time and which have the potential to differentiate into 
mature neuroectodermal cell types such as neurons, astro-
cytes and oligodendrocytes at higher numbers in vitro [71, 
92, 142, 179]. Although human iNSC-based stem cell mod-
els of neurodegeneration have not been established yet, 
this technology could constitute a very important approach 
towards research and therapy in neurodegenerative diseases 
and could complement research on patient-derived iPS 
cells.

Conclusions

Research on patient-derived iPS cell lines has significantly 
increased in the past years (Fig. 3). Other neurologic dis-
eases have also been modeled with iPS cells and include 
neurodevelopmental disorders such as Rett syndrome [96] 
or fragile X syndrome [184] and neuropsychiatric diseases 
such as schizophrenia [21]. Importantly, not only early-
disease phenotypes of genetic, but also of sporadic, dis-
eases can be captured with this approach and several stud-
ies have presented significant neuropathological changes 
in patient-iPS cell-derived neurons. These changes point 
towards underlying pathogenic mechanisms of disease 
development, as presented in this article. It is desirable that 
iPS cell research translates into clinical applications, where 
compounds are first tested in high-throughput screening 
systems to modify disease-affected pathways in vitro, and 
where suitable candidates would then be applied in clini-
cal trials with the goal to facilitate the development of new 
therapies for the benefit of patients. while further improve-
ments of neural differentiation protocols are needed to 
reduce cellular heterogeneity and to continuously refine 
sensitivities of assays and drug responses, other chal-
lenges have to be carefully addressed, which may critically 
impinge the discovery of disease phenotypes in patient-spe-
cific iPS cells. For instance, the heterogeneity of the patient 
pool, possible differences in the quality of fibroblasts for 
reprogramming and potential variabilities in differentia-
tion capacities of iPS cells have to be considered. Hence, 
an analysis of a single iPS cell clone from only one single 
patient could yield different results when compared to an 
analysis of several iPS cell clones from several different 
patients with the same disease. This would, in turn, result 
in erroneous conclusions in disease modeling experiments 
(for review see [149]). Furthermore, the choice of con-
trol cell lines has a strong influence on disease modeling 
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assays. The use of iPS cells from gender- and age matched 
control individuals and from individuals genetically related 
to the patient might not always be the most appropriate 
approach. when modeling monogenetic neurodegenerative 
diseases, isogenic, gene-corrected control cell lines can be 
generated, which carry the same genetic variants as their 
parental patient-derived cells and which differ from these 
cells only by the disease-causing mutation [149]. Hence, 
further progress has recently been pursued to more eas-
ily derive isogenic control lines, for example through the 
application of transcription activator-like effector nucleases 
(TALeNs) [16] or by taking advantage of CAS/clustered 
regularly interspaced short palindromic repeats (CRISPR)-
mediated genomic editing [86].

Altogether, these recent studies on human stem cell 
models of neurodegeneration demonstrate that iPS cell 
technology, in particular, carries a strong potential for bio-
medical research on human neurodegenerative diseases.
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