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frequently due to genetic changes affecting genes like 
CD79B, SHIP, CBL, BLNK, CARD11, MALT1, BCL2, 
and MYD88. These changes likely foster tumor cell sur-
vival. Nevertheless, many of these features are also present 
in subsets of systemic DLBLC and might not be the only 
reasons for the peculiar tropism of PCNSL. Here, preclini-
cal animal models that closely mimic the clinical course 
and neuropathology of human PCNSL may provide fur-
ther insight and we discuss recent advances in this field.  
Such models enable us to understand the pathogenetic 
interaction between the malignant B cells, resident cell 
populations of the CNS, and the associated inflammatory 
infiltrate. Indeed, the immunophenotype of the CNS as well 
as tumor cell characteristics and intracerebral interactions 
may create a micromilieu particularly conducive to PCNSL 
that may foster aggressiveness of tumor cells and acceler-
ate the fatal course of disease. Suitable animal models may 
also serve as a well-defined preclinical system and may 
provide a useful tool for developing new specific therapeu-
tic strategies.

Keywords  PCNSL · Genetics · T cells · Astrocyte · 
Microglia

Introduction

Historically, lymphoma confined to the central nervous sys-
tem (CNS) has been a mystery for decades and there are 
major issues we still face today. This situation is impres-
sively reflected by the nomenclature, which has changed 
frequently in the 20th century. Initially, Bailey introduced 
the name “perithelial sarcoma”, but this was later changed 
many times, including “adventitial sarcoma” and “reticu-
lum cell sarcoma” [22]. These diverse terms acknowledge 
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terminal B cell differentiation. They show continued BCL6 
activity in line with ongoing activity of the germinal center 
program. This together with the pathways deregulated by 
genetic alterations may foster B cell activation and brisk 
proliferation, which correlated with the simultaneous MYC 
and BCL2 overexpression characteristic for PCNSL. On 
the genetic level, PCNSL are characterized by ongoing 
aberrant somatic hypermutation that, besides the IG locus, 
targets the PAX5, TTF, MYC, and PIM1 genes. Moreover, 
PCNSL cells show impaired IG class switch due to sμ 
region deletions, and PRDM1 mutations. Several impor-
tant pathways, i.e., the B cell receptor (BCR), the toll-like 
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the peculiar angiotropism of the tumor cells; characteristi-
cally, they distend the argyrophilic fibers of the blood ves-
sel walls and may thereby mimic sarcoma, a differential 
diagnosis more frequently considered by neuropathologists 
than a hematopoietic tumor, at least in the first half of the 
20th century. It was only after the general concept of clas-
sifying lymphomas on the basis of a precise morphological 
description of tumor cells had evolved that neuropatholo-
gists noticed the similarity between these intracerebral 
tumor cells and centroblasts or, less frequently, immunob-
lasts or centrocytes. This long story came to an end with 
the development of modern morphological, immunological, 
molecular cytogenetic, and molecular genetic techniques, 
which are sensitive enough to cope with the tiny amounts of 
tissue. The ultimate result is the definition of primary lym-
phoma of the central nervous system (PCNSL) as a distinct 
lymphoma entity. Simultaneously, this process provided 
insights into the pathogenesis of PCNSL and is reflected 
in the WHO Classification of Tumours series. Specifically, 
the inclusion of PCNSL in both the WHO Classification 
of Tumours of Haematopoietic and Lymphoid Tissues and 
the WHO Classification of Tumours of the Nervous System 
highlights the unique features of PCNSL and the extraordi-
nary association of malignant hematopoietic cells with the 
CNS [22, 45].

Definition

Primary CNS lymphoma is defined as malignant lym-
phoma of the diffuse large B cell (DLBCL) type confined 
to the CNS [45]. Excluded are lymphomas of the dura (fol-
licular lymphoma, marginal zone lymphoma), intravascular 
B cell lymphoma, lymphomas with previous or simultane-
ous systemic disease as well as lymphomas occurring in 
the setting of immunodeficiency [45]. DLBCL comprise a 
large and heterogeneous group of mature B cell lympho-
mas accounting altogether for 40 % of all lymphomas. The 
issue whether PCNSL are “just” lymphoma, i.e., DLBCL 
not otherwise specified, in the CNS or better regarded as a 
distinct lymphoma entity has long been a matter of debate. 
Similarities between PCNSL and systemic DLBCL and 
unique features of PCNSL will be compared and contrasted 
(see below). The mere fact of the existence of a malignant 
lymphoma confined to an immunoprivileged organ devoid 
of a classical lymphatic drainage system raises interesting 
questions regarding the mechanisms of its development, 
which are of fundamental relevance both scientifically and 
clinically.

Objectives of a study of PCNSL

Having noticed the hematogenous nature of the tumor 
cells of PCNSL and their B cell lineage with expression 

of PAX5, CD19, CD20, CD22, and CD79a, three major 
issues required investigation to elucidate the pathogenesis 
of PCNSL: first, accurate identification of the cellular ori-
gin of the tumor cells is a conditio sine qua non because 
lymphoma cells retain characteristic features of their nor-
mal counterpart, thus providing a fundamental basis for our 
understanding of PCNSL. Second, events leading to malig-
nant transformation and sustaining proliferation need to be 
identified and integrated into a pathogenetically sound con-
cept of PCNSL pathogenesis. Third, the mystery why this 
lymphoma entity develops in the CNS and, with extremely 
rare exceptions, remains confined to the CNS needs to be 
elucidated. The last topic is most challenging and answers 
are still fragmentary, while enormous progress has been 
made in our understanding of the histogenetic origin and 
the identification of molecular events contributing to lym-
phomagenesis. From these efforts, the concept of PCNSL 
with unique molecular, biologic, and immune features 
arose, which is of high clinical and therapeutic relevance, 
as PCNSL has increased in incidence over the last decades, 
now accounting for 3–5 % of all CNS tumors [45]. Gener-
ally, PCNSL in immunocompetent patients has to be dis-
tinguished from PCNSL in immunocompromised patients. 
While there are morphological and immunophenotypic 
similarities between PCNSL in both groups of patients, 
they differ fundamentally in their pathogenesis, which is 
Epstein Barr virus (EBV)-driven in the latter, but not in the 
former [50, 61, 62].

Here we focus on the molecular features that determine 
our current state of knowledge of the biology of PCNSL in 
immunocompetent patients as a basis for addressing open 
questions. The ultimate aim is to design specific therapeu-
tic regimens and to improve patients’ outcome. Despite the 
fact that pathogenetically relevant parameters have been 
identified, practically none of them have been validated in 
clinical studies so far. Therefore, at present it is unresolved 
whether they relate sufficiently strongly to prognostic out-
come or treatment.

PCNSL is arrested in terminal B cell differentiation 
and corresponds to a late germinal center exit B cell

To identify the histogenetic origin of the cells of hemato-
logical neoplasms, recapitulation of their differentiation 
under physiological circumstances can provide a clue, 
since lymphoma cells retain characteristic features of the 
non-malignant counterparts from which they likely evolve. 
Generally, B cell development (Fig. 1) can be regarded as 
a lifelong maturation process aiming at the recognition of 
antigens with unique specificity and high affinity. Start-
ing in the bone marrow, where antigen receptor encoding 
genes are in germline configuration in stem cells, V, D, 
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and J gene segments of the heavy and light chains of the 
immunoglobulin (IG) genes are assembled, thereby defin-
ing a naive B cell, which may now leave the bone marrow. 
Antigen encounter induces further maturation steps in the 
germinal center (GC) of secondary lymphoid organs, i.e., 
lymph nodes and spleen, to increase the binding affinity of 
the B cell receptor (BCR), the unique receptor for antigen 
recognition, for its antigen. The molecular correlate of this 
process is the introduction of somatic mutations into the 
first 1.5–2 kb of the V region genes of the BCR heavy and 
light chains. This process of somatic hypermutation (SHM) 
requires the presence of the specific antigen, antigen pre-
senting cells (APC), T cell help, activity of the enzyme 
activation induced deaminase (AID), and BCL6. The lat-
ter is a master regulator of the GC reaction, which fosters 
expression of a complex gene program of the GC reaction 
and represses genes promoting exit of the B cells from the 
GC [6, 7]. The introduction of somatic mutations into the 
V region genes of the BCR may either increase or decrease 
the affinity of the B cell for its antigen and result in selec-
tion of the B cell for further rounds of SHM and, finally, 
exit from the GC or in its apoptosis [56]. Subsequent to 
SHM, the B cell may undergo IG class switch recombina-
tion (CSR). CSR replaces the μ constant region of the BCR 
with one of the constant regions located downstream to 
generate diverse antibody classes. This AID-dependent pro-
cess occurs within the 3- to 5-kb repetitive switch region 
sequences which are located 5′ of each constant region 

segment. Differentiation into memory or plasma cells com-
pletes B cell differentiation. As all steps of B cell differen-
tiation require DNA strand breaks and, particularly in the 
GC, include exchange of genetic material at high speed, 
their failure may yield malignant cells. In fact, erroneous 
B cell differentiation has been linked to specific lymphoma 
entities (Fig. 1).

Regarding B cell differentiation, the tumor cells of 
PCNSL have reached a mature stage and correspond to GC 
cells (Fig.  1) [59, 62, 99]. Morphologically, they mostly 
resemble centroblasts and carry rearranged IG gene seg-
ments. The introduction of somatic mutations into the rear-
ranged IG segments [62, 76, 99] proves their participation 
in a GC reaction. Thus, the tumor cells are antigen-experi-
enced and, in fact, the mutational pattern indicates selection 
of the tumor cells for an antigen [62, 76, 99]. 60–80 % of 
PCNSL express the BCL6 protein which is confined to GC 
B cells [59]. The simultaneous expression of IRF4, which 
is expressed on a subset of GC and plasma cells, indicates 
that the tumor cells are on their way to leave the GC. This 
is supported by their expression of genes more closely 
related to memory B cells than to GC B cells. Together 
with cell-surface expression of IGM the combined BCL6 
and IRF4 expression indicates that further B cell matura-
tion is impaired. Plasma cell markers (CD38, CD138) are 
always absent. Important molecular mechanisms underly-
ing these particular features of the geno- and (immuno)phe-
notype have been elucidated and are outlined below.

Fig. 1   Histogenetic origin 
of PCNSL. Genotypic and 
phenotypic characteristics of the 
tumor cells of PCNSL reveal 
that they are derived from late 
GC exit B cells. They corre-
spond to mature B cells arrested 
in terminal B cell differentia-
tion. aSHM aberrant somatic 
hypermutation, SHM somatic 
hypermutation



178	 Acta Neuropathol (2014) 127:175–188

1 3

Multiple molecular alterations that converge 
on important pathways regulating B cell activation, 
immune reactions, and fate foster uncontrolled 
activation and proliferation

Multiple molecular alterations have been identified by stud-
ying PCNSL samples in recent years and have been inte-
grated into a pathogenetic concept explaining the geno- and 
phenotype of the tumor cells.

Genetic alterations associated with the GC reaction

The fact that PCNSL have experienced a GC reaction with 
evidence of ongoing SHM [62, 99] provides a clue for our 
understanding of its pathogenesis (Fig.  1). The GC reac-
tion is a “dangerous” process since it requires DNA strand 
breaks for subsequent exchange of genetic material. Under 
physiological conditions, BCL6 tolerizes B cells to DNA 
damage including breaks. The TP53 gene, a BCL6 target 
inversely correlated with BCL6, only exceptionally harbors 
a mutation [17] and is not altered in PCNSL (unpublished 
observation). During physiological B cell maturation, 
the GC reaction is tightly regulated in order to minimize 
genomic instability since derailment can cause oncogenic 
translocations.

In fact, PCNSL recurrently carry translocations affect-
ing the IG and particularly the BCL6 genes [58, 67, 69]. 
Indeed, BCL6 translocations were detected in 17, 23, and 
47  % of PCNSL [15, 67, 69]. The variation in frequency 
might be due to the size of the series and the different cut-
off levels applied for fluorescence in situ hybridization [58, 
67, 69]. Overall, one may expect one-fourth to one-third of 
PCNSL to harbor a BCL6 break. While intense efforts to 
identify the translocation partners of the IG genes—with 
the exception of BCL6—have been unsuccessful so far due 
to technical limitations, various partner genes (GAPDH, 
HIST1H4I, HSP90AA1, IGH, IGL, LPP) have been shown 
to have fused with the promiscuous BCL6 gene [58, 93]. 
BCL6 gene promoter substitution causes deregulated, con-
stitutive BCL6 activity, which has oncogenic properties 
[14, 52, 103]. The reciprocally negative feedback of BCL6 
and IRF4, a transcription factor expressed in a subset of 
normal late GC B cells and in plasma cells that physiologi-
cally causes extinction in the GC program and, thereby, 
promotes terminal B cell differentiation, is lost in PCNSL, 
which strongly express both BCL6 and IRF4 [21]. IRF4 
transactivates PRDM1 and both genes drive plasmacytic 
differentiation [44, 74, 95]. In 19  % of PCNSL, PRDM1 
activity is extinguished by deleterious mutations as well as 
by epigenetic silencing associated with upregulated miR-9 
and miR-30b/c [19, 28].

Thus, continued activity of BCL6, a master regula-
tor of the GC reaction modulating B cell activation, 

differentiation, cell cycle arrest, and apoptosis (for review 
see [7]), is considered to contribute to keeping the tumor 
cells of PCNSL in the GC stage. In PCNSL, the process 
of SHM is not confined to IG and BCL6 genes, but also 
involves other genes implicated in tumorigenesis. This 
active process of aberrant SHM may either activate or 
inactivate oncogenes and tumor suppressor genes includ-
ing PAX5 (60 %), TTF (70 %), CMYC (60 %), and PIM1 
(50 %) [68]. The fixed IGM/IGD phenotype of the tumor 
cells is in part due to miscarried CSR attempts of the tumor 
cells during which the sμ region was deleted [66].

In addition to translocations, gains and losses of genetic 
material are recurrent in PCNSL as evidenced by genome-
wide single-nucleotide polymorphism chip analysis and 
FISH analyses. Overall, gains are more frequent than losses 
affecting 18q21.33-q23 (43 %), chromosome 12 (26 %), and 
10q23.21 (21 %), while losses were detected in 6q21 (52 %), 
6p21 (37 %), 8q12.1–q12.2 (32 %), and 10q23.21 (21 %) [94].

Epigenetic alterations

Epigenetic alterations may also contribute to PCNS patho-
genesis. This includes epigenetic silencing by DNA meth-
ylation. Several genes including DAPK (84 %), CDKN2A 
(75 %), MGMT (52 %), and RFC (30 %) are targeted by 
DNA hypermethylation and potentially may have therapeu-
tic relevance [16, 27, 34]. In a subgroup of elderly PCNSL 
patients with methylated MGMT promoter, temozolomide 
monotherapy appeared to be therapeutically effective [49]. 
However, studies have not yet been performed in large 
numbers of patients. Genome-wide array-based DNA 
methylation profiling identified 194 genes as differentially 
methylated between PCNSL and normal hematopoietic 
controls with a significant enrichment of polycomb target 
genes and genes with promoters showing a high CpG con-
tent [80]. Comparison of methylation profiles of PCNSL 
and systemic DLBCL, however, did not reveal major dif-
ferences [80].

Our current knowledge of miRNA expression in PCNSL 
is still limited. Two studies on PCNSL samples reported a 
differential pattern of miRNA expression in PCNSL, how-
ever, with virtually no overlap. In a study of 11 PCNSL, 
the miRNAs miR-9 and miR-30b/c, which are associated 
with terminal B cell differentiation, were upregulated in 
PCNSL [28]. In another study of 9 PCNSL, miR-17-5p, 
which targets the proapoptotic E2F1 gene, and miR-10a, 
were expressed at significantly higher levels in PCNSL 
than in nodal DLBCL [84]. The analysis of cerebrospinal 
fluid (CSF) from 23 patients with PCNSL showed miR-21, 
miR-19, and miR-92 to be significantly elevated compared 
to controls with inflammatory CNS disorders [2]. Thus, 
approaches differing in materials and methodology may 
account, at least in part, for these discrepancies.
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Activation of pathways fostering tumor cell survival

Constitutive activation of the nuclear factor (NF)-κB 
pathway in PCNSL (Fig.  2) was evidenced by compara-
tive studies of genes upstream and downstream of the 
NF-κB complex as well as of NF-κB complex genes in 
PCNSL and non-malignant tonsillar GC B cells. Interest-
ingly, genes of this pathway (BAX, BCLXL, BCL2, MALT1, 
CARD9, CARD10, CARD11, CARD14, CCND2, CFLIP, 
RELA, RELB, NFKB1, NFKB2, IRF4) were more promi-
nently expressed in PCNSL [20]. These alterations could 
be explained by mutations targeting components of sev-
eral regulatory pathways upstream of the NF-κB complex 
including the toll-like receptor (TLR), the BCR signaling 
pathway as well as its BCR pathway target, the BCM com-
plex, are affected by mutations (Fig.  2). The BCR com-
plex consists of the IG heavy and light chains as well as 
of CD79A and CD79B subunits. Its expression is indis-
pensable for B cell survival. BCR signaling induces dif-
ferentiation, proliferation, and apoptosis of B cells. Crucial 

components of genes of the BCR signaling cascade are 
altered by somatic mutations in PCNSL (44  %) causing 
deregulated BCR signaling, however, not abolishing BCR 
signaling [64]. Mutations affected the SHIP (25 %), CD79B 
(20 %), CBL (4 %), and BLNK (4 %) genes and thus altered 
genes with tumor suppressor (SHIP, CBL, BLNK) or pro-
tooncogene (CBL) function [64]. In contrast, the SPIB 
gene, an Ets family transcription factor which interacts 
with IRF4 to amplify the NF-κB signaling required for 
full BCR signaling and is also important for the GC reac-
tion [43], was not targeted by somatic mutations in PCNSL 
(unpublished observation).

Signals from the BCR are transmitted to the BCM com-
plex consisting of three components, i.e., BCL10, MALT1, 
and CARD11, which is also subject to various alterations 
in PCNSL (Fig. 2). Amplification of MALT1 may underly 
the prominent expression of its gene product in PCNSL, 
which also express BCL10 [20, 67, 69, 81, 102]. Further-
more, 16  % of PCNSL harbored oncogenically activating 
mutations of the CARD11 gene, which encodes a scaffold 

Fig. 2   Genetic alterations involved into the pathogenesis of PCNSL 
converge on important pathways for B cell signaling. A plethora of 
genes are affected by point mutations, amplifications, translocations, 
and deletions. Other genes are deregulated by yet unknown mecha-
nisms. They target the signaling cascades of the BCR pathway, NF-
κB pathway and their targets, i.e., transcription factors. Worthy of 

note is that many genes described as being highly mutated in other 
tumors, e.g., TP53 or PTEN, or switched off by mutations in sys-
temic DLBCL, like TNFAIP3, do not play a major role in PCNSL. 
These observations indicate a different selection pressure in the CNS, 
their specialized and unique localization. BCR, B cell receptor; IgA, 
CD79A; IgB, CD79B; TLR toll-like receptor; CR chemokine receptor
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protein required for antigen receptor-induced NF-κB acti-
vation [65]. Thus, in addition to enhanced signaling from 
the BCR, its target is altered, thereby further boosting NF-
κB activation.

Moreover, the TLR pathway is also deregulated in 
50  % of PCNSL due to mutations of the MYD88 gene, 
the central adaptor protein (Fig.  2) [60]. These data were 
recently confirmed in an independent series [33]. In 36 % 
of affected PCNSL, mutations corresponded to a leucine 
to proline exchange at position 265 (L265P) [60], which 
is an oncogenically activating mutation [72]. 40 % of the 
PCNSL with this L265P mutation concomitantly harbored 
a CARD11 mutation [60], allowing synergism to further 
enhance NF-κB activity. On the other hand, CARD11 muta-
tions were not correlated with mutations in genes of the 
BCR pathway in PCNSL [64] indicating potentially com-
plementary effects of these mutations on NF-κB activity.

In addition to the BCR and TLR, which activate the clas-
sical pathway, BAFF receptor mediated stimulation may 
sustain NF-κB activity via activation of the non-canonical 
pathway. In PCNSL, BAFF receptor expressing tumor cells 
may react to BAFF produced by astrocytes [48].

Collectively, several potent pathways upstream of the 
NF-κB complex are altered which may contribute either 
alone or in synergy to the activation of the NF-κB path-
way. The high constitutive NF-κB activity in PCNSL also 
explains the prominent IRF4 expression by the tumor cells 
even in the absence of IRF4 translocations (unpublished 
observation), because IRF4 is an NF-κB target gene. Ulti-
mately, these various alterations converge to induce and 
sustain a proliferative, non-apoptotic phenotype of the B 
cells, which exhibit a remarkably increased proliferation 
rate reaching a MIB-1 index of up to 70–90  % [21], and 
may in part explain the poor prognosis of patients with 
PCNSL.

Role of the CNS microenvironment in PCNSL

Deciphering the interactions between the three major play-
ers in the CNS with PCNSL, i.e., the malignant B cells, 
resident cells of the CNS, and immune cells recruited to the 
brain, will provide a clue to our understanding of the patho-
genesis of PCNSL. In nodal lymphomas, gene expression 
profiling studies have identified a lymph node signature 
which reflected the character of the non-malignant cells 
in the tumor with genes of the extracellular matrix depo-
sition and histiocytic infiltration and which were associ-
ated with a favorable prognosis [51]. In PCNSL, the role 
of the target organ is even more challenging, as the immune 
reactions to the malignant B cells in an immunoprivileged 
organ represent a special scenario. Its elucidation will lead 
us beyond the disease of PCNSL and be of fundamental 

neuroimmunological interest. Thus, at present, understand-
ing the mechanisms underlying the selective tropism and 
confinement of this lymphoma entity to the CNS is the 
most challenging task in decoding the mystery of lym-
phoma confinement to the CNS.

B cell homing to the CNS and intracerebral migration

So far, the question whether B cells home to the CNS in a 
benign or malignant state has not been answered. B cells 
which have been recruited to the CNS in the course of an 
immune reaction, most likely in response to a pathogen, 
may have persisted for extended periods and eventually 
may have transformed while residing inside the brain. On 
the other hand, B cells may also have transformed outside 
the CNS, e.g., during a GC reaction in a secondary lym-
phoid organ, and entered the CNS thereafter. Generally, 
both of these mechanisms are conceivable. Regarding the 
latter hypothesis, homing of a malignant B cell exclusively 
to the CNS cannot be explained. So far, neither a cell adhe-
sion molecule nor a chemokine pattern predicting B cell 
homing selectively to the CNS was identified. PCNSL 
express cell adhesion molecules similar to nodal DLBCL 
including α3β1 and α4β1-1 and ICAM-1 [5, 75] (Fig.  3). 
Interestingly, tumor cells loosely infiltrating the brain tis-
sue showed lower αLβ2 integrin than compact cell clusters 
suggesting that this integrin is related to the infiltration pat-
tern of PCNSL within the brain parenchyma [75]. Bind-
ing of osteopontin expressing tumor cells to CD44, which 
is expressed by astrocytes [1, 36, 96], microglia [55, 96], 
cerebral endothelial cells [86], and infiltrating T cells, may 
promote migration and brain tissue invasion of the lym-
phoma cells [104] (Fig. 3).

While under physiologic conditions, the CNS is charac-
terized by an immunologically downregulated phenotype, a 
complex neuroimmune network is readily activated in the 
CNS under pathological circumstances, be it of inflamma-
tory or tumorous nature. This is also the case for PCNSL, 
in which activated CD4 and CD8 T cells, reactive B lym-
phocytes, and macrophages are recruited to the brain, 
where they are associated with the lymphoma cells. In 
addition, cerebral endothelial cells, astrocytes, and micro-
glia are strongly activated and respond in a cell-type spe-
cific manner to the malignant cells, thus, allowing cell-type 
specific reactions with the tumor cells (Fig. 3). While the 
tumor cells express CXCR4 and CXCL12, CXCR5 and 
CXCL13, astrocytes and microglia upregulated CXCL12, 
CCR5, and CCR6, endothelium expressed CXCL12 and 
CXCL13, and T cells expressed CCR5 and CCR6 [12]. In 
addition to diffusely infiltrating the brain, there is a ten-
dency for CD8 T cells to accumulate in perivascular areas, 
which was correlated with CXCL9 expressed by perivas-
cular macrophages and pericytes [78]. Binding of CXCL9 
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to CXCL12 can enhance migration of CXCR4+CXCR3+ 
CD8 T cells as well as CXCR4+ tumor B cells [12, 78]. 
This expression pattern of chemokines may contribute to 
the angiotropism of the malignant B cells. It has also been 
claimed that angiotropism of the tumor cells is fostered by 
IL-4 expressed by cerebral endothelial cells [88]. However, 
it is unlikely that a single mediator may underly this char-
acteristic architecture of PCNSL. In this regard it is impor-
tant to recognize that anatomy of the neurovascular unit is 
much more complex.

The neurovascular unit consists of three compartments, 
which are separated by distinct basement membranes, i.e., 
the vascular wall, the perivascular Virchow-Robin space, 
and the juxtavascular parenchyma (neuropil) (for review 
see [47]). To date, most of our knowledge on recruitment, 
homing, pattern of distribution of lymphocytes in the CNS 
and their restimulation in the CNS is based on studies of 
T cells in autoimmune and infectious CNS inflamma-
tion, while functional studies on malignant B cells have 
not been reported. In the perivascular space, where mac-
rophages at various activation states reside, lymphocytes 

readily establish contact with APC which present antigen 
and stimulate incoming lymphocytes [77]. After passage of 
the basement membrane of cerebral blood vessel endothe-
lial cells, lymphocytes residing in the perivascular space 
may interact with perivascular macrophages [8]. In the case 
of T cells in CNS inflammation, these cells are in search 
of their specific antigen [4]. Antigen recognition is required 
for subsequent invasion of the CNS parenchyma. In the 
absence of antigen, T cells remain confined to the perivas-
cular space [77]. Hypothesizing an analogous process for 
malignant B cells, their confinement and preferential accu-
mulation in the perivascular space may be due to lack of 
antigen-specific interactions. Such a scenario may explain 
the accumulation of malignant B cells within perivascular 
cuffs after their injection into the brain of rodents in non-
syngeneic models [42]. On the other hand, it is also con-
ceivable that the presence of perivascular APC, which also 
reside in the choroid plexus, beneath the ependyma [47], 
may create a micromilieu particularly convenient for the 
tumor cells of PCNSL, fostering their activation and con-
tributing to their sustained proliferation. In addition, the 

Fig. 3   Interaction between the major players in the CNS in PCNSL, 
i.e., tumor B cells, resident brain cells as well as reactive inflamma-
tory bystander cells. Via their expression of chemokines (CCL5), 
chemokine receptors (CXCR4, CXCR5), cytokine receptors (B cell 
activating factor, BAFF-R), cell adhesion molecules (lymphocyte 
function-associated antigen 1, LFA-1), the glycoprotein osteopon-
tin, and—in some, but not all cases—MHC class II antigen, tumor 
B cells may interact with their corresponding ligand on astrocytes 
(CCL5/CCR5, BAFF-R/BAFF), on microglial cells (CCL5/CCR5, 

osteopontin/CD44, MHC class II antigen), on reactive T cells (osteo-
pontin/CD44), and on endothelial cells [LFA-1/intercellular adhe-
sion molecule-1 (ICAM-1), CXCR4/CXCL12, CXCR5/CXCL13, 
osteopontin-CD44, MHC class II antigen]. These interactions may 
contribute to the morphological hallmarks of intracerebral lymphoma 
spread, i.e., formation of perivascular tumor cell cuffs via LFA-
1/ICAM-1, CXCR4/CXCL12, and CXCR5/CXCL13 and diffuse 
brain infiltration via CCL5/CCR5, BAFF-R/BAFF, and osteopontin/
CD44 interactions, respectively
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tumor cells may also contribute to a favorable micromilieu, 
thereby affecting proliferation, the pattern and extent of 
intracerebral spread, and may also influence the anti-tumor 
immune response. Regarding this issue, only the tip of the 
iceberg has yet been addressed, as in addition to astrocytes, 
microglia/macrophages, and endothelial cells it is likely 
that other cell populations of the CNS including neurons, 
oligodendrocytes, ependymal cells, and choroid plexus 
epithelial cells are also likely to contribute to the immune 
response and the interactions with the tumor cells. So far, 
emphasis has concentrated on the expression of immuno-
logically relevant cell-surface molecules.

Soluble mediators in PCNSL

In addition, it is likely that a plethora of soluble media-
tors interacting in a complex, finely tuned network play an 
important role in the interactions of the malignant B lym-
phocytes and their neighbors. Molecular alterations that 
are important for malignant transformation may also play 
a role in this regard. For instance, MYD88 mutations [60] 
may alter the cytokine milieu by inducing IL-6 and IL-10 
secretion of tumor cells via activation of IRAK4. Further-
more, BCL6 modulates a number of signaling pathways 
involved in the response to cytokines and chemokines 
including IL-6, and interleukin receptors: IL-10RA and IL-
10RB, and STAT family members, e.g., are targets of BCL6 
[6]. Interestingly, PCNSL patients were reported to differ 
from healthy controls in their IL-101082 genotype distribu-
tion [79]. In addition, elevated IL-10 levels were recently 
reported in the CSF of PCNSL patients as compared to 
other tumors and inflammatory CNS disorders [89]. How-
ever, these data are at variance with a number of studies 
that detected IL-10 in the CSF in pathological CNS condi-
tions, in particular in bacterial meningitis, but also in other 
neuroinflammatory disorders [31, 32, 38, 46, 53, 100, 101]. 
Since IL-10 is well-known to counterbalance pro-inflam-
matory immune reactions in the course of CNS inflamma-
tion and has been demonstrated to play an important role in 
this scenario [23, 24, 29, 30, 85, 92, 98], the recent report 
by Rubenstein et al. [89] is still in contradiction. Taken the 
data from various studies together, it is highly unlikely that 
CSF IL-10 levels can be regarded as PCNSL specific, in 
particular considering the complex neuroimmunological 
scenario in PCNSL that makes a single mediator as diag-
nostic parameter very unlikely.

Impact of MHC class I and II molecule expression on the 
tumor cells of PCNSL

Remarkably, 73  % of PCNSL were affected by heterozy-
gous and even homozygous loss or partial uniparental 
disomies of the chromosomal region 6p21.32 harboring 

the MHC class II encoding genes HLA-DRB, HLA-DQA, 
and HLA-DQB [94]. Correspondingly, 55 and 46  % of 
PCNSL had lost expression of HLA-A and HLA class II, 
respectively [11]. Similar to PCNSL, HLA class I and II 
molecules were not expressed on the tumor cells of tes-
ticular lymphoma, another DLBCL manifesting in an 
immunoprivileged organ [11]. In testis lymphoma a low 
level of HLA-DR mRNA was associated with significantly 
lower numbers of infiltrating CD3 T cells [82]. Of clini-
cal importance is the fact that MHC class II-negative sys-
temic DLBCL were correlated with a poor outcome [83]. 
Interestingly, this may also hold true for PCNSL: Patients 
with reactive perivascular infiltrates (RPVI) exhibited a sig-
nificantly better overall survival than patients with RPVI-
negative PCNSL, particularly among patients treated with 
high-dose methotrexate chemotherapy [78]. These data 
suggest that loss of MHC molecules may provide a survival 
advantage and may allow the tumor cells to escape from 
the (neuro)immune response.

Preclinical models for PCNSL

The observed clinically relevant data necessitate func-
tional studies addressing the interaction between the tumor 
cells and the various cell populations of the nervous sys-
tem and the immune system. So far, in vitro studies have 
been precluded since cell lines could not be established 
from PCNSL and appropriate animal models were not 
available. In the past, immunodeficient rodents were used 
which received human PCNSL cells either intracerebrally 
or outside the brain; however, these models do not allow 
adequate immunological studies. Several groups have 
implanted human MC116 B cells into the basal ganglia of 
athymic nude rats, 84 % of which developed a tumor [39, 
71, 97]. This rate could be increased to 92 % by pretreat-
ment with cyclophosphamide [97]. Furthermore, corre-
lation between MRI and histology was poor [97]. While 
i.v. rituximab proved highly effective, methotrexate was 
only minimally effective therapeutically as evidenced by 
evaluation of posttreatment MRI scans [39]. However, the 
MC116 cell line is, like Raji cells, which grow readily in 
the brain of athymic nude mice [42], a Burkitt lymphoma 
cell line [73]; since Burkitt lymphoma cells are entirely 
different from those of PCNSL [59] and DLBCL, they are 
irrelevant for investigation of PCNSL. The same holds true 
for EBV+ human lymphoblastoid B cell lines injected into 
athymic nude rats, which were used for radiation therapy 
studies that demonstrated that irradiation sensitized cells 
to nucleoside analogs-induced apoptosis [87]. Mineo et al. 
[57] injected the 38C13 large B cell line of C3H murine 
origin into the basal ganglia of C3H mice. Local intracer-
ebral application of rituximab at day 1 after injection of the 
tumor cells prevented cerebral tumor growth in 67 % (8/12) 
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of mice [57]. Basically, these experiments are interesting. 
However, this regimen does not target established PCNSL 
and, thus, is clinically irrelevant. Taken together, these vari-
ous models do not parallel human PCNSL appropriately.

Murine PCNSL as paradigm for human PCNSL

In addition to the requirement of a syngeneic system, lym-
phoma cells optimally should exhibit major characteristics 
of PCNSL, preferably exhibiting GC B cell features, since 
the stage of differentiation is an important parameter deter-
mining the ensuing immune reaction. A major step forward 
was the establishment of a murine model in which the 
A20.IIA cell line was introduced into the brain of synge-
neic mice resulting in lethal lymphoma [26]. Intracerebral 
growth of the malignant B cells was associated with recruit-
ment of CD4 and CD8 T cells, reactive B cells and with an 
increase in CD11b+ mononuclear cells and CD11c+ cells 
in the tumor. Leukocytes freshly isolated from the brain of 
tumor-bearing mice did not produce cytokines, but could 
be induced to do so by ex vivo stimulation with anti-CD3/
CD28 monoclonal antibodies in the presence of A20.IIA 
cells yielding concomitant Th1/Th2/TH17 profiles (IL-2, 
IL-4, IL-17, IFN-γ, GM-CSF) [26]. Athymic nude mice 
succumbed significantly earlier to cerebral or splenic lym-
phoma than their immunocompetent BALB/c counterpart 
indicating that T cells play a role in the response to the 
lymphoma [26]. This model proved valuable in address-
ing therapeutic regimens directed specifically at individual 
features of the tumor cells. Interestingly, TLR9 expressing 
A20.IIA cells could be targeted by CpG-ODNs, a TLR9 
agonist, and showed tumor regression when injected into 
the tumor 7 days after implantation [9]. Since this proce-
dure is rather early after transplantation before onset of 
clinical symptoms, its rationale in the treatment of PCNSL 
patients with established tumor burden is debatable. Trans-
fection of A20.IIA cells with human CD20 rendered 
murine lymphoma cells susceptible to ublituximab, which 
was injected into the cerebral lymphoma 4–7  days after 
implantation [10].

However, A20.IIA cells express IGG [40] and, thus, are 
more mature than IGM+ PCNSL, in which lack of CSR is 
a hallmark due to specific molecular alterations [66].

We have recently developed a syngeneic murine model 
of PCNSL using the BAL17 cell line, a mature tumor B 
cell derived from a BALB/c mouse [40, 54, 63]. To the 
best of our knowledge, at present there is no mouse cell 
line available, which resembles PCNSL more closely. 
BAL17 cells express CD19 and B220 and carry function-
ally rearranged IG genes that express IGM without hav-
ing performed CSR [63]. Using the Bethesda classifica-
tion of lymphoid neoplasms in mice [70], BAL17-induced 
lymphoma is characterized as murine DLBCL of the 

centroblastic-immunoblastic type. This model recapitulates 
major features of PCNSL and allows investigation of the in 
vivo interactions between the malignant B cells and cells 
in their target organ. Interestingly, after transplantation of 
BAL17 cells into the frontal lobe of immunocompetent 
BALB/c mice, 100  % of the animals developed PCNSL 
that ran a lethal course with a particular tropism of the 
lymphoma cells for the inner and outer ventricular system 
and the basal ganglia (Fig. 4). The angiocentric growth pat-
tern, a hallmark of human PCNSL, was also reproduced by 
BAL17 cells (Fig.  4) indicating that the perivascular Vir-
chow-Robin space may provide a particularly fertile micro-
environment for the lymphoma cells [63]. This local posi-
tion, however, may be a unique feature for B cells, be they 
both malignant or not. In various inflammatory (autoim-
mune and infectious) CNS disorders in humans and mice, 
B cells recruited to the CNS mainly stay in the perivascular 
space and do not spread throughout the brain as typically 
observed for T cells [91]. The preferential residence in the 
perivascular space may also indicate a strong interaction of 
the malignant B cells with components of the blood–brain 
barrier, particularly cerebral endothelial cells, which have 
upregulated MHC class I and II antigens, ICAM-1, and 
VCAM-1 [63]. Interestingly, activation of resident brain 
cells was locally confined to areas of lymphoma infiltra-
tion, where microglia and astrocytes upregulated ICAM-
1, MHC class I and II antigens, and GFAP, respectively 
[63]. CD4 and CD8 T cells were intermingled with the 
tumor cells [63]. So far, the precise function of T cells in 
murine PCNSL is still unknown. In the A20.II CNS lym-
phoma model, T cells recruited to the brain were mainly 
of the regulatory type [26], which raises the hypothesis of 
a permissive T cell response. Interestingly, repeated isola-
tion and re-transplantation of BAL17 cells into the brains 
of BALB/c mice accelerated intracerebral tumor growth 
and significantly shortened the time to death [63]. This 
poorer clinical course was attributed to an altered genotype 
and phenotype of the lymphoma cells. Alterations predomi-
nantly affected genes involved in the regulation of apopto-
sis, including Sp110, Birc3, Xaf1, and Ncf1 as well as genes 
of the JAK/STAT pathway (Il-9r, Stat1, Jak2) and immune 
response genes (Tlr-1, Ccl5, Il-1b, Cd74, H-2), all of 
which were upregulated [63]. The increased expression of 
immune response genes such as Ccl5 may facilitate intrac-
erebral spread of the lymphoma cells by fostering their 
interactions with microglia and astrocytes, which, in human 
PCNSL express the corresponding ligand CCR5 [12]. The 
increased TLR1 expression may foster tumor cell prolif-
eration by stimulation of the NF-κB pathway. Correspond-
ingly, the re-transplanted lymphoma cells expressed higher 
levels of MHC class I and II antigens [63], indicating their 
enhanced activation, which may also facilitate interactions 
with cells of the nervous and the immune system. These 
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data support the hypothesis that the microenvironment of 
the CNS provides a fertile environment for B lymphoma 
cells and may even induce a more malignant phenotype of 
the tumor cells. Thus, the syngeneic BAL17-PCNSL model 
recapitulates major features of human PCNSL and provides 
a useful tool for analyzing interactions of the tumor cells 
with individual components of the very special microenvi-
ronment of the CNS.

Future directions

In recent years, remarkable progress has been made in our 
understanding of the nature of PCNSL. Consensus has 
been achieved that PCNSL are a specific entity exhibiting 
both unique features and overlap with molecular charac-
teristics of other DLBCL outside the CNS. For instance, 
in systemic DLBCL, expression of the transcription factor 
FOXP1 is associated with a particularly poor clinical out-
come [3]. PCNSL are also characterized by FOXP1 over-
expression [18]. However, in contrast to systemic DLBCL, 
PCNSL exhibit a more complex alteration with a preferen-
tial overexpression of the FOXP1 isoforms 3 and 9 together 
with a downregulation of the normal isoform 1 [18]. The 
functional consequences of this kind of FOXP1 alteration 
is still unknown, in particular, whether it contributes to the 
impaired CSR in PCNSL analogous to mice which trans-
genically express this transcription factor and which are 
impaired in their CSR switch [90].

Progress has been achieved with respect to all three 
major pending issues specified here. Regarding the ques-
tion as to the histogenetic origin, the tumor cells were iden-
tified as exhibiting a late GC exit phenotype [59, 62, 67, 
68]. At present, however, our understanding of the differen-
tiation state of GC B cells with their genotypic and pheno-
typic characteristics is in the process of diversification lead-
ing to a differentiation into functionally different subtypes 

which may give rise to distinct malignancies. The further 
narrowing down of the cell of origin of PCNSL will be 
the next step that is likely to be of relevance for our under-
standing of its pathogenesis.

Despite the fact that many molecular alterations at 
the level of individual genes, epigenetics, converging on 
functionally relevant pathways have been identified in 
PCNSL, the deciphering of further molecular alterations 

Fig. 4   Neuropathology of BAL17-induced primary CNS lymphoma 
in BALB/c mice at day 28 after intracerebral transplantation. a The 
fronto-parietal leptomeninges are heavily infiltrated by densely 
packed lymphoma cells extending the subarachnoid space (asterisks). 
From here, tumor cells have invaded the superficial cortical layer. The 
dotted line denotes the cortical surface. Note the angiocentric growth 
pattern of lymphoma cells in the brain parenchyma (arrows) in addi-
tion to diffuse, sheet-like lymphoma growth. H&E staining; original 
magnification ×400. b Tumor cells express the pan-B-cell marker 
CD19. The arrow indicates the angiocentric growth pattern. Small 
clusters of lymphoma cells are diffusely scattered throughout the 
brain parenchyma. Immunohistochemistry with rat anti-mouse CD19 
and slight counterstaining with hemalum; original magnification 
×400. c The proliferative activity of the lymphoma cells is very high 
(>90 %). At day 28, dense sheets of lymphoma cells have infiltrated 
the leptomeninges. Immunohistochemistry with rabbit anti-mouse Ki-
67 and slight counterstaining with hemalum; original magnification 
×200

▸
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in PCNSL will continue to be in the focus of research 
to gain a deeper insight into its molecular pathogenesis. 
This will include a thorough analysis of the genome by 
whole exome sequencing, studies of miRNA profiles, pro-
teomics, and metabolomics. In these fields, studies are 
either not available or have been confined to only limited 
number of cases. For example, our current knowledge 
of miRNA expression in PCNSL is limited to the analy-
sis of 20 PNCSL in two separate studies using different 
approaches [28, 84] and, thus, the respective results are 
not comparable. So far, whole exome sequencing has 
been reported for four cases of PCNSL in which suffi-
cient tumor DNA and matched blood DNA were available 
[33]. Overall, 1,678 somatic mutations involving 1,424 
genes were detected [33]. After Sanger sequencing, five 
somatic mutations in three genes, i.e., MYD88, PIM1, and 
TBL1XR1 were reconfirmed [33]. These observations con-
firm our previous data on MYD88 and PIM1 mutations 
in PCNSL [60, 68] and reveal one novel mutation affect-
ing the TBL1XR1 gene [33]. TBL1XR1 plays a regulatory 
role in the NF-κB pathway and Wnt-mediated transcrip-
tion and it has been suggested that it is inactivated as a 
tumor suppressor gene in PCNSL [33]. In order to allow 
representative conclusions, many more cases need to be 
analyzed.

The prognostic role of most of the molecular altera-
tions identified is still unknown. So far, a prognostic rel-
evance has been identified only for a very limited number 
of parameters including a loss of copy numbers on chro-
mosome 6q in 22 PCNSL patients [81]. This was recently 
confirmed in another study of 29 homogenously treated 
patients, in which CDKN2A homozygous deletion also was 
associated with shorter progression-free survival and with 
overall survival [33]. Methylation of the RFC promoter 
was associated with a lower complete remission rate to 
high dose methotrexate-based chemotherapy; however, this 
observation was based on data obtained in 18 patients [27].

The unfavorable outcome of PCNSL might also be due 
to the frequent triple expression of the MYC, BCL2, and 
BCL6 proteins in PCNSL, and, moreover, the absence of a 
MYClowBCL2low subgroup [13]. The latter has been shown 
to be associated with a favorable prognosis in systemic 
DLBCL [35, 37, 41]. In a series of 50 PCNSL, we identi-
fied 82 % of PCNSL as MYChighBCL2high by immunohis-
tochemistry [13], a fraction significantly exceeding that in 
systemic DLBCL [35, 37, 41]. Interestingly, none of the 50 
PCNSL lacked both MYC and BCL2 expression [13]. In 
contrast to protein expression, only 8 % (4/49) of PCNSL 
showed a MYC break, thus revealing a striking discrep-
ancy between the high level of MYC protein expression 
and the scarcity of MYC translocations [13]. In this regard, 
one may speculate that BCR mediated signaling may fos-
ter MYC expression [25] also in PCNSL. Interestingly, in 

PCNSL, MYC overexpression was significantly correlated 
with the extremely high proliferative activity [13].

All of these potentially clinically relevant observa-
tions still await confirmation in a large group of patients. 
The general paucity of evidence of clinical relevance of 
molecular parameters can be explained by the lack of large-
scale prospective therapeutic studies encompassing a series 
of patients sufficient in number to allow the identifica-
tion of prognostically relevant parameters. So far, studies 
have been either performed retrospectively, frequently in 
homogenously treated patients or have been restricted to a 
limited number of patients much below the size of groups 
of extracerebral DLBCL, and have yielded controversial 
data or lacked statistical power. Since PCNSL is a rare dis-
ease, this problem should be overcome by intense coopera-
tion between the various groups in the field. They should 
join their efforts and perform international multicenter clin-
ical studies embedded in a well-defined research program.

The most recent progress providing an eminent step for-
ward is, from our point of view, the establishment of a reli-
able and well-reproducible syngeneic animal model, which 
allows us to precisely analyze the impact of the microen-
vironment and the cross-talk of the tumor cells of PCNSL 
with the other players in the CNS, i.e., cells of the immune 
system that constitute the inflammatory reactive infiltrate 
and resident cells of the CNS that are activated to interact 
with the lymphoma cells via cell-surface molecules and/or 
soluble mediators. Deciphering the role of the multiple fac-
tors involved in this complex scenario will provide a major 
future challenge ultimately destined to contribute to a thor-
ough and targeted therapy.
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