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nuclear rNA foci containing GGGGCC repeat transcripts 
[7].

Nucleotide repeat expansion disorders are thought to 
elicit toxicity via three non-exclusive mechanisms [19]. As 
DNA, repeats can alter local chromatin structure and impact 
rNA transcription in cis, leading to suppressed rNA and 
protein expression from the gene in which they reside [5]. 
Alternatively, transcribed repeats as rNA can bind to and 
sequester rNA-binding proteins and prevent them from 
performing their normal functions [17]. lastly, translated 
repeats can alter the normal functions of the proteins in 
which they reside while also directly eliciting toxicity via 
alterations in proteostasis [24]. two additional factors add 
complexity to the determination of which mechanism is 
at play in any given disorder. First, many repeats are bi-
directionally transcribed, leading to two potentially toxic 
rNAs from any given repeat [15]. Second, many nucleo-
tide repeats appear capable of triggering protein translation 
in the absence of an initiator AUG codon through a process 
known as “rAN translation” [4].

In C9FtD/AlS, there is evidence for each of these 
potential pathogenic mechanisms. the GGGGCC repeat 
expansion is associated with a decrease in detectable 
amounts of multiple C9orf72 mrNA isoforms [7, 9]. 
In addition, multiple groups observe the appearance of 
GGGGCC rNA foci and a growing list of potential rNA-
binding proteins that could be sequestered by this rNA 
await further characterization [13, 18, 25]. Earlier this year, 
two different groups demonstrated that rAN translation 
leads to production of three different dipeptide repeat con-
taining proteins (Gly-Arg, Gly-Pro, and Gly-Ala) that form 
P62 positive aggregates observed in patients [1, 14].

the new papers published here provide further support 
for each of these possible disease mechanisms, while add-
ing a new player to consider: toxicity elicited by production 

In medicine, Occam’s razor is employed to enforce diag-
nostic parsimony upon complicated cases. Stated sim-
ply, Occam’s razor says that the single disease that best 
accounts for all of a patient’s symptoms is likely to be the 
primary cause of all of them. In biomedical research, a 
similar logic is often applied, triggering searches for a sin-
gle central pathogenic mechanism as the primary (or sole) 
pathway that causes a given disease. the rationale for this 
approach is clear: only when we know the one true cause 
of a disease can we know where to focus our efforts for 
therapeutic development. In this issue of Acta Neuropatho-
logica, five new papers suggest that successful application 
of Occam’s razor to the recently described C9-associated 
frontotemporal dementia and amyotrophic lateral sclerosis 
(C9FtD/AlS) is going to be a challenge.

C9FtD/AlS is a dominantly inherited intronic 
GGGGCC hexanucleotide repeat expansion in C9orf72, 
a neuronally expressed gene of unknown function [7, 20]. 
It accounts for a significant fraction of all inherited cases 
and ~4 % of sporadic cases of amyotrophic lateral sclerosis 
and frontotemporal dementia in Caucasian populations [7, 
9]. Pathologically, patients exhibit multiple types of pro-
teinaceous neuronal inclusions, including tDP-43 positive 
cytoplasmic aggregates as well as P62 and ubiquilin posi-
tive but tDP-43 negative cytoplasmic inclusions [6, 7, 10, 
16, 22, 23]. Additionally, neurons in patient tissues exhibit 
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of an antisense transcript through the repeat. this CCC-
CGG repeat containing transcript triggers formation of neu-
ronal and (less frequently) glial rNA foci in C9FtD/AlS 
patient tissues [8, 21]. these foci are seen predominantly 
in the nucleus, but they can occur in the cytoplasm, sug-
gesting that these transcripts could also be targets for rAN 
translation. Indeed, both Gendron et al. [8] and Mori et al. 
[12] demonstrate the presence of antisense-derived rAN 
translation products in all three reading frames, producing 
Arg-Pro, Gly-Pro, and Ala-Pro dipeptide repeat proteins. 
these antisense rAN products accumulate in P62 posi-
tive aggregates, just like the rAN products derived from 
GGGGCC sense transcripts. Interestingly, the presence of 
rNA foci and the rAN aggregates appears to be distinct 
(and potentially competing) events, such that the majority 
of neurons with sense or antisense rNA foci do not exhibit 
rAN-mediated inclusions and vice versa [8, 21]. Consist-
ent with this observation, Mackenzie and colleagues find 
that the distribution of one particular rAN product within 
the CNS of C9FtD/AlS patients is similar across clinical 
phenotypes and is anti-correlated with both cytoplasmic 
tDP-43 aggregate formation and neurodegeneration [11]. 
As they wisely point out, this could indicate either that 
these aggregates are in fact protective or that production of 
C9rAN proteins is not a factor in pathogenesis.

lastly, Belzil et al. [2] demonstrate that the local chro-
matin structure around the repeat is altered in both patient 
tissue samples and in blood from patients, with increased 
histone H3 and H4 tri-methylation in two neighboring CpG 
islands. these chromatin marks are typically associated 
with decreased transcription and they observe less mrNA 
in C9orf72 isoforms in patient samples and cells by rt-
PCr. Interestingly, they were able to reactivate transcrip-
tion of the gene in patient-derived cells with demethylating 
agents.

So what should we make of all of this? First, the pathol-
ogy is telling us that all of these processes do occur in the 
majority of patients with the clinical disease. What remains 
unclear is (1) which event (if any) is proximal in trigger-
ing neurodegeneration; (2) what components are necessary 
and sufficient to elicit toxicity and (3) what additive or syn-
ergistic interactions these components exhibit in disease 
pathogenesis. Early data suggest that both rNA alone and 
C9orf72 loss of function alone are capable of eliciting rel-
evant phenotypes in simple model systems [3, 25]. How-
ever, the relevance of these findings in mammalian systems 
at expression levels seen in patients is less clear. In addi-
tion, teasing out the relative contributions of each transcript 
and each rAN product will be difficult, given our current 
inability to dissociate the production of these two compo-
nents. lastly, although one might anticipate that antisense 
transcripts and rAN translation products will be less abun-
dant than their sense transcript counterparts, one must be 

cautious about dismissing even low level accumulation of 
potentially highly toxic molecules.

the corollary in clinical medicine to Occam’s razor is 
known as Hickam’s dictum, which states that “Patients 
can have as many diseases as they damn well please”. 
Future studies will undoubtedly extend our understand-
ing of how each of these different processes contributes 
to C9FtD/AlS disease pathogenesis individually. How-
ever, we may in the end need to accept that effects of the 
repeat on local chromatin structure as DNA, as a sink for 
GGGGCC and CCCCGG repeat binding proteins as rNA, 
and as different rAN protein products have additive (and 
perhaps synergistic) influences on disease biology. Such a 
messy reality will make development of effective therapeu-
tics more difficult, but ignoring such a reality carries equal 
risk.
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