
REVIEW

Synaptic degeneration in Alzheimer’s disease

Thomas Arendt

Received: 30 January 2009 / Revised: 7 April 2009 / Accepted: 7 April 2009 / Published online: 24 April 2009

� Springer-Verlag 2009

Abstract Synaptic loss is the major neurobiological

substrate of cognitive dysfunction in Alzheimer’s disease

(AD). Synaptic failure is an early event in the pathogenesis

that is clearly detectable already in patients with mild

cognitive impairment (MCI), a prodromal state of AD. It

progresses during the course of AD and in most early

stages involves mechanisms of compensation before

reaching a stage of decompensated function. This dynamic

process from an initially reversible functionally responsive

stage of down-regulation of synaptic function to stages

irreversibly associated with degeneration might be related

to a disturbance of structural brain self-organization and

involves morphoregulatory molecules such as the amyloid

precursor protein. Further, recent evidence suggests a role

for diffusible oligomers of amyloid b in synaptic dys-

function. To form synaptic connections and to continuously

re-shape them in a process of ongoing structural adaptation,

neurons must permanently withdraw from the cell cycle.

Previously, we formulated the hypothesis that differenti-

ated neurons after having withdrawn from the cell cycle are

able to use molecular mechanisms primarily developed to

control proliferation alternatively to control synaptic plas-

ticity. The existence of these alternative effector pathways

within neurons might put them at risk of erroneously

converting signals derived from plastic synaptic changes

into the program of cell cycle activation, which subse-

quently leads to cell death. The molecular mechanisms

involved in cell cycle activation might, thus, link aberrant

synaptic changes to cell death.
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‘‘Error is modern while truth is ancient’’

(Ramón y Cajal, 1928 [168])

When Ramón y Cajal pointed out ‘‘One also might imagine

that amnesia, a paucity of thought associations, retarda-

tion, and dementia could result when synapses between

neurons are weakened as a result of a more or less path-

ological condition, that is, when processes atrophy and no

longer form contacts, when cortical mnemonic or associ-

ation areas suffer partial disorganization’’ [167], he was

probably the first to realize that dementia results from a

dysfunction of synaptic contacts.

In the late nineteenth century, some scientists began to

speculate about how neuronal extension and retraction,

even in the adult brain, could relate to behavior [45, 49, 50,

108, 118–121, 165, 166, 210, 215, 220]. One particularly

attractive idea was that axons and dendrites of different

cells could grow closer to each other at frequently used

junctions to enhance communication. This sort of action,

some scientists thought, could account for learning and

perhaps even the association of higher ideas. Rabl-Rück-

hard [165] and others [49] advanced the idea that certain

conscious activities may be interpreted in terms of neuronal

‘‘ameboid’’ movements that could account for learning and

memory. Forgetting, on the contrary, was believed to

involve a ‘‘spreading of the gap.’’ Disuse, diseases of the

nervous system, and aging were believed to be the factors

that could cause processes to pull away from each other

at the intercellular junction. The idea that intercellular

junctional growth could account for memory was first
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anticipated in 1872 by Alexander Bain [14]. With this idea,

however, Bain was much ahead of his time, and contem-

poraries did not give his theory serious consideration. In

the 1890s, Ramón y Cajal similarly believed it probable

that information could be stored by modifying interneuro-

nal connections and that mental excercise leads to greater

growth of neuronal collaterals in the stimulated regions of

the brain [166, 167]. He also proposed that the proliferation

of neural connections in the cerebral cortex may correlate

with intelligence. In the Croonian Lecture given in England

in 1894, he surmised that ‘‘brain jogging’’ (‘‘gymnastique

cérébrale’’) may increase the growth of certain dendrites

and the branching of axon collaterals [166]. Intelligence, he

argued, can be achieved economically, without adding

more neurons and without demanding more space, by

increasing dendrite and axon branching. Only a few years

later, in 1897, Charles Scott Sherrington coined the term

‘‘synapse’’ to describe the junction between nerve cells.

Synapse loss is the major neurobiological substrate

of cognitive dysfunction in Alzheimer’s disease

More than 100 years after Ramón y Cajal’s original sug-

gestion, his ideas on the neurobiological substrate of

amnesia and dementia have basically been proven [212].

Data obtained by electron microscopy [40, 42–44, 182–

184], immunocytochemical and biochemical analyses on

synaptic marker proteins in AD biopsies and autopsies [47,

59, 83, 140, 211] indicate that synaptic loss in the hippo-

campus and neocortex is an early event [81, 135] and the

major structural correlate of cognitive dysfunction [19, 27,

42–44, 63, 66, 72, 80, 83, 106, 130, 134, 158, 228].

Quantitative ultrastructural studies performed on tem-

poral and frontal cortical biopsies within 2 to 4 years after

the clinical onset of the disease have revealed a 25% to

35% decrease in the numerical density of synapses and a

15% to 35% loss in the number of synapses per neuron

[40]. Synaptic loss might even be more pronounced in the

hippocampus where it amounts to 44% to 55% [183].

From all cortical areas analyzed, the hippocampus

appears to be the most severely affected by the loss of

synaptic proteins, while the occipital cortex is affected

least [22, 25, 26, 33, 38, 39, 56, 59, 79–81, 83, 106, 113,

117, 135, 139, 140, 157, 196, 206, 207, 211]. In other

words, there appear to be regional differences within the

cerebral cortex with respect to the severity of synaptic

marker loss that basically match the pattern of neuro-

fibrillary degeneration as outlined in the Braaks’ staging

[24]. Further, the highly correlative relationship between

loss of synaptic markers and neurofibrillary tangle counts

in the same brain region [79, 83, 117, 132, 180, 221] also

supports this link between tangle formation and synaptic

dysfunction. More detailed studies on the relationship

between synaptophysin mRNA and tangle formation at the

level of individual neurons directly proved a significant

reduction of synaptophysin mRNA in neurons affected by

tangle formation [29, 30].

On the contrary, results of studies on plaques are less

consistent. While a few studies [106, 180, 207] described a

link between higher plaques counts and lower synaptic

protein measures, other studies failed to establish such a

relationship [79, 80, 83, 117, 141].

Most studies analyzing the link between premortem

severity of cognitive impairment and synaptic pathology in

AD agree on the correlation between lower synaptic pro-

tein levels and some aspect of cognitive dysfunction [22,

79, 106, 131, 132, 133, 149, 180, 181, 206, 207, 211, 221],

although in several studies, correlations between synaptic

proteins and cognitive functions are region-specific.

The reduction in synaptic vesicle proteins in AD is

likely related to the clinical symptoms of dementia, given

their function in vesicle trafficking, docking and fusion to

the synaptic membrane and neurotranmitter exocytosis.

Synaptic pathology in AD is reflected by a loss of all major

components of small synaptic vesicles that accommodate

classical neurotransmitters and large dense core vesicles

that store most peptides, together with a loss of molecular

components of pre- and postsynaptic compartments

accompanied by extensive pathological changes of the

synapse [38, 84, 95, 105–107, 109, 128, 170, 194, 195, 206,

207, 221, 233] (Table 1).

Although degeneration of subcortical input might con-

tribute to cortical synapse loss [7], most of the synaptic loss

in the neocortex might derive from loss of cortico-cortical

associational fibers [86, 110, 136, 137, 150].

Synaptic failure is an early event and accelerates slowly

in a process of dynamic reorganization

Synapse formation and stabilization in the nervous system

are dynamic processes and so is the synaptic degeneration

in AD. AD is a slowly progressing disorder apparently

preceded by a clinically silent period of several years

or even decades. Similarly, synaptic degeneration might

be a slow process progressing from an initially reversible

functionally responsive stage of down-regulation of syn-

aptic function to stages irreversibly associated by marked

synapse loss [169].

Disturbances of synaptic integrity can be detected

already in patients with mild cognitive impairment (MCI),

a prodromal state of AD [133, 184], suggesting that syn-

aptic degeneration occurs very early on in the process of

AD. Ultrastructural stereological investigations on rapid

postmortem autopsy samples revealed an 18% synapse loss
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in the hippocampal CA1 region of MCI patients that pro-

gressed to a 55% synapse loss in mild AD [183]. Although

with progression of the disease there is a steady decline in

synaptic population, eventually accompanied by the loss of

about 10-20% of cortical neurons [94, 130], recent studies

suggest a biphasic process with an initial rise of synaptic

markers in early stages of the disease, suggesting synaptic

reorganization. An initial transient rise, for example, was

observed for synaptophysin and other presynaptic proteins

in cortical association areas at Braak stage III, i.e., prior to

neurofibrillary pathology [153]. Other studies indicated an

increase in drebrin in the frontal cortex of patients with

MCI followed by a 40% to 60% decrease in severe AD

[36], an increase in the expression of postsynaptic density

protein PSD-95 in AD brain [109], as well as an elevation

in glutamatergic presynaptic bouton density in midfrontal

gyrus of MCI patients [16]. Functional magnetic resonance

imaging (fMRI) on MCI patients similarly suggests that

there might be a phase of paradoxically increased activa-

tion early in the course of prodromal AD [200].

Dynamic synaptic reorganization during the process of

degeneration is further supported by observations of an

increase in synaptic size that accompanies synaptic loss in

various cortical regions in AD and might reflect the attempt

of a functional compensatory increase of synaptic efficacy

[18, 44, 182]. As a result, the total synaptic area per unit

tissue volume is initially preserved, but decreases thereaf-

ter, paralleled by cognitive decline [44, 138, 211]. Synaptic

compensatory mechanisms that in normal aging [15, 19,

20, 28, 55] succeed in preserving considerable cognitive

function are, thus, disrupted in AD. At least in early stages

of the disease, processes of compensation and decompen-

sation might be present at the time in the same region as

well as in different brain regions, which might to some

extent obscure direct linear relationships between brain

pathology and functional measures.

Findings of a deregulation of proteins involved in

structural plasticity of axons and dendrites [1, 51, 77, 93,

116, 146] as well as results of computational studies [76,

85] indicate a failure of local neuronal regulatory

mechanisms of synaptic plasticity and make a primary

disturbance of synapse turnover very likely. This assump-

tion is further supported by alterations in the composition

[20, 67, 102, 126, 205] and fluidity of membranes [53, 238]

as well as by direct morphological evidence of a disturbed

axonal and dendritic remodeling (for review, see [4, 5]).

Recent studies applying functional magnetic resonance

imaging (fMRI) provide further evidence of disrupted

organization of functional brain connectivity in AD. AD

patients have significantly lower regional connectivity and

show disrupted global functional brain network organiza-

tion when compared to healthy controls [199, 224].

Reduced functional connectivity of the hippocampus can

already be obtained in MCI patients compared to normal

aging control subjects [13, 92]. In AD patients, cognitive

decline is associated with disrupted functional connectivity

in the entire brain [204].

Mechanisms of synaptic failure in Alzheimer’s disease,

potential roles of Ab, APP and tau

Synaptic loss is currently the best neurobiological corre-

late of cognitive deficits in AD. In addition to the synapse

loss due to the death of neurons, there is evidence that

still living neurons lose their synapses in AD [34]. Fur-

ther, synaptic function is impaired in living neurons as

demonstrated by decrements in transcripts related to

synaptic vesicle trafficking [34]. The question, thus, has

been addressed to what extent the established amyloid and

tau pathology might contribute to synaptic dysfunction in

AD.

Disruption of synaptic function by Ab oligomers

Although Ab might show some deleterious cellular effects,

brain amyloid load does not correlate well with synaptic

loss, neuronal death or cognitive dysfunction ([211], see

above). Defects in synaptic transmission, furthermore,

occur in AD well before the formation of amyloid plaques

Table 1 Alterations of synaptic proteins in AD

Loss of molecular components of presynaptic membranes

GAP-43, SNAP-25, syntaxin [33, 38, 46, 59, 133, 194, 206, 207, 221]

Loss of molecular components of synaptic vesicles

Synaptotagmin, synaptobrevin, synaptophysin, synapsin I, rab3a,

p65, SV2, clathrin assembly protein, AP180

[22, 25, 26, 30, 38, 39, 59, 72, 73, 79, 81, 83, 106, 112, 113, 140, 157, 181,

195, 206, 207, 221, 228, 232, 235, 236]

Loss of molecular components of large, dense core vesicles

Chromogranin B, secretogranin II (chromogranin C), secretoneurin [95, 106, 107, 127]

Loss of molecular components of postynaptic membranes

Neurogranin, drebrin E and A [31, 38, 75, 77]
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and neurofibrillary tangles [4, 5, 223]. It might, thus, be

argued that soluble molecular species that are generated at

very early stages of the disease and that only at more

advanced stages are deposited in an aggregated form could

be involved in synaptic failure. It has, thus, been suggested

that soluble assembly states of Ab peptides can cause

cognitive problems by disrupting synaptic function in the

absence of significant neurodegeneration. There is evi-

dence that soluble oligomers of Ab can selectively impair

synaptic plasticity mechanisms necessary for memory

processing [35, 71, 176]. Both cell-derived and synthetic

soluble Ab oligomers can disrupt hippocampal long-term

potentiation in slices and in vivo, and can also impair the

memory of complex learned behavior in rodents and

decrease dendritic spine density in organotypic hippo-

campal slice cultures [48, 98, 99, 104, 156, 190, 192, 222].

Intracerebroventricular injections of soluble synthetic Ab1-

40-dimers rapidly inhibit the plasticity of excitatory syn-

aptic transmission at doses of 10-42 pmol comparable to

natural Ab [87]. Other studies, however, have suggested

opposite effects with picomolar levels of Ab1-40 playing a

neurotrophic role in cell cultures [161, 231]. Also, low

picomolar concentrations of preparations containing both

Ab1-42 monomers and oligomers have been shown to be

able to induce a marked increase in hippocampal long-term

potentiation and produce a pronounced enhancement of

both reference and contextual fear memory [164]. Current

findings on the effects of soluble Ab oligomers on synaptic

function are, thus, not entirely conclusive. Still, a recent

study applying array tomography, a technique that

combines ultrathin sectioning of tissue with immunofluo-

rescence, to a mouse model of AD provides compelling

evidence that senile plaques are a potential reservoir of

synaptotoxic oligomeric Ab [100].

Synaptotrophic function of human wild-type APP

and its failure in FAD-mutated APP

Disturbances of synaptic function and plasticity have also

been observed in transgenic mice overexpressing FAD-

mutated APP [32, 54, 62, 65]. APP is a type I transmem-

brane protein that belongs to a conserved family including

Apl-1 in Caenorhabditis elegans [37], APPL in Drosophila

[129, 173] and APP [209], APP-like protein 1 (APLP1)

[226] and APLP2 [197, 227] in mammals. Within the brain,

APP can be detected in synaptic membranes [97] and has

been shown to localize to postsynaptic densities, axons and

dendrites [187, 193]. APP undergoes fast axonal transport

[101, 178, 229] and is targeted to synaptic sites [187, 193].

Studies on overexpression or knockout of APP and its

homologues indicate a critical role in neuronal survival,

neurite outgrowth, synaptogenesis and synaptic plasticity

[41, 115, 148, 152, 191].

The proteolytic processing of APP has been investigated

extensively, and numerous studies have focused on eleva-

tions in the Ab-peptide, which is generated during normal

metabolism of APP [70] and forms the major component of

plaques, a major hallmark of the disease [142]. While

mechanisms of APP processing giving rise to Ab have

received the most attention, the physiological function of

APP and potential sequelae of impaired function are less

well understood.

Several genetic knockout models for APP and its

homologues have been generated to gain insight into its

function [78, 219, 237]. Triple knockouts for APP and its

homologues are lethal and show cortical dysplasia [82].

Studies on the Drosophila APP homologue APPL support a

potential role in axonal arborization, axonal transport and

synapse formation both during development and in the

mature nervous system [69, 111, 122, 214]. APPL does not

contain an Ab-peptide sequence, suggesting that the con-

served physiological function of APP does not involve Ab.

Mice deficient in APP show abnormalities in expression of

synaptic markers and in axonal and dendritic arborization,

together with neurological and behavioral dysfunction and

impaired long-term potentiation [41, 124, 159, 188, 237].

During rat brain development, expression of APP peaks in

the second postnatal week, the time of synapse formation.

After development is completed, high expression levels of

APP persist in the adult olfactory bulb, where continuous

synaptogenesis occurs in the adult animal [114, 179], and

its expression level increases in animals reared in enriched

environments [89]. This all suggests an involvement of

APP in the process of cell differentiation and the estab-

lishment and plastic maintenance of synaptic contacts [68].

Evidence for synaptotrophic effects of APP were, in

addition, obtained by a variety of transgenic approaches

generating different lines of mice overexpressing different

hAPP isoforms under control of different promotors [131,

151, 171, 214]. It had not been analyzed previously,

however, whether this synaptotrophic effect is maintained

in mutated forms of APP that show linkage to familial

forms of AD (FAD) and thus have been identified as one

potential cause of the disease [64].

In a recent study, we analyzed whether familiar AD

(FAD)-linked mutations of APP might impair synapto-

trophic function, potentially contributing to synaptic

deficiencies seen in AD. We therefore performed a quan-

titative electron microscopy study on synapse number in

the cerebral cortex of well-characterized expression-

matched transgenic mouse lines expressing either wild-

type human (h)APP or FAD-mutated hAPP [152], using

unbiased stereological methods. We could obtain clear

evidence for a synaptotrophic effect in mice overexpress-

ing wild-type hAPP demonstrated by an increase in

synaptic number [189]. This effect was abolished when
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FAD-mutated APPsw,Ind was expressed instead of wild-type

APP. In agreement with previous reports on reduced syn-

aptic vesicle number in APP/APLP2 knockout mice [225,

230], we further observed increased density of synaptic

vesicles in mice overexpressing wild-type hAPP. Again,

this effect was abolished when FAD-mutated hAPP was

expressed instead of wild-type hAPP.

Taken together, this strongly indicates a failure in syn-

aptotrophic function of FAD-mutated forms of APP, which

likely contributes to synaptic pathology in AD. Thus, at

least in familiar cases of AD, not only ‘‘too much Ab’’ but

also ‘‘too little functional intact APP’’ might be of potential

pathogenetic significance for synaptic loss. It remains to be

determined whether a similar mechanism might be relevant

also for sporadic cases of AD.

Studies on APP fragment function have demonstrated

that both sAPPalpha and the APP intracellular domain

may have neurotrophic properties and enhance synaptic

plasticity and memory [2, 57, 91, 111, 123, 143–145, 151,

171, 198, 213]. Intracerebral administration of sAPP sig-

nificantly increases synaptogenesis, reduces neuronal

injury and improves functional motor outcome following

brain injury in rats [17, 213], an effect that likely depends

on a conserved motif in the C-terminus [111]. On the other

hand, activity-dependent cleavage of APP by BACE

enhances short-term and long-term synaptic plasticity.

This effect correlates with elevated levels of the APP

intracellular domain, which has been implicated in the

regulation of gene transcription and calcium signaling

[123].

Recent evidence suggests that APP and neurotrophic

factors such as NGF and BDNF use similar intracellular

pathways to control neuronal plasticity [3]. The low-

affinity neurotrophin receptor p75 shares similarities in

processing with APP. After initial cleavage by alpha

secretase, p75 is cleaved by gamma secretase [234] in an

event identical to the cleavage of APP. Both NGF and

BDNF enhance APP promoter activity in a process that

involves activation of the ras-MAP-kinase pathway [21,

174, 175, 177, 216]. As we showed previously, the ras-

MAP-kinase pathway is induced already at very early

stages of AD prior to any noticeable pathological altera-

tions, such as plaque or tangle formation [60, 61]. It might,

thus, be suggested to regard the activation of this signaling

pathway as an, apparently ineffective, attempt to com-

pensate for the strongly attenuated synaptotrophic effects

of APP. As the ras-MAP-kinase pathway also mediates

mitogenic effects eventually resulting in activation of the

cell cycle (see below), a scenario can be envisaged where a

disturbed synaptotrophic action of APP triggers an aberrant

activation of intracellular signaling cascades that eventu-

ally induce cell cycle activation and subsequent cell death

[12, 155, 217].

Synaptic disconnection in a model of cerebral

hypometabolism is associated with PHF-like

phosphorylation of tau

Recently, we have demonstrated that hypometabolism

during topor in hibernating animals is associated with a

PHF-like pattern of phosphorylation of the microtubule-

asssociated protein tau, a process believed to be critically

involved in the mechanism of neurofibrillary degeneration

in AD [11, 74, 201, 202]. Furthermore, the stage of torpor

in hibernating animals shows significant analogies to the

pathophysiological condition of AD with respect to an

altered synaptic connectivity [11, 125, 162, 163, 203, 218]

and the impairment of cognitive function [147, 201].

Depression of the metabolic state of neurons during

torpor in hibernating mammals leads to greatly reduced

electroencephalographic activity [58, 103]. As activity is a

measure of use, and neuronal connections remain func-

tional through regular use, this decrease negatively affects

the maintenance of neuronal connections [96]. The hiber-

nation cycle thus represents a physiological model that

allows the study of sequelae of reduced neuronal connec-

tivity. Synaptic regression during torpor and subsequent

reinnervation in phases of arousal have been particularly

well characterized for mossy fibers terminating on CA3

hippocampal pyramidal neurons [11, 90, 162, 163]. Stages

of synaptic disconnection are associated with the formation

of PHF-like phosphorylated tau in CA3 pyramidal cells,

which lose their afferentation. This PHF-like tau phos-

phorylation is quickly and fully reversible during arousal

when mossy fibers re-connect to pyramidal neurons. These

findings implicate a critical link between a dysfunction

and/or loss of synaptic afferentation and PHF-like phos-

phorylation of tau.

A direct link between hyperphosphorylated tau and

synaptic pathology is also supported by recent reports on

an accumulation of abnormally phosphorylated tau species

within synaptic terminals in AD brains and APP Swedish

mutant transgenic mice [154, 208].

Synaptic plasticity and cell cycle activation in neurons

are alternative effector pathways

To form synaptic connections and to continuously re-shape

them in a process of ongoing structural adaptation, neurons

must permanently withdraw from the cell cycle. That

means synaptic plasticity can only occur at the expense of

the ability to proliferate. In the ‘‘Dr. Jekyll and Mr. Hyde

concept,’’ we have formulated the hypothesis that differ-

entiated neurons after having withdrawn from the cell cycle

are able to use molecular mechanisms primarily developed

to control proliferation alternatively to control synaptic
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plasticity [5]. The existence of these alternative effector

pathways within a neuron might put it at risk of errone-

ously converting signals derived from plastic synaptic

changes into the program of cell cycle activation that

subsequently leads to cell death. The molecular mecha-

nisms involved in cell cycle activation might, thus, link

synaptic plasticity to cell death [5, 6].

Up-regulation of a variety of molecules critically

involved in the activation and progression of the cell cycle,

indicating a cell cycle re-entry of neurons, occurs at early

phases of neurodegeneration in AD [12, 155, 217] (Fig. 1).

This cell-cycle re-activation most likely is a down-stream

effect of aberrantly activated mitogenic signalling path-

ways [10, 60, 61]. The p21ras-MAP-kinase pathway, a

mitogenic pathway that in cycling cells controls prolifer-

ation, in the adult nervous system regulates neuronal

plasticity of differentiated neurons [9]. These observations

provide direct evidence that depending on the cellular

context, cell cycle activation and plasticity might involve

identical molecular pathways. In AD, these pathways are

upregulated very early during the course of the disease.

This activation can be found, for example, in the frontal

isocortex, as early as Braak stage I-II, i.e., prior to any

other noticeable sign of pathology [10, 60, 61].

Cell cycle regulators might serve non-canonical

functions in differentiated neurons: linking synaptic

plasticity to cell cycle

Recent studies indicate that, contrary to classical beliefs,

molecules known to be involved in activation and pro-

gression of the cell cycle are not entirely repressed in

differentiated neurons in the adult nervous system where

they might serve in alternative ‘‘non-canonical functions’’

such as regulation of neuronal and synaptic plasticity

[185, 186]. A functional link between cell cycle regulation

and synaptic changes potentially requires a signaling

mechanism between synaptic terminals and gene regula-

tion. Such a mechanism has indeed been identified in

Drosophila, where Latheo might serve as an information

shuttle between the nerve terminal and the nucleus par-

ticipating in synapse-to-nucleus sigaling [52]. Latheo is

present in the cytoplasm of postmitotic neurons and is also

abundant in boutons of presynaptic terminals at the

Drosophila neuromuscular junction, far from the nuclei

[172]. It regulates both evoked transmission amplitude and

activity-dependent forms of synaptic facilitation and

potentiation [172] and has been implicated in learning

[23, 160, 172]. Latheo is a homologue of ORC3, a com-

ponent of the origin recognition complex (ORC), a critical

‘‘guard’’ of DNA replication that controls initiation of

DNA replication and prevents re-replication during the cell

cycle [88]. These data show that Latheo might play a dual

neuronal role: a nuclear role in DNA replication/tran-

scription and a role in synaptic plasticity. A similar role

was shown for ORC subunits in the mammalian brain.

ORC3 and ORC5 loss of function phenotypes in hippo-

campal pyramidal neurons induced by siRNA in mice

neuronal cultures revealed a regulation of dendrite and

spine development [88]. These data directly support our

hypothesis that neurons have evolutionarily acquired the

ability to use molecular mechanisms primarily developed

to control proliferation alternatively to control synaptic

plasticity [5]. More recently, we could provide evidence for

an involvement of ORC units in AD pathology [8]. In AD,

ORC units show pathological alterations of their sub-

cellular compartmentation, basically reflected by a close

association with neurofibrillar tau pathology in the form

of neurofibrillary tangles, neuropil threads and plaque-

associated dystrophic neurites. This abnormal compart-

mentation might segregate these regulatory elements from

their physiological function in regulating plasticity

and gene silencing and will, thus, potentially result in

de-repression of genes triggering an apopototic phenotype.

Taken together, synaptic degeneration is the major

neurobiological substrate of cognitive dysfunction in AD.

Synaptic failure occurs very early in the course of the

disease and progresses slowly in a process of dynamic

reorganisation. Although the cause for this failure is still

unknown, recent evidence indicates a link between plastic

synaptic changes and control of differentiation and cell-

cycle-repression within a neuron. We have thus put for-

ward the hypothesis [5] that molecular mechanisms are

shared between control of synaptic plasticity and control of

the cell cycle, and as a consequence of this link, attempts to

development adult

“canonical”cell cycle regulators
(e.g. CDKs, Cyclins, CDK-Inhibitors, ORCs …)

control of control of 
the cell cyclethe cell cycle

alternative effector 
pathways

maturation (differentiation)

neurodegeneration (de-differentiation)

control ofcontrol of
synaptic plasticitysynaptic plasticity

developmental switch

degenerative switch

Fig. 1 According to a hypothesis we proposed several years ago [5],

neurons might have evolutionarily acquired the ability to use

molecular mechanisms primarily developed to control proliferation

alternatively to control synaptic plasticity. Cell cycle regulation and

control of synaptic plasticity might, thus, be alternative effector

pathways of ‘‘canonical’’ cell cycle regulating molecules. During

neuronal differentiation a switch might take place from the control of

the cell cycle to the control of synaptic plasticity. This switch might

be reversed during degeneration, an event that might be critical for

cell death
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compensate for synapse loss may activate the cell cycle,

which finally may lead to cell death. It will thus be the

challenge for future therapeutic approaches to lock the

neurons in a differentiated stage but still in a highly plastic

phenotype.
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220. von Kölliker (1895) Kritik der Hypothesen von Rabl-Rückhard

und Duval über amoeboide Bewegungen der Neurodendren.

Sitzungsberichte der physik.-med. Gesellschaft: 38-42

221. Wakabayashi K, Honer WG, Masliah E (1994) Synapse alterations

in the hippocampal-entorhinal formation in Alzheimer’s disease

with and without Lewy body disease. Brain Res 667(1):24–32

222. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R,

Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted

oligomers of amyloid beta protein potently inhibit hippocampal

long-term potentiation in vivo. Nature 416:535–539

223. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis

of memory failure in Alzheimer’s disease. Neuron 44:181–193

224. Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, Wu T, Jiang

T, Li K (2006) Changes in hippocampal connectivity in the early

stages of Alzheimer’s disease: evidence from resting state fMRI.

Neuroimage 31:496–504

225. Wang P, Yang G, Mosier DR, Chang P, Zaidi T, Gong YD,

Zhao NM, Dominguez B, Lee KF, Gan WB, Zheng H (2005)

Defective neuromuscular synapses in mice lacking amyloid

precursor protein (APP) and APP-like protein 2. J Neurosci

25:1219–1225

226. Wasco W, Bupp K, Magendantz M, Gusella JF, Tanzi RE,

Solomon F (1992) Identification of a mouse brain cDNA that

encodes a protein related to the Alzheimer disease-associated

amyloid beta protein precursor. PNAS 89:10758–10762

227. Wasco W, Gurubhagavatula S, Paradis MD, Romano DM,

Sisodia SS, Hyman BT, Neve RL, Tanzi RE (1993) Isolation

and characterization of APLP2 encoding a homologue of the

Alzheimer’s associated amyloid beta protein precursor. Nat

Genet 5:95–100

228. Weiler R, Lassmann H, Fischer P, Jellinger K, Winkler H (1990)

A high ratio of chromogranin A to synaptin/synaptophysin is a

common feature of brains in Alzheimer and Pick disease. FEBS

Lett 263:337–339

229. Yamazaki T, Selkoe DJ, Koo EH (1995) Trafficking of cell

surface beta-amyloid precursor protein: retrograde and transcy-

totic transport in cultured neurons. J Cell Biol 129:431–442

230. Yang G, Gong YD, Gong K, Jiang WL, Kwon E, Wang P,

Zheng H, Zhang XF, Gan WB, Zhao NM (2005) Reduced

synaptic vesicle density and active zone size in mice lacking

amyloid precursor protein (APP) and APP-like protein 2. Neu-

rosci Lett 384:66–71

231. Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and

neurotoxic effects of amyloid beta protein: reversal by tachy-

kinin neuropeptides. Science 250:279–282

232. Yao PJ, Morsch R, Callahan LM, Coleman PD (1999) Changes

in synaptic expression of clathrin assembly protein AP180 in

Alzheimer’s disease analysed by immunohistochemistry. Neu-

roscience 94:389–394

233. Yao PJ, Zhu M, Pyun EI, Brooks AI, Therianos S, Meyers VE,

Coleman PD (2003) Defects in expression of genes related to

synaptic vesicle trafficking in frontal cortex of Alzheimer’s

disease. Neurobiol Dis 12(2):97–109

234. Zampieri N, Xu CF, Neubert TA, Chao MV (2005) Cleavage of

p75 neurotrophin receptor by alpha-secretase and gamma-

secretase requires specific receptor domains. J Biol Chem

280:14563–14571

235. Zhan SS, Beyreuther K, Schmitt HP (1993) Quantitative

assessment of the synaptophysin immuno-reactivity of the cor-

tical neuropil in various neurodegenerative disorders with

dementia. Dementia 4:66–74

236. Zhan SS, Beyreuther K, Schmitt HP (1994) Synaptophysin

immunoreactivity of the cortical neuropil in vascular dementia

of Binswanger type compared with the dementia of Alzheimer

type and nondemented controls. Dementia 5:79–87

237. Zheng H, Jiang M, Trumbauer ME, Sirinathsinghji DJ, Hopkins

R, Smith DW, Heavens RP, Dawson GR, Boyce S, Conner MW,

Stevens KA, Slunt HH, Sisoda SS, Chen HY, Van der Ploeg LH

(1995) Beta-amyloid precursor protein-deficient mice show

reactive gliosis and decreased locomotor activity. Cell 81:525–

531

238. Zubenko GS, Kopp U, Seto T, Firestone LL (1999) Platelet

membrane fluidity individuals at risk for Alzheimer’s disease:

a comparison of results from fluorescence spectroscopy and

electron spin resonance spectroscopy. Psychopharmacology

(Berl.) 145:175–180

Acta Neuropathol (2009) 118:167–179 179

123


	Synaptic degeneration in Alzheimer&rsquo;s disease
	Abstract
	‘‘Error is modern while truth is ancient&rdquo; �(Ramœn y Cajal, 1928 [168])
	Synapse loss is the major neurobiological substrate �of cognitive dysfunction in Alzheimer&rsquo;s disease
	Synaptic failure is an early event and accelerates slowly in a process of dynamic reorganization
	Mechanisms of synaptic failure in Alzheimer&rsquo;s disease, potential roles of A&bgr;, APP and tau
	Disruption of synaptic function by A&bgr; oligomers
	Synaptotrophic function of human wild-type APP �and its failure in FAD-mutated APP
	Synaptic disconnection in a model of cerebral hypometabolism is associated with PHF-like phosphorylation of tau

	Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways
	Cell cycle regulators might serve non-canonical functions in differentiated neurons: linking synaptic plasticity to cell cycle
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


