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Abstract Mutations in the amyloid precursor protein
(APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2)
genes cause autosomal dominant familial Alzheimer’s dis-
ease (AD). PSEN1 and PSEN2 are essential components of
the �-secretase complex, which cleaves APP to aVect A�
processing. Disruptions in A� processing have been
hypothesised to be the major cause of AD (the amyloid cas-
cade hypothesis). These genetic cases exhibit all the classic
hallmark pathologies of AD including neuritic plaques,
neuroWbrillary tangles (NFT), tissue atrophy, neuronal loss
and inXammation, often in signiWcantly enhanced quanti-
ties. In particular, these cases have average greater hippo-
campal atrophy and NFT, more signiWcant cortical A�42
plaque deposition and more substantial inXammation.
Enhanced cerebral A�40 angiopathy is a feature of many
cases, but particularly those with APP mutations where it
can be the dominant pathology. Additional frontotemporal
neuronal loss in association with increased tau pathology
appears unique to PSEN mutations, with mutations in
exons 8 and 9 having enlarged cotton wool plaques
throughout their cortex. The mechanisms driving these
pathological diVerences in AD are discussed.
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Introduction

Alzheimer’s disease (AD) is a slowly progressive degenera-
tive dementia accounting for about one-third of the number of
demented persons worldwide [222] and 6–10% of the North
American population [80]. The inexorable decline in cogni-
tive abilities usually occurs 32 months prior to diagnosis at an
average age of 72 years [94]. Institutionalisation occurs on
average at the age of 78 years and death intervenes approxi-
mately 8.5 years after the disease onset [94]. At autopsy,
many cases with AD also have other coexisting pathologies
such as Lewy bodies and Pick bodies, although these patholo-
gies will not be considered in the current review.

Genetics of AD

Most of the AD cases are ‘sporadic’ with a disease onset
after the age of 65 years (late-onset AD), although several
susceptibility gene alleles confer an increased risk of
late-onset AD, with the most well-established being the
apolipoprotein E (ApoE) �4 allele [163]. In addition, envi-
ronmental interactions increase the risk of sporadic disease,
including increased cardiovascular risk (high cholesterol,
hypertension, atherosclerosis, coronary heart disease, and
diabetes [18]) and obesity (both abdominal and body mass
index-calculated [218–220]). These factors will not be con-
sidered in this review, but rather genetic eVects shown to
cause AD will be discussed.

Dominant genetic abnormalities that cause AD are
largely due to fully penetrant, autosomal dominant muta-
tions in 3 genes: the amyloid precursor protein (APP) gene
on chromosome 21, presenilin 1 (PSEN1) on chromosome
14 and presenilin 2 (PSEN2) on chromosome 1. Mutations
in PSEN1 account for the majority of autosomal dominant

C. Shepherd · H. McCann · G. M. Halliday (&)
Prince of Wales Medical Research Institute, 
Barker Street, Randwick, NSW 2031, Australia
e-mail: g.halliday@powmri.edu.au

C. Shepherd · H. McCann · G. M. Halliday
University of New South Wales, 
Sydney, NSW, Australia
123



38 Acta Neuropathol (2009) 118:37–52
cases with 173 mutations described to date, compared to 30
and 14 mutations in APP and PSEN2, respectively (http://
www.molgen.ua.ac.be/ADMutations). More recently an
extra copy of the APP gene has also been identiWed in
families with AD [170, 171]. In the majority of autosomal
dominant cases, these mutations occur before the age of
65 years (early-onset AD), although rare mutations have
been identiWed in families with late-onset AD.

Common pathogenic mechanisms

The pathological hallmarks of both sporadic and familial
AD are extracellular senile plaques made up of A� peptides
and intracellular neuroWbrillary tangles (NFT) made up of
hyperphosphorylated tau.

A� production and toxicity

A� peptide formation occurs through proteolysis of the
amyloid precursor protein (APP) via the action of �-, �- and
�-secretases [56, 178, 187, 228]. These secretases normally
process APP through two mutually exclusive pathways to
produce various peptides, including A� [70, 177]. The non-
amyloidogenic pathway occurs when membrane-associated
�-secretase cleaves within the A� domain, thus precluding
A� formation, and an intramembrane cleavage by the
�-secretase complex produces soluble APP�, a shortened
fragment called p3 [71] and a cytoplasmic fragment identi-
Wed as the APP intracellular domain (AICD) [173] (Fig. 1).
In contrast, the amyloidogenic pathway initially cleaves
APP at the N-terminus of the A� domain by �-secretase

then cleaves by �-secretase [62, 169] to generate soluble
APP� and the A�40 and A�42 peptides [70] (Fig. 1).
Recently a new cleavage site for �-secretase has been
described which cleaves between the AICD (�-cleavage)
and �-secretase site and generates longer A� forms, includ-
ing A�42, A�45, A�46 and A�48 [231] (Fig. 1).

A�40 and A�42 exist in diVerent conformational states
anywhere from monomers to dodecamers or even higher
molecular weight complexes that remain soluble after high-
speed centrifugation. Anything larger than a monomer can
be referred as an oligomer. Oligomers may then grow in
size and form insoluble Wbrils, which the A�42 alloform is
more inclined than A�40 [17, 76, 215]. Due to their greater
aggregation capabilities [17], longer forms of the A� pep-
tides, particularly A�42, are considered more neurotoxic,
although it is the oligomeric rather than the Wbrillar non-
soluble amyloid forms which appear most damaging [50,
77, 98, 151, 214, 215]. There is a robust correlation
between soluble oligomeric A� levels and the extent of
synaptic loss and severity of cognitive dysfunction in AD,
with these correlations being limited for Wbrillar A� [124,
135]. These data support the amyloid cascade hypothesis of
AD [75]. Direct binding of oligomeric A� to synapses
[103] with the resultant disruption of long-term potentiation
[114, 214, 216] has been shown experimentally, although
other mechanisms of oligomeric A� toxicity have also been
described. These include A�’s ability to generate oxidative
stress, mitochondrial damage, inXammation, and pore for-
mation in membranes [44, 84, 121, 212]. In addition, A�
is capable of altering tau phosphorylation, cleavage and
aggregation [39, 45] providing a link between the two
major pathological hallmarks of the disease.

Fig. 1 Proteolytic processing 
pathways of APP. The non-amy-
loidogenic pathway occurs when 
cleavage of APP by �-secretase 
yields soluble APP�, thus pre-
cluding A� production. Further 
processing by �-secretase within 
its transmembrane domain leads 
to generation of the p3 peptide 
and the amyloid intracellular 
domain (AICD). The amyloido-
genic pathway occurs via 
�-cleavage of APP, yielding 
soluble APP� and a C terminal 
fragment, which undergoes 
further cleavage by �-secretase 
leading to generation of the A� 
peptide, predominately A�40 
and A�42
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Tau production, phosphorylation and toxicity

Tau is a microtubule-associated protein that stabilises the
cytoskeleton, constantly undergoing phosphorylation and
dephosphorylation to achieve this. In adult human brain, six
isoforms of tau ranging from 352 to 441 amino acids are
produced from a single gene by alternative splicing. These
isoforms diVer by the presence of one or two amino-termi-
nal inserts and either three or four microtubule binding
domains. All six isoforms can be phosphorylated through
the action of several kinases, including glycogen synthase
kinase-3� (GSK-3�), cyclin-dependent kinase-5 (Cdk5)
and other tau kinases [6, 123].

In normal ageing, AD and other neurodegenerative dis-
eases, natively unfolded tau becomes hyperphosphorylated
and folds into a � conformation, forming abnormal Wla-
ments which become the paired helical Wlaments of NFT
and neuritic inWltrates in plaques [27, 126]. In AD, tau
neurotoxicity is, at least in part, due to an increase in the
phosphorylation of all six isoforms causing hyperphosph-
orylation and leading to reduced microtubule binding,
destabilization of the cytoskeleton, reduced axonal trans-
port [4, 194] and insoluble intracellular Wbril formation [5,
8, 104]. Classical NFT are Xame-shaped and situated in cell
bodies and apical dendrites while tau-positive neurites are
found in distal dendrites. Once a neuron dies NFT can per-
sist in an extracellular (or ghost) form due to their intense
hyperphosphorylation and insolubility, although the precise
role of tau Wbrils in cellular toxicity is currently under
debate [86]. NFTs are required for the clinical expression of
AD, and in related tauopathies leading to dementia in the
absence of amyloid plaques. In AD, neuronal loss occurs in
brain regions depositing tau Wbrils [227] but experimentally
suppressing the mutant P301L tau transgene in a model that
exhibits neuroWbrillary pathology halts neuronal loss but
not tau Wbril formation [190]. Recent research points to a
potential toxic form of soluble tau as necessary for neuronal
death, as soluble tau is more toxic to neurons than aggre-
gated, paired helical Wlament forms [65] and removal of
soluble tau is required to achieve a therapeutic beneWt with
A� immunisation [155]. The precise molecular mecha-
nisms of such toxicity have not been fully elucidated, as
tau is modiWed posttranslationally by a series of complex
methods, including hyperphosphorylation, glycosylation,
ubiquitination, glycation, polyamination, nitration, and
truncation [3]. Hyperphosphorylated tau can exist as solu-
ble oligomeric aggregates being considered as the toxic
species [86], although overexpression of an A�-induced,
caplain-mediated cleavage of tau has also been proposed as
this accelerates apoptosis and Wbril formation through
hyperphosphorylation [39]. Treatment of wild-type neurons
with a caplain inhibitor prevents tau truncation and A�-
induced neuronal death [159].

Common AD pathologies

Pathologies required for diagnosis

A� plaques and NFT are required for the diagnosis of AD.
The plaque type used to diagnose AD is neuritic rather than
diVuse plaques. Neuritic plaques are associated with Wbrillar
A� and dystrophic tau-positive neurites with or without a
central A� neuritic core [15]. These plaques are smaller in
size to diVuse plaques but, in contrast to diVuse plaques
(which predominantly contain A�42), they contain both
A�40 and A�42 peptides. Regions where neuritic and cored
plaques are commonly found in AD include the middle fron-
tal, superior and middle temporal, inferior parietal and entorh-
inal cortices and the hippocampus, which are the areas
proposed for examination according to the CERAD criteria
[138]. Predilection sites for tau neuritic and NFT pathology in
AD are described in the Braak staging criteria. Using both the
anatomical location and density of NFT formation with age,
Braak and colleagues developed six stages of NFT formation
with four of these stages occurring prior to the development
of dementia [26]. NFT stages I/II occur in the entorhinal
region, stages III/IV inWltrate into limbic regions and stages
V/VI include the neocortex with these three groups corre-
sponding to normal cognition, some cognitive impairment
and frank dementia [26]. It is currently recommended that for
diagnostic assessment Braak staging in conjunction with the
assessment of plaque distribution, type and number from the
CERAD protocol is used [138]. However, none of the neuro-
pathological criteria set have been uniformly accepted by
neuropathologists and variability and overlap in pathologies
can lead to diYculties in diagnosis [92].

Atrophy and neuronal loss

Although not required for a deWnitive diagnosis of AD, the
degeneration of brain structure is assumed to be the main
substrate for the precipitation of AD dementia. While brain
volume can be easily measured using MRI techniques, the
identiWcation of atrophy is more diYcult due to consider-
able inter-individual variation in brain shape and size as
well as some atrophy of white matter (less than 0.25% per
year) as a normal consequence of age [57, 162]. In older
individuals with mild cognitive impairment this rate of
atrophy doubles in posterior cingulate, temporoparietal and
medial temporal regions [57, 93]. Once clinical AD com-
mences, progressive atrophy and neuronal loss particularly
aVect the hippocampus [19, 20, 91, 106] correlating with
Braak staging [167, 221]. Mean brain atrophy rates for
well-established clinically diagnosed AD are 2.4% per
annum, with a widespread and symmetrical generalised
volume loss [35, 58] with more concentrated atrophy in
fusiform and inferior temporal gyri, the temporal pole,
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superior and middle frontal gyri, amygdala, entorhinal cor-
tex and hippocampus. Regions unaVected by neuronal loss
include orbital, inferior frontal and postcentral gyri and the
posterior hippocampus [73].

In the hippocampus atrophy relates to the degree of neu-
ronal loss [105], a concept that may be extrapolated to other
brain regions. Until recently the molecular mechanism
leading to neuronal loss was considered to be the deposition
of Wbrillar forms of hyperphosphorylated tau (see above),
although evidence for other cellular mechanisms cannot be
ignored. It has been suggested that apoptosis might be the
primary mechanism underlying AD neurodegeneration [40]
and there is substantial evidence demonstrating that at least
some cells in sporadic AD die via apoptosis [29, 41, 191,
195]. Other characteristic signs of apoptosis observed in
AD include mitochondrial dysfunction, caspase activity,
nuclear abnormalities, DNA damage and altered activity of
apoptosis-related genes, such as p53 and Bax [29, 133,
196]. A� can induce apoptosis by downregulating Bcl-2
and upregulating Bax [157] and by inducing oxidative
stress and lipid peroxidation [44], which are the common
features of AD brain [33, 144, 154, 196]. Apoptotic neuro-
nal death has also been linked with failed attempts to reen-
ter the cell cycle leading to abortive apoptosis [147], a
theory which is supported by the presence of DNA replica-
tion in vulnerable neurons in AD [229].

Atrophy may occur because of cell shrinkage and/or syn-
aptic loss. Decreased neuronal size (rather than neuronal
loss) has been demonstrated in a recent study of AD where
there was a marked decrease in the size of large neurons
from layers II and III of the middle temporal cortex accom-
panied by an increase in the numbers of small neurons, sug-
gesting that these supragranular layer neurons become
atrophic in AD [208]. Neuronal atrophy could occur either
because of reduced neurotrophic support or signalling in
AD [175], or because of oligomeric A� induced synaptic
changes [111, 140], resulting in synaptic degradation and
remodelling of dendritic spines [112, 179]. Such changes
are thought to occur prior to the complete loss of neurons in
AD.

InXammation

Alzheimer’s disease is also characterised by a chronic
inXammatory response, possibly initiated by deposited
Wbrillar A� fragments binding to C1q receptors on microg-
lia [55]. Increased numbers of activated microglia associate
particularly with neuritic plaques [60, 165, 180, 184], even
though they rarely contain phagocytosed A� and degrade it
exceedingly slowly [59, 158]. Activated microglia directly
produce toxic oxygen species and destructive enzymes that
damage neurons [60, 95] and cause neurite retraction [143].
Microglial activation or the presence of A� deposits also

cause astrocyte recruitment in order to facilitate A� clear-
ance. Indeed, astrocytes in the entorhinal cortex of AD
cases have been shown to contain A�42 in amounts propor-
tionate to the severity of regional AD pathology [146].
However, astrocytes can also potentially act as a source of
A� by overexpressing BACE1 when chronically stressed
[168]. The degree of inXammation correlates with brain
atrophy [34] and the severity of dementia [156] in early
AD.

Pathogenic mechanisms of genetic forms of AD

Mutations in APP, PSEN1 and PSEN2 have all been shown
to aVect APP processing to alter the levels and/or length of
A� produced, consistent with the amyloid cascade hypothe-
sis [75]. DiVerent APP mutations cause neuronal death via
diVerent pathogenic mechanisms [78], although all APP
mutations cluster around the �- and �-secretase cleavage
sites to increase the overall production of A� by enhancing
�-secretase cleavage [38], or modifying �-secretase pro-
cessing [193]. Some APP mutations also increase produc-
tion of the AICD and other C-terminal APP fragments
[102]. These fragments have been shown to play a direct
role in modulating gene expression, cytoskeletal dynamics
and apoptosis [61, 99, 142, 148]. Other APP mutations
aVect alternate intracellular mechanisms to increase cellular
vulnerability to oxidative stress and death [54].

PSEN1 and PSEN2 are alternate subunits of the �-
secretase protein complex with mutations directly aVect-
ing A� peptide metabolism through �-secretase cleavage
to increase A�42 production [22, 32, 37, 139, 176]. How-
ever, experimental loss of PSEN1 and PSEN2 results in
an age-related, progressive neurodegeneration character-
ised by synaptic loss, neuronal death, astrogliosis and tau
hyperphosphorylation [13, 174] but virtually no A� pro-
duction [47, 81]. In fact some PSEN1 mutations cause
severe neurodegeneration in the absence of A� pathology
as evidenced by the identiWcation of a number of families
with mutations in PSEN1 and frontotemporal dementia
[49, 164], although further evidence for mutation segrega-
tion in these families is necessary. This has lead to the
hypothesis that PSEN mutations give rise to AD through
an additional partial, or in some instances a complete, loss
of function [224]. The �-secretase protein complex inter-
acts with a large number of substrates [205] and mutations
in PSEN have been shown to reduce its proteolytic activ-
ity towards several substrates [14] while enhancing APP
metabolism to increase A�42 production [22, 32, 37, 139,
176]. Given that the �-secretase protein complex has a
large number of substrates, either a shift in substrate spec-
iWcity or a partial loss of function may result in a diverse
spectrum of toxicity.
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The increase in A� peptide production of these muta-
tions is thought to produce quantitative diVerences in the
diagnostic pathologies (namely plaques and NFT) between
genetic and sporadic forms of AD. Many studies have
reported an increase in overall A� plaque pathology in
APP, PSEN1 and PSEN2 cases compared to sporadic AD
(Table 1) [63, 64, 88, 89, 108, 128, 130, 131]. However,
most studies show considerable overlap with a recent report
showing no statistical diVerence between plaque loads in
PSEN1 and sporadic AD [226], similar to reports in PSEN2
Volga German families [127] and in other studies of
PSEN1 and APP AD cases [122, 131, 153]. In contrast, all
studies appear to agree on the fact that the majority of
plaques contain A�42 in genetic forms of AD, often with
no increase in A�40 compared to sporadic AD cases
(Table 1) [63, 90, 127, 128, 131]. However, an increase in
the mean area of cortex occupied by A�40 positive plaques
has been reported in one of the largest studies of PSEN1
AD [89]. The reason for the discrepancy between studies is
unclear, although mutation position is likely to account for
some of the variations reported, at least in the PSEN1 cases
[128]. It should also be noted that dramatic quantitative
variations in neuropathology can exist in subjects with
identical PSEN1 mutations, even when they are members
of the same family [63].

Unfortunately, there are only limited studies describing
the eVect of PSEN or APP mutations on oligomeric A�
concentrations, with most studies including very small
numbers of cases [83, 108, 136, 149, 200–202, 210] and no
studies on PSEN2 AD. These studies have largely shown
increases in both soluble, and to a greater extent, insoluble
A�42 in genetic compared to sporadic AD brain tissue
(Table 2). This is consistent with the increased A�42
plaque burden described above. The data concerning A�40
appear more variable with some studies showing no change
or a decrease compared to sporadic AD [136, 149, 200,
201] while others have shown increases [83, 108, 136, 200,
202], consistent with some immunohistochemical Wndings
[89]. While these data support a growing body of literature
demonstrating an increase in A�42 in genetic forms of AD,
it is not easy to reconcile the variable reports concerning
A�40, especially in light of in vitro and in vivo studies
demonstrating mutation-speciWc decreases in A�40 [22, 51,
85, 108, 201, 213, 224]. However, there is also variability
among these studies, with some mutations failing to dem-
onstrate any change in A� [12, 185], while others report a
decrease in A�42/A�40 ratio, suggesting a relative increase
in A�40 [2], although additional studies to determine the
pathological relevance of this mutation is required. Indeed,
discrepancies between in vitro and human brain measure-
ments of A�40 have also been observed in a single study
using the same gene mutation [108]. Some of these studies
have also found decreased levels of A�40 and A�42 in

controls compared to sporadic AD cases, indicating that
enhanced A�42 production driven by �-secretase activity is
not a feature of sporadic AD [200, 201].

Vascular A�

Amyloid precursor protein mutations are often associated
with severe cerebral amyloid angiopathy (CAA) (Fig. 2v)
and consequent cerebral haemorrhage or stroke, in addition
to the conventional neuritic pathology (neuritic plaques,
neuropil threads, NFT) [42, 107]. The type of A� deposited
in vessels in CAA is A�40 (Fig. 2v), while plaques contain
both A�40 and A�42 [166]. In some APP mutation cases,
CAA dominates and there is little to no coexisting AD
pathology or progressive dementia [107]. This is particu-
larly observed in Dutch APP mutation carriers where the
cognitive impairment is mostly due to recurrent vascular
events, as AD pathology is rarely present [23, 150]. CAA is
also found in some PSEN1 and PSEN2 mutations. There is
evidence that mutations occurring in the PSEN1 gene after
codon 200 have a higher incidence of severe CAA and
more plaque formation [128]. Assessment of a single case
with a novel L282V PSEN1 mutation agrees with this
observation, Wnding signiWcant A�40 in the vessels and
plaque cores and N-truncated A�42 in diVuse plaques [48].
Neuropathological examination of a family carrying a
PSEN2 mutation identiWed Wve of six demented members
fulWlling the pathological criteria for AD and four of these
had mild to severe CAA with evidence of a vascular event
in one [152].

In addition to Wbrillar CAA deposition in vessel walls
(sometimes extending into the lumen and out into the
parenchyma), patients with APP mutations often have
abnormal A� deposits associated with the CAA. Patients
with the Flemish APP mutation often form plaques with
unusually large, dense and sometimes multiple cores
around or adjacent to vessels [30, 42, 107] (Fig. 2v). The
Arctic APP mutation causes a more typical CAA of sub-
arachnoid and parenchymal vessels, but has an unusual
ring-like plaque lacking a central core but staining strongly
with A�42 [11]. The Iowa APP mutation has a late age of
onset compared with the Italian APP mutation with both
exhibiting severe CAA with vessel thickening, calciWcation
and occlusion in addition to vessel-associated dystrophic
neurites [67, 209].

A� cotton wool plaques

A� cotton wool plaques (CWP) are most often observed in
PSEN1 mutations aVecting exons 8 and 9 [31, 43, 52, 83, 97,
110, 128, 129, 182, 188, 198, 211] but are also reported in
PSEN1 mutations in exons 4 [192], 5, 6 [182], 12 [186] and
intron 8 [52]. They occur in addition to the diVuse, neuritic
123
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and cored AD plaque types, and have been noted infrequently
in sporadic AD [118, 230]. To date, 30 PSEN1 families with
25 deWned mutations have been identiWed with CWP pathol-
ogy [52, 72, 97, 186].

Cotton wool plaques have several characteristic features,
notably that they are larger than most diVuse or neuritic
plaques (up to 150 �m in diameter), have eosinophilic
properties, clearly deWned margins and little neuritic or
inXammatory inWltrate [43] (Fig. 2i, ii). Staining with thio-
Xavin S to detect Wbrillar A� shows only very weak reactiv-
ity [43, 192, 198, 211]. When immunostained, CWP
display strong positivity for A�42 and weak or little A�40
[129, 137, 186, 192, 198, 207, 211]. Immunohistochemistry
also indicates the presence of non-hyperphosphorylated
tau-2 [182] (Fig. 2ii) and shows variable positivity for AT8
phospho-tau within [198, 211] and around the margins of
the plaques [129, 207]. Very little complement (C1q, C3d
and C9) or glial activity [43, 129] is seen around CWP with
immunostaining. More recently, the synaptic proteins syn-
apsin-1 and synaptophysin have been found in CWP in the
C410Y PSEN1 mutation [72]. The typical distribution pat-
tern of CWP follows that of neuritic and diVuse plaques in
AD, which are mainly found in the neocortex, particularly

the frontal, cingulate and temporal cortices as well as lim-
bic regions and striatum [192, 198, 211]. They extend
through all cortical layers, often encroaching into the super-
Wcial white matter [186].

Atrophy and neuronal loss

A recent study has demonstrated greater rates and amounts
of atrophy in PSEN1 and APP cases, particularly in the
medial temporal lobes, despite similar disease durations
[68, 69]. Greater amount and rate of neuronal loss in
PSEN1 AD has also been observed in frontal and temporal
regions compared to APP and sporadic AD (Table 3)
[63, 69, 144, 181]. This eVect may be due to the inXuence
of PSEN1 on other substrates of the �-secretase complex,
such as �-catenin, N-Cadherin, GSK-3�, tau, calsenilin,
Bcl2 proteins, metalloproteases and Notch to name just a
few [205]. All of these substrates have been implicated in
AD-related pathologies, such as disturbed calcium homeo-
stasis (calsenilin), apoptosis (Bcl2), abnormal protein
aggregation (tau, GSK-3�) and alterations in the cell cycle
(�-catenin). Both in vitro and in vivo studies have demon-
strated detrimental eVects of PSEN mutations on apoptosis

Fig. 2 Representative micrographs of variant pathologies in the infe-
rior temporal cortex of genetic forms of AD. i Haematoxylin and eosin
stained section of a PSEN1 AD case demonstrating a cotton wool
plaque (CWP). Note the lack of cellular inWltrate as indicated by an
absence of glial nuclei. ii Section of a PSEN1 AD case immunohisto-
chemically stained with an antibody against tau protein (tau-2). Tau-2
immunohistochemistry reveals globular staining in CWP. iii Immuno-
histochemical labelling of an inXammatory plaque (IP) stained with an
antibody against A�42 and glial Wbrillary acidic protein (GFAP) and

counterstained with cresyl violet (purple) to reveal the unstained core.
Abundant GFAP-positive astrocytes surround the A�-negative core of
IPs. iv Immunohistochemical labelling of a classic cored plaque
stained with an antibody against A�42 in a sporadic AD case. Unlike
IPs, these plaques have a dense A�-positive core. v Immunohistochem-
ical labelling with an antibody against A�40 in an APP AD case
demonstrating severe A�40 cerebral amyloid angiopathy and unusual
parenchymal A�40 plaques
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[10, 53], cell cycle events [1, 125], oxidative stress [21],
mitochondrial dysfunction [99] and calcium dysregulation
[134]. Enhanced levels of cyclin D1 indicative of abortive
�-catenin regulation of cell cycle re-entry are found in
some PSEN1 cases [125] and mutant PSEN can alter cal-
cium signalling [36] and inactivate neuroprotective signal-
ling pathways [9] to enhance neuronal degeneration.

Tau pathology

In spite of an increase in neuronal loss in genetic forms of AD
(see above), it is not clear whether this is related to a general

increase in NFT. Some studies show an increase in NFT com-
pared to sporadic cases [79, 197] while others report no
change [63, 64, 116, 122, 153, 226] (Table 4). This variability
may be partly due to variation in the ApoE gene, which
appears to aVect tau and A�40 load [203]. Sudo and col-
leagues [197] report that the eVects of ApoE on tau pathology
is region speciWc with the entorhinal cortex being the initial
site of NFT formation in sporadic AD compared to the CA
regions of the hippocampus in APP and PSEN1 AD [197].

A signiWcant increase in plaque-associated tau deposi-
tion has been reported in PSEN1 AD with this diVerence
being markedly greater than the diVerence in A� deposition

Table 3 Summary of comparative studies investigating neuronal loss in cases with sporadic and genetic forms of AD

# SigniWcant diVerence compared to controls (P · 0.05)

*SigniWcant diVerence compared with sporadic AD (P · 0.05)

References Control Sporadic AD Genetic AD

N Neuronal loss N Neuronal loss N Neuronal loss

Gomez-Isla [63] 33 9.42 § 1.06 
(neurons £ 104)

51 4.82 § 2.2 
(neurons £ 104) #

7 (PSEN2)
23 (PSEN1)

4.45 § 1.07 (neurons £ 104)#
4.98 § 1.98 (neurons £ 104)#

Muench [144] 1 AD values expressed 
as % of controls

2 Actual values 
not given

4 (PSEN1) 65–80% loss in CA1 compared 
with controls

Shepherd [181] 23 All AD values expressed 
as % of controls

13 Frontal 82 § 3
Medial temporal 78 § 4
Other temporal 71 § 4

10 (PSEN1)
3 (APP)

Frontal 71 § 4*/57 § 15*
Medial temporal 56 § 6*/36 § 4*
Other temporal 59 § 4*/47 § 3*

Gregory [68] 7 30.4 § 1.2 neurons/Weld 6 23.7 § 1.2 neurons/Weld# 17 19.5 § 0.8 neurons/Weld*#

Table 4 Summary of comparative studies investigating NFT load in cases with sporadic and genetic forms of AD

* SigniWcant diVerence compared with sporadic AD (P · 0.05)

– Not studied

References Control Sporadic AD Genetic/familial AD

N NFT N NFT N NFT

Lantos [115] 0 – 1 SpeciWc values not given 1 (PSEN1) No diVerence found

Nochlin [151] 16 SpeciWc values 
not given

28 SpeciWc values not given# 32 (mutations 
not known)

No diVerence in NFT 
or neuritic plaques#

Lippa [122] 0 – 11 SpeciWc values not given 19 (PSEN1)
6 (APP)

No diVerence in NFT 
or neuritic plaques

Gomez-Isla [64] 0 – 5 10.1 § 4.6 (total NFT £ 103) 1 (PSEN1) 11.41 (total NFT x103)

Gomez-Isla [63] 33 – 51 7.4 § 4.6 (total NFT £ 103) 7 (PSEN2)
23 (PSEN1)

7.3 § 4.2 (total NFT £ 103)
9.6 § 3.6 (total NFT £ 103)

Thaker [203] 0 – 109 »2.5% of total cortical area 
in cases matched for ApoE

24 (PSEN1)
5 (PSEN2)
6 (APP)

»2.5% of total cortical area 
in cases matched for ApoE

Heckmann [79] 0 – 3 30/mm2 1 (PSEN1) >50/mm2

Sudo [197] 6 Data not shown 26 CA4: 22.4 § 3.6/mm2

CA3: 20.3 § 4.3/mm2

CA2: 36 § 6/mm2

CA1: 82 § 8/mm2

Subiculum: 86 § 11/mm2

Entorhinal: 144 § 10/mm2

6 (PSEN1)
7 (APP)

CA4: 42 § 8/41 § 7/mm2

CA3: 43 § 7.5*/47 § 8*/mm2

CA2: 96 § 18*/96 § 23*/mm2

CA1: 168 § 15*/133 § 21*/mm2

Subiculum: 47 § 6/103 § 15/mm2

Entorhinal: 89 § 11/100 § 14/mm2

Woodhouse [226] 0 –- 5 19.0 § 2.4/1,000 �m2 8 (PSEN1) 17.6 § 2.7/1,000 �m2
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(6.6-fold versus 2-fold increase, respectively) [182]. A sig-
niWcant increase in phosphorylated tau protein within the
neuropil has also been shown in PSEN1 cases [118] with
PSEN1 gene mutations increasing total tau protein levels
in A� treated neurons [161]. Deposition of additional
non-Wbrillar, non-hyperphosphorylated tau has also been
reported in CWP in PSEN1 AD [182] consistent with an
accelerated rate of cytoskeletal pathology in these cases
[226]. However, a mutational deletion in exon 8 (L271V)
of PSEN1 results in a complete absence of neuritic plaque
pathology and a decrease in PSEN1 function [110]. Fur-
thermore, in cases with mutations in PSEN1 giving rise to
frontotemporal dementia [49, 164] and transgenic mice
with common PSEN1 mutations [117] there is signiWcant
tau pathology without A� deposition indicative of altera-
tions in tau processing and tau kinases [10, 199].

To date several studies have investigated the concentra-
tions of tau in the soluble and PHF protein fractions in spo-
radic AD cases using biochemical techniques [7, 24, 28, 74,
82, 87, 100, 113, 119, 141, 204, 217, 223]. These studies
show a redistribution of soluble tau to PHF consistent with
increased NFT pathology in AD [25]. However, only one
study has performed a quantitative analysis of the deter-
gent-insoluble tau in PSEN1 and PSEN2 AD compared to
sporadic cases and found no increase using a proteomic
approach [225]. Further analysis of changes in tau expres-
sion, aggregation and phosphorylation in genetic forms of
AD is now required in order to elucidate the role of APP
and PSEN in tau pathology.

InXammation

Imaging studies of sporadic AD demonstrate an association
between microglial activation, brain atrophy and clinical
progression [34]. However, no microglial imaging studies
have been carried out in genetic forms of AD, and only a
few studies have described the inXammatory response in
these cases [120, 183, 189]. While CWP have consistently
been reported as being devoid of cellular inWltrate, PSEN1
cases display a potent inXammatory response around other
plaques [183] and have greater levels of inXammatory
mediators in soluble brain tissue extracts [189], possibly
due to a loss of PSEN regulation of inXammation [13].
These plaques with increased inXammation have been
called inXammatory plaques (IP) and are found in cortical
regions of both PSEN1 and APP mutation cases [181, 183].

InXammatory plaques are small (around 25 �m diame-
ter), dense and well-circumscribed with a distinct core and
accumulations of surrounding reactive microglia and astro-
cytes (Fig. 2iii). The plaque core has a particularly curious
staining proWle, showing positivity with simple histological
stains such as silver, haematoxylin and eosin, cresyl violet
and thioXavin S (Fig. 2iii), but negativity for many of the

components of conventional neuritic plaque cores (Fig. 2iv)
such as A�, tau, ApoE, ubiquitin, PSEN1, IgG, �-synuclein,
Wlipin and glial Wbrillary acidic protein. HLA-DR, ferritin
and glial Wbrillary acidic protein immunohistochemistry
demonstrate the presence of signiWcant numbers of acti-
vated microglia and astrocytes in the areas immediately
surrounding IP [183] (Fig. 2iii). While the presence of IP
per se are not associated with greater neuronal loss [181],
increases in speciWc inXammatory mediators may play an
important role in the disease process and contribute to the
greater neurodegeneration observed in genetic forms of AD
[189] and in PSEN1/APP transgenic models of AD [66,
109, 160].

Conclusions

Most PSEN1 and PSEN2 mutations and many APP muta-
tions enhance A�42 production over that observed in spo-
radic AD via changes in �-secretase processing of APP,
thereby supporting the amyloid cascade hypothesis [75].
This is reXected in greater hippocampal atrophy and NFT,
and more signiWcant cortical deposition of insoluble Wbril-
lar A�42 plaques, which in PSEN1 cases with mutations in
exons 8 and 9 forms enlarged CWP structures. More sub-
stantial inXammation is associated with a proportion of
plaques (IP) in these cases. A�40-enhanced CAA is a fea-
ture of many cases with AD mutations, but particularly
those with APP mutations where CAA can be the dominant
pathology. Additional frontotemporal neuronal loss in asso-
ciation with tau increases appears unique to PSEN muta-
tions, possibly due to an additional loss of PSEN function.
These data indicate that APP and PSEN mutations have
widespread eVects on a broader range of cellular functions
[16, 46, 96, 101, 115, 132, 145, 172, 206] compared to spo-
radic AD. These important diVerences need to be carefully
considered when using these mutations to model AD. In
particular, the enhanced �-secretase production of A�42 is
not a feature of sporadic AD.

Acknowledgments We wish to thank Heidi Cartwright for the Wgure
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