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Abstract In cerebral amyloid angiopathy (CAA), amyloid
Wbrils deposit in walls of arteries, arterioles and less
frequently in veins and capillaries of the central nervous
system, often resulting in secondary degenerative vascular
changes. Although the amyloid-� peptide is by far the com-
monest amyloid subunit implicated in sporadic and rarely
in hereditary forms of CAA, a number of other proteins
may also be involved in rare familial diseases in which
CAA is also a characteristic morphological feature. These
latter proteins include the ABri and ADan subunits in
familial British dementia and familial Danish dementia,
respectively, which are also known under the umbrella term
BRI2 gene-related dementias, variant cystatin C in heredi-
tary cerebral haemorrhage with amyloidosis of Icelandic-
type, variant transthyretins in meningo-vascular amyloidosis,
disease-associated prion protein (PrPSc) in hereditary prion
disease with premature stop codon mutations and mutated

gelsolin (AGel) in familial amyloidosis of Finnish type. In
this review, the characteristic morphological features of the
diVerent CAAs is described and the implication of the bio-
chemical, genetic and transgenic animal data for the patho-
genesis of CAA is discussed.
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Introduction

Amyloid, which is ultrastructurally composed of highly
insoluble, 8- to 10-nm wide Wbrils, is the end product of a
protein conformation disorder. The initial phase of amyloid
formation is characterised by aggregation and polymeriza-
tion of soluble, often circulating proteins, marked by the
conversion of random-coil secondary structures into toxic
�-sheet-rich conformations. Once such conformers have
been produced and protein concentration has exceeded a
critical level, protoWbrillar intermediate species and subse-
quently high-ordered amyloid Wbrils are formed [108]. A
frequent precondition of amyloid formation is the proteo-
lytic processing of a larger precursor protein. Examples of
this include processing by the �- and �-secretases of the
amyloid precursor protein (APP), which releases the amy-
loid-� (A�) peptide in Alzheimer’s disease (AD) [117] or
processing by furin of the mutated BRI2 precursor proteins,
which releases the ABri or ADan amyloid proteins in famil-
ial British dementia (FBD) [138] and familial Danish
dementia (FDD) [140], respectively. A number of mecha-
nisms are known to facilitate the destabilization of the
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secondary structure of soluble native proteins and these
include genetic and posttranslational modiWcations,
increased concentrations of proteins, low pH and the pres-
ence of metal ions, among others [108]. The genetic abnor-
malities include missense mutations in the coding region of
a gene resulting in an amino acid substitution in an amyloid
protein, which can alter or inXuence the rate of conversion
of a native protein to a Wbrillar conformer. A classical
example is the mutant E22Q of the A� peptide, which is
associated with hereditary cerebral haemorrhage with amy-
loidosis of Dutch type (HCHWA-D) [63]. Increased dosage
of amyloid proteins is exempliWed by trisomy of chromo-
some 21 in Down’s syndrome or the duplication of the APP
gene associated with early onset familial AD [83, 114]. A
number of amyloid-associated proteins (AAPs) or ‘patho-
logical chaperons’ co-deposit with diVerent cerebral paren-
chymal and cerebrovascular amyloids. Such proteins are
structurally and functionally diverse and their binding to
the amyloid Wbrils or their precursors may be additional
factors inXuencing the formation of toxic misfolded pro-
teins [34, 61].

The umbrella term cerebral amyloid angiopathy (CAA)
describes a group of biochemically and genetically diverse
disorders, which are uniWed by the morphological Wnding
of amyloid Wbrils deposited in the walls of small to
medium-sized, mostly arterial blood vessels, and in some
instances, also in capillaries of the CNS parenchyma and
leptomeninges. CAA may contribute to cognitive decline
due to cerebral ischaemia and microhaemorrhages [12, 41,
86, 93, 97, 121, 152]. As a result of degenerative changes
secondary to amyloid deposition into blood vessel walls,
they may become predisposed to rupture, which is a major
cause of spontaneous, frequently recurrent, lobar cerebral
haemorrhages in the elderly [91]. Data from animal models
also suggest that CAA may exert a functional eVect on
cerebral microvasculature, leading to alterations in vessel
tone and reactivity [58]. InXammatory changes recognized
as a signiWcant clinicopathological feature of CAA could
also play a potentially signiWcant role in the pathogenesis of
CAA-related ischaemia [115, 131, 144].

Out of more than 25 human proteins or their proteolytic
fragments that have been identiWed to form amyloid Wbrils
in vivo, only 7 have been described in diseases of the cen-
tral nervous system (CNS), in which CAA can also be a
prominent feature [29, 108, 110]. The most common form
of CAA is due to A� deposition, which occurs sporadically
in the elderly or in association with AD. A�-CAA may also
be prominent in variants of familial AD with mutations of
the APP, presenilin-1 (PSEN1) or presenilin-2 (PSEN2)
genes. CAAs associated with other amyloid proteins are
rare hereditary conditions, which include (a) FBD with
deposition of the amyloid protein ABri, (b) FDD with
deposition of the amyloid subunit ADan, (c) hereditary

cerebral haemorrhage with amyloidosis of Icelandic type
(HCHW-I) with deposition of mutant cystatin C (ACys),
(d) meningo-vascular amyloidosis with variant transthyre-
tins (ATTR) as amyloid proteins, (e) variants of familial
prion disease with vascular deposition of disease-associated
prion protein (PrPSc), and (f) amyloidosis of Finnish type
with mutated gelsolin (AGel) as its amyloid subunit.

In this review, we wish to discuss the major neuropatho-
logical, biochemical and genetic features of the diVerent
forms of CAAs and also their clinical signiWcance.

Neuropathology of CAA

Leptomeningeal and cortical small and medium-sized arter-
ies and arterioles are most frequently aVected by amyloid
deposition, although veins may also be involved. Blood
vessels with advanced CAA show an acellular thickening
with a smudgy appearance of their walls on the haematoxy-
lin and eosin stained sections. Similar to amyloid deposits
elsewhere, blood vessels with CAA appear apple green in
Congo red preparations when viewed in polarized light,
show green Xuorescence when stained with ThioXavin S,
and observed under ultraviolet light (Figs. 1, 2). Binding of
both of these dyes is dependent on the high �-sheet content
of amyloids and is considered speciWc in pathological prac-
tice [108]. The predilection sites of CAA due to A� deposi-
tion are the occipital, parietal, frontal and temporal lobes
while the medial temporal structures and hippocampus are
often spared [125]. A�-CAA has been reported to start in
leptomeningeal or parenchymal blood vessels in the neo-
cortex, followed by amyloid formation in blood vessels of
allocortical regions and cerebellum and Wnally of deep grey
nuclei, white matter and brainstem [124]. If capillary amy-
loid deposition is present, it can aVect a number of areas,
including neocortex, subiculum, CA1 and CA4 hippocam-
pal subregions, amygdala, thalamus, hypothalamus,
nucleus basalis of Meynert, midbrain, cerebellum and pons
[126]. In some forms of familial CAAs including
HCHWA-I, FBD and FDD, CAA is extensive and in addi-
tion to sites commonly aVected by A�-CAA in most cases,
it can also be found in cerebral and cerebellar white matter,
deep grey nuclei, brainstem and spinal cord [47, 48, 99].

Cerebrovascular amyloid deposition is a multi-step pro-
cess with A� Wrst appearing around smooth muscle cells in
the abluminal aspect of the tunica media and the adventitia
[142]. This initial phase is followed by a gradual inWltration
of the intimal layers by A� and with further progression
amyloid will gradually replace the smooth muscle cells. A
similar, gradual inWltration of blood vessel walls by ABri and
ADan amyloid has also been documented by immunoelec-
tron microscopic investigations [47, 48]. Degenerative
changes may accompany the amyloid deposition, including
123



Acta Neuropathol (2009) 118:115–130 117
Wbrous thickening with an “onion skin” appearance of the
vessel wall, “double barrelling”, thinning of the degenerative
vessel wall sometimes with microaneurysm formation, Wbri-
noid necrosis and evidence of blood breakdown products
around aVected blood vessels [145]. CAA grading systems
commonly used in research are taken into consideration in
this process of progressive amyloid deposition [92, 146].
According to one of the frequently used systems in “mild”
CAA, there is amyloid in the media without signiWcant
smooth muscle cell loss, while in “moderate” CAA together
with the expansion of amyloid deposition in the media,
smooth muscle cell loss is conspicuous. In “severe” CAA,
the smooth muscle cell layer loss is complete and this is
accompanied by degenerative changes of the aVected vessel
walls often with evidence of leakage of blood [146].

Irrespective of the nature of the amyloid protein, a sig-
niWcant perivascular inXammatory response with a promi-
nent reaction by activated microglia and astrocytes and

activation of the complement cascade around amyloid-
laden vessels (Fig. 2) may be found in human and experi-
mental CAAs [46–48, 112]. Such CAA-associated angiitis
due to A� peptide deposition has now been deWned as a
clinicopathological entity with patients frequently present-
ing with alterations in mental status, headaches, seizures
and focal neurological deWcits [25, 115]. Pathologically
A�-CAA related angiitis usually consists of angiodestruc-
tive inXammation with a pronounced adventitial and peri-
vascular inWltrate of lymphocytes and histiocytes including
multinucleate giant cells with A� phagocytosis as well as
meningeal lymphocytosis [115, 156]. The likely trigger of
the vasculitic process, which has also been documented in
the APP23 transgenic mouse model of AD, is vascular
A�-peptide deposition [3, 152, 156].

In brains with CAA-related haemorrhages, there may be
several lobar haemorrhages showing diVerent stages of
organization. In some instances, microhaemorrhages can be

Fig. 1 a A Congo red-positive 
cortical arteriole in sporadic A�-
CAA showing (b) characteristic 
apple green birefringence in po-
larised light. c Deposition of A� 
peptide in the vascular wall is 
extensive and double barrelling 
with ‘vessel-within-vessel’ 
appearance is also seen. The bar 
on a represents 30 �m on all 
images

Fig. 2 a–c Marked activated 
microglial reaction in relation to 
amyloid laden blood vessels in 
familial British dementia (confo-
cal microscopy, a ThioXavin S, 
b Cr3/43, c combined image). 
d–f The C1q component of the 
classical complement cascade 
co-localises with ADan deposi-
tion in cerebrovascular amyloid 
in familial Danish dementia 
(confocal microscopy, 
a ADan, b C1q, c combined 
image). The bar on a represents 
30 �m on a–c and 60 �m on d–f
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seen without evidence of a major lobar intracerebral haem-
orrhage. Loss of smooth muscle cells accompanied by
degenerative changes, which results in weakening of the
vessel walls, is thought to be the likely pathological sub-
strate of the underlying blood vessel rupture. The posses-
sion of the ApoE �2 allele has been reported to increase the
risk of cerebral haemorrhage in patients with A� CAA and
vasculopathic changes that result in blood vessel rupture
[43, 88]. In transgenic animals with CAA, there is also a
spatial and temporal relationship between microhaemor-
rhages and CAA. In addition, there is a positive correlation
between haemorrhages and vascular amyloid load (for
review see [45]). Cerebral infarctions and focal or diVuse
white matter ischaemic lesions may also be the conse-
quence of CAA irrespective of the nature of the vascular
amyloid [39, 40, 66, 77, 100].

CAA with A� peptide deposition

Sporadic A�-CAA

The majority of A�-CAA is sporadic, mostly aVecting eld-
erly individuals, with or without morphological evidence of
additional AD pathology (Fig. 1c). Sporadic CAA and AD
have overlapping biology with shared risk factors [155].
The incidence of both diseases steadily increases with age
with the incidence of CAA approaching 50% in elderly
individuals aged over 70 years [8, 24, 27, 69, 75, 130, 143,
146]. CAA is present in over 80% of all AD cases [8, 24,
27, 69, 146] and involvement of capillaries by A� deposi-
tion is particularly overrepresented in advanced AD [4, 5].

Genetic risk factors for sporadic A�-CAA

The overlapping biology of CAA and AD is underpinned
by the observation that CAA is more common and morpho-
logically more severe in AD cases [155] than in controls
and that genetic polymorphisms that have been described as
risk factors for AD, such as those in ApoE, PS1, �-1-anti-
chymotrypsin and neprilysin, which is one of the major A�
degrading enzymes in the brain (see below), are also impli-
cated in CAA [89]. The severity of CAA without signiWcant
AD pathology was found to correlate with the possession of
the ApoE �4 allele [105], which is also a risk factor for both
sporadic CAA and CAA-related cerebral haemorrhage [42,
55, 105]. Increasing doses of ApoE �4 have been shown to
be associated with increasing amounts of A�40 per aVected
cortical vessel without increasing the proportion of amy-
loid-laden vessels [2]. In AD, there is a strong association
between the �4 allele frequency and the severity of CAA
[14, 53] and the occurrence of CAA-related cerebral haem-
orrhage [55, 105]. According to a more recent study, two

types of sporadic CAA can be identiWed and the major
diVerence between the two is the presence (CAA type 1) or
absence (CAA type 2) of capillary amyloid. In CAA type 1
cases, the frequency of the ApoE �4 allele is reported to be
more common than in CAA type 2 cases and in controls
[125]. Furthermore, individuals with AD and an ApoE �4/
�4 genotype were found to have the overall greatest A�
deposition, more frequent arteriolar A� deposition, in par-
ticular in white matter [132]. Although the mechanism
underlying this increased risk is not entirely clear, there is
evidence to show that ApoE binds to the low density lipo-
protein receptor related protein-1 (LRP-1), and interacts
with soluble and aggregated A� both in vitro and in vivo,
inXuencing its conformation and clearance [49].

CAA in Alzheimer’s disease treated with immunotherapy

Data are now available to indicate that following active
immunisation of AD patients with A�42, in addition to a
decrease in plaque load, there is probably a temporary man-
ifold increase in the quantity of A� deposition in leptome-
ningeal and cerebral cortical blood vessels. This would be
in keeping with observations made in immunised APP
transgenic animals showing that plaque removal is accom-
panied by an increase in severity of CAA [102, 151].
Human studies have also demonstrated that CAA in
patients treated with immunotherapy contains increased
amounts of A�42 and A�40 due to solubilisation of paren-
chymal A� lesions and that, as in transgenic animals treated
with passive immunisation, there is a higher density of
microhaemorrhages and microvascular lesions [9, 98].

Hereditary CAAs due to A� peptide deposition

Missense mutations of the APP gene are within or just out-
side the coding region of the A� peptide (Fig. 3). Muta-
tions, localized close to the �-secretase or �-secretase
cleavage sites with amino acid substitutions Xanking the
A� sequence, result in clinicopathological phenotypes of
early onset AD, while those resulting in an amino acid sub-
stitution within residues 21–23 and 34 of the A� peptide are
associated with a neuropathological phenotype, which also
includes prominent CAA. The classical example of cere-
brovascular disease manifestation is HCHWA-D, in which
there is a glutamine for glutamic acid substitution at posi-
tion 22 of A� (E22Q) due to a G for C nucleotide change at
codon 693 of APP [63]. The clinical presentation of
HCHWA-D includes strokes, including cerebral haemor-
rhage, although the initial presentation may be dementia
[67]. Leptomeningeal and cerebral cortical blood vessels
are aVected by severe CAA (Fig. 4a) and, although diVuse
A� plaques are found, classical dense core A� plaques are
not seen and neuroWbrillary degeneration is limited [67, 86].
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In the Italian (E693 K), Arctic (E693G), Iowa (D694 N)
and Piedmont (L705 V) variants, severe CAA has been
conWrmed to be a pathological feature, although it is not
known why the Arctic and Iowa mutants co-exist with
abundant neuroWbrillary pathology while the Italian and
Piedmont variants do not. The Flemish mutation (A692G)
interferes with the normal processing APP and results in
increased production of A� by the �-secretase homologue
BACE-2. AVected individuals may develop cerebral haem-
orrhage or early onset AD. The neuropathological changes
include neuroWbrillary degeneration and AD-type A�
parenchymal plaques, centered on blood vessels aVected by
CAA (for review see [158]). Recently, a novel mutation of
the APP gene (E693�) was reported from Japan. This vari-
ant A� (E22�) lacking glutamate at position 22 is more
resistant to proteolytic degradation and shows enhanced
oligomerisation properties, but no Wbrillisation. Although
no neuropathological data have been reported to date, these
data could be consistent with the hypothesis that the cause
of dementia in this pedigree is due to enhanced formation
of synaptotoxic A� oligomers [129]. Over-expression of
wild-type APP without amino acid substitution in the pro-
tein sequence results in severe parenchymal and vascular
A� deposition in early-onset familial AD caused by dupli-
cation of the APP gene and in Down syndrome [52, 114].

Severe A� CAA has been well documented in aVected
members of families with mutations in the PSEN1 and
presenilin-2 PSEN2 genes [23, 50, 71, 90].

A� in blood vessels

A� deposited in blood vessel walls is highly heterogeneous
at both N- and C-termini. Although A� species ending at

position 40 are usually predominant, those ending at posi-
tion 42 are often present and are particularly enriched in
capillaries [5]. In some animal models, the Wrst species
deposited in the vessel wall is A�42 and the more soluble
A�40 is deposited subsequently [133]. A�42 has been dem-
onstrated in HCHWA-D cerebrovascular lesions [87] as
well as co-deposited with ADan in FDD cases [48, 127].
N-terminally truncated and post-translationally modiWed
A� species, which have enhanced aggregation propensities,
have also been documented to contribute to vascular amy-
loid [123].

Biochemical studies of A� in HCHWA-D [104] and in
the Iowa variant [128] of FAD demonstrated that the amy-
loid deposits in CAA are composed of both variant (either
E22Q or D23N) and wild-type A� in »50:50 ratio. Com-
pared with wild-type A�, both the Dutch and Iowa A�40
synthetic peptides rapidly assemble to form amyloid Wbrils
in vitro, which are toxic to cultured human cerebrovascular
endothelial cells and smooth muscle cells [79, 134]. In A�-
CAA, a number of amyloid-associated proteins including
complement components, serum amyloid-P component,
Apolipoprotein E (ApoE), complement inhibitors such as
apolipoprotein J (ApoJ) and vitronectin, �1-antichymotryp-
sin, glycosaminoglycans and extracellular matrix proteins
are also present [136].

Clinical and experimental studies have demonstrated
that in vivo the A�40:A�42 ratio is an important determi-
nant of amyloid formation in diVerent cerebral compart-
ments, i.e. whether A� primarily deposits in blood vessel
walls or brain parenchyma. There are considerable diVer-
ences between these two major classes of A� protein spe-
cies; A�42 aggregates more readily perhaps because it
nucleates more eYciently. In contrast, the more soluble

Fig. 3 Mutations in the APP 
gene and their relationship to the 
amino acid sequence of the A� 
peptide. The Dutch and London 
mutations of the APP gene, 
shown in red, were the Wrst de-
scribed within and outside the 
sequence of the A� peptide, 
respectively
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A�40 is less able to initiate nucleation events capable of
promoting amyloid deposition, and it may also have a pos-
sible protective role with direct inhibitory eVect on A�42
aggregation into amyloid both in vitro and in vivo [57, 76,
122]. The relationship between the A�40:A�42 ratio and
the morphological phenotype is based on the diVerent
aggregation and Wbrillisation propensities of the two major

classes of A� when they are in diVerent compositions [45].
An increase in total cerebral A� with an increase in both
A�40 and A�42 levels, results in increased degree of
amyloid deposition in both cerebral vasculature and
parenchyma. An example is the KM670/671NL Swedish
double mutation, which aVects the two residues located just
N-terminal to the �-secretase cleavage site and results in a

Fig. 4 DiVerent amyloid 
peptides in hereditary CAAs. 
a Deposition of A� peptide in 
blood vessels and diVuse 
parenchymal plaques in cerebral 
cortex in HCHWA-D. b Accu-
mulation of mutated cystatin C 
in leptomeningeal and cerebral 
cortical blood vessels in 
HCHWA-I. c Widespread 
deposition of ABri in FBD d and 
ADan in FDD is characteristic 
(c and d: cerebellar cortex). 
e: ATTR deposition is abundant 
in the leptomeninges and 
leptomeningeal blood vessels in 
the Hungarian form of meningo-
vascular amyloidosis (lumbar 
cord). f PrPSc deposition in blood 
vessels and parenchyma is a 
characteristic morphological 
feature of human prion disease 
with the novel Y163STOP 
mutation of the PRNP gene 
(cerebellum). g Deposition of 
AGel in skin blood vessels in 
familial amyloidosis of the 
Finnish type. The bar on 
b repsents 60 �m on a, 30 �m 
on b–e and g, 15 �m on f
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six to eightfold increase of both A�40 and A�42 [17, 84].
The neuropathological phenotype of both human disease
and its transgenic animal model is characterised by a
mixed plaque and CAA-rich picture [13, 60]. Overexpres-
sion of wild-type A� in familial AD with duplication of
the APP gene and in Down syndrome has a similar eVect
with an increase of both A�40 and A�42 and amyloid
deposition in both parenchyma and blood vessels [52,
114]. In contrast, mutations such as the London mutation
(V717I), which are just C-terminal to the �-secretase
cleavage site of the APP gene, speciWcally increase the
levels of the more insoluble and Wbrillogenic A�42 and, as
such mutations do not inXuence total A� production, there
is a consequent decrease in the A�40 to A�42 ratio. In
such human cases and their transgenic animal models there
is signiWcant parenchymal, but less vascular A� deposition
[45]. In contrast, both human and experimental data indi-
cate that an increased A�40 to A�42 ratio, such as that is
found in aVected members of families with HCHWA-D
and the transgenic mouse model of this disease, signiW-
cantly shifts A� deposition towards the cerebral vascula-
ture resulting in prominent CAA [46]. That the high
cerebral A�40 to A�42 ratio is an important marker of the
morphological phenotype of HCHWA-D is further under-
pinned by data from experimental studies, in which the
APPDutch mice were crossbred with mice overexpressing
the hPS1 G384A mutation, which increases A�42 produc-
tion. As a consequence, in the double-transgenic mice
there is a decrease in the cerebral A�40 to A�42 ratio
accompanied by a redistribution of the amyloid pathology
from blood vessels to cerebral parenchyma [46].

Hereditary CAAs in FBD and FDD (BRI2 gene-related 
dementias)

Two distinct mutations of the BRI2 gene are associated
with neurodegenerative diseases with striking morphologi-
cal resemblance to AD. The neuropathological hallmarks of
FBD include parenchymal ABri amyloid and preamyloid
plaques, widespread ABri-CAA (Fig. 4c) and neuroWbril-
lary tangle pathology [47, 100, 109, 153, 154]. In addition,
white matter ischaemic change thought to be secondary to
the severe CAA is also a characteristic feature [100]. The
anatomical distribution of ADan deposition in FDD is
rather similar to that seen in FBD (Fig. 4d), although the
parenchymal lesions are primarily of preamyloid nature
(deWned ultrastructurally as granular, sparsely Wbrillar pro-
tein deposits) [48]. In the Danish pedigree, there is also fre-
quent co-deposition of A�, mostly A�42, with vascular and
perivascular ADan amyloid [48, 127]. The BRI2 gene is
located on the long arm of chromosome 13 and is broadly
expressed in a number of peripheral organs and neurons

and glial cells of the CNS [62, 113, 138]. The BRI2 gene
encodes a 266-amino acid-long type II transmembrane pro-
tein, and furin-like proteolysis between peptide bonds 243
and 244 results in the release of a short 23-amino acid-long
C-terminal peptide [138]. The BRI2 protein with a still
largely unknown biological function, is widely expressed in
the CNS and transported along axons [1, 62, 113]. BRI2
protein interacts with APP and is able to modify its process-
ing. It may also act as a tumour suppressor and has been
suggested to have pro-apoptotic properties [38].

A point mutation (T to A) of the normal stop codon of
the BRI2 gene is the genetic abnormality underlying FBD,
while a 10-nt duplication insertion mutation between
codons 265 and 266 is associated with FDD [38, 138, 140].
As both mutations abolish the normal stop codon, they
result in extended precursor proteins, which possess 277
amino acids instead of the normal 266. In both diseases,
34-amino-acid-long C-terminal peptides, ABri in FBD and
ADan in FDD, are cleaved from the mutated precursor pro-
teins, and readily form amyloid Wbrils in vitro. Both ABri
and ADan are neurotoxic, which may partly be due to their
ability to form ion channel-like structures in cell mem-
branes [107]. ABri and ADan species with post-translation-
ally modiWed N-termini, are the main components of the
amyloid, preamyloid parenchymal deposits and vascular
amyloid in the CNS and systemic organs in FBD and FDD,
respectively [36, 127, 138, 140]. A constant feature of both
FBD and FDD is that CAA is extensive and involves not
only the blood vessels of the leptomeninges and cerebral
cortex, but also of the white matter, deep grey nuclei, brain-
stem, cerebellum and spinal cord [47, 48, 100]. There is a
wide range of amyloid-associated proteins in both ABri and
ADan parenchymal lesions and CAA in a pattern similar to
that seen in association with vascular and parenchymal A�
deposits [61]. A marked astrocytic and activated microglial
response together with complement activation of both the
classical and alternative pathways have been documented
in relation to ABri and ADan amyloid lesions, including
CAA [47, 48, 62, 112]. As reported for other non-A� cere-
bral amyloidosis (see below), mostly vascular systemic
deposits of ABri and ADan can be found in a variety of
peripheral tissues [36].

CAA due to mutated cystatin C in hereditary cerebral 
haemorrhage with amyloidosis of Icelandic-type 
(HCHWA-I)

HCHWA-I is an autosomal dominant disorder with often
fatal, early onset cerebral haemorrhage while dementia may
develop in those surviving the initial episode of haemor-
rhagic stroke. HCHWA-I is associated with a glutamine for
leucine amino acid substitution due to an A to T point
123
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mutation at codon 68 of the cystatin C gene located on
chromosome 20 [37, 64]. The cystatin C protein is a mem-
ber of the type II family of cysteine protease inhibitors and
is produced by many cell types including neurons of the
CNS. The protein species widely deposited as vascular
amyloid in the leptomeninges, cerebral cortex, basal gan-
glia, brainstem and cerebellum is an N-terminal degrada-
tion product of the mutated cystatin C protein. A
characteristic feature of HCHWA-I is that in addition to
CAA (Fig. 4b), as in FBD and FDD, amyloid deposits can
also be found in peripheral tissues including lymphoid
organs, skin, salivary glands, and testes [29].

CAAs due to deposition of variant transthyretins

Multiple mutations of the TTR gene, located on chromo-
some 18 are the most common cause of familial amyloid
polyneuropathy. The amyloid subunit is composed of one
of more than 60 known variants of the protein transthyretin,
a molecule involved in the transport of the retinol and the
thyroid hormone [51]. Although the major component of
these amyloid lesions is mutated transthyretin (ATTR),
wild-type transthyretin species have been also found incor-
porated in the amyloid Wbrils [65, 103, 157]. As in other
cerebral amyloidosis, amyloid Wbrils are often composed of
both full-length TTR as well as C- and N-terminal degrada-
tion fragments of various sizes.

The clinical manifestations of the disease are rather pro-
tean; phenotypic heterogeneity was not only found between
mutations but among patients with the same mutation [18].
The most common neurological phenotype is familial amy-
loid sensorimotor polyneuropathy with or without associ-
ated autonomic neuropathy [7]. In some of the variants
deposition of ATTR in the vitreous, leptomeninges and
meningeal blood vessels is a feature. In the Hungarian
(D18G) (Fig. 4e) and Ohio (V30G) pedigrees there is
severe amyloid deposition in the leptomeninges and cere-
bral parenchyma and CAA is also documented [96, 139].

CAA in human prion diseases

A central feature of prion diseases is that disease-associated
prions recruit normal cellular prion protein (PrPC), encoded
by a chromosomal gene (PRPN) localized on chromosome
20, and facilitate the conversion of the cellular isoform into
a disease-associated prion protein isoform (PrPSc) [106].
PrPC and PrPSc have an identical amino acid sequence,
albeit with diVerent conformations. While PrPC is rich in
�-helical regions, PrPSc is characterised by a �-pleated
sheet-rich secondary structure. Limited proteolysis of PrPSc

of about 142 amino acids length produces shorter, protease-

resistant protein species (PrP 27-30), which is capable of
polymerization and forming amyloid Wbrils [106]. As a
general rule, PrPSc-CAA is usually not a feature of human
prion diseases, which include Creutzfeldt–Jakob disease
(CJD), the Gerstmann–Sträussler–Scheinker’s syndrome,
fatal familial insomnia, kuru and variant CJD. However,
rare hereditary disease forms, which are characterised by a
premature stop codon mutation of the PRPN gene, seem to
emerge as a noticeable exception to this general rule.
Detailed neuropathological data are available from a fam-
ily, in which a T to G mutation occurring at codon 145
results in an early stop codon (Y145STOP) and the produc-
tion of an N- and C-terminally truncated, 70 amino acid-
long PrP. In this pedigree, there is extensive PrP-positive
CAA together with parenchymal perivascular PrP deposi-
tion and neuroWbrillary tangle pathology [31]. One of us
(JLH) recently had the opportunity to observe a case from a
family with a novel Y163STOP mutation with a neuro-
pathological phenotype characterised by vascular (Fig. 4f)
and parenchymal disease-associated PrP deposition and
extensive neuroWbrillary tangle pathology (unpublished
data). Both the Y145STOP and Y163STOP mutations
result in truncated C-termini with loss of the glycosylphos-
phatidylinositol (GPI) anchor, which is added post-transla-
tionally to the C-terminus of PrP and is required to attach it
to the outer leaXet of the plasma membrane [95]. As in the
human disease due to Y145STOP or the Y163STOP muta-
tion, in transgenic mice lacking the GPI anchor and
infected with scrapie there are PrPSc-positive amyloid
plaques and CAA. Data indicate that the GPI moiety might
interfere with the ability of PrP to form amyloid Wbrils and
when it is absent, PrP readily forms amyloid Wbrils also
resulting in cerebrovascular amyloid deposition [15].

In a recently reported CJD case of an elderly individual,
the accompanying CAA was mainly due to deposition of
A�, although some additional PrP immunoreactivity was
also observed [94]. It remains to be proven that this obser-
vation represents true vascular deposition of disease-associ-
ated PrP in a sporadic CJD case or the presence of PrP in
the A�-CAA is more analogous to frequently observed co-
deposition of PrPC in A� amyloid plaques in AD [26].

Gelsolin-related-familial amyloidosis of the Finnish type

In this form of systemic amyloidosis, the clinical presenta-
tion includes ophthalmological, dermatological and neuro-
logical symptoms and signs. Both the G654A and the
G654T mutations of the gelsolin gene located on chromo-
some 9 have been described in a number of countries, the
G654A mutation is the characteristic genetic abnormality in
the Finnish pedigrees. The actin-binding protein, gelsolin
has two isoforms, one is cytoplasmic with a molecular
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weight of 80 kDa while the other is present in the plasma
and has a molecular weight of 83 kDa. The disease-associ-
ated variant AGel composing amyloid, consists of proteo-
lytic fragments of the secretary form of gelsolin spanning
positions 173–243 or 173–225 [35, 73]. Due to nucleotide
changes noted above, AGel is characterised by a single
amino acid substitution at residue 187, D187 N in the Finn-
ish families and D187Y in the Danish/Czech kindreds [35,
73, 74]. AGel deposits in basement membranes and as amy-
loid angiopathy in systemic organs (Fig. 4g) and the CNS.

Pathogenesis of CAA

Studies of the mechanisms of disease pathogenesis in CAA
are currently centered on the structural changes that aVect
the various amyloid subunits. Conformational transitions
occurring in native soluble amyloid molecules increase
their content in �-sheet structures favouring the formation
of more insoluble oligomeric structures that are not physio-
logically catabolised and accumulate in the form of intra-
and extra-cellular amorphous aggregates and Wbrillar
deposits. In turn, they trigger a secondary cascade of events
that include, among others, release of inXammatory compo-
nents, activation of the complement system, oxidative
stress, alteration of the blood-brain barrier (BBB) perme-
ability, formation of ion-like channels and cell toxicity [38,
111]. Although this information has been primarily
obtained with the A� peptide it is clear that all known amy-
loid subunits share many aspects of these pathogenic mech-
anisms [111].

A� is a normal soluble component (sA�) of biological
Xuids and brain interstitial Xuid, in which its concentration
appears to directly correlate with neuronal activity—being
decreased under conditions of depressed neuronal function
[10, 33, 85, 118, 120, 141]. Both deposited and sA� mole-
cules are identical in their primary structure, but exhibit
completely diVerent solubility and tinctorial properties. It is
believed that the sA� forms are immediate precursors of the
deposited species, which through mechanisms, not com-
pletely understood, change their conformation into a pre-
dominantly �-sheet structure, highly prone to
oligomerization and Wbrillization. The identiWcation of sA�
species in circulation, brain interstitial Xuid and cerebrospi-
nal Xuid (CSF), together with the ability of the BBB to reg-
ulate A� transport in both directions, originally pointed out
to the potential importance of plasma sA� as the precursor
of the deposited species [159]. However, the lack of brain
lesions in a transgenic model with several fold increased
plasma sA� [56] strongly argues against the sole contribu-
tion of circulating species to brain deposition and draws
attention to the brain itself as the source of A�. Since
smooth muscle cells, pericytes and endothelial cells all

express APP [11] and isolated cerebral microvessels and
meningeal blood vessels are able to produce A� [54] the
cerebral vasculature itself was proposed as a possible
source of cerebral A�. This was supported by the close
association of A� CAA with smooth-muscle cells [28].
Nevertheless, the sole contribution of smooth-muscle cells
to A�-CAA is made less likely by the existence of amyloid
deposits in capillaries (which are devoid of smooth mus-
cle), a frequent Wnding in A�- as well as in ABri- and
ADan- associated disorders [47, 48, 149]. Another argu-
ment against this hypothesis is that larger arteries with
more abundant smooth muscle are usually less aVected by
amyloid deposition than small arteries and arterioles. In
recent years, the notion of neuronal origin of A� and other
amyloid proteins has been strengthened and is supported by
the observation that APP transgenic models and more
recently a transgenic model of FDD, all driven by neuronal
promoters, develop CAA [11, 15, 46, 133, 137]. It has been
proposed that the amyloid protein produced by neurons is
drained along the perivascular interstitial Xuid pathways of
the brain parenchyma and leptomeninges and that under
speciWc pathologic conditions it deposits along the vessels
[149, 150].

With the exception of a small number (<5%) of AD
familial cases with inherited mutations in APP or PSEN
genes, no increased A� production has been demon-
strated, suggesting an imbalance between A� production
and clearance as a major element in the formation of amy-
loid deposits. The amphyphilic nature of A� precludes its
crossing through the BBB unless mediated by specialised
carriers and/or receptor transport mechanisms. In fact, the
BBB has both the capability to control the uptake of circu-
lating A� (free or complexed to carrier lipoproteins) into
the CNS [20, 32, 68, 70, 72, 101, 160, 161] and regulate
brain clearance via transport-mediated mechanisms
[6, 21, 22, 30, 80, 119, 162]. Of the receptors involved,
RAGE (the receptor for advance glycation end-products)
actively participates in brain uptake of free A� at the ves-
sel wall level [20] whereas other receptors are more rele-
vant for the transport of A� complexed with other
molecules, which, in turn, are ligands of speciWc recep-
tors. In this sense, LRP-1 mediates transcytosis of A�-
ApoE complexes contributing to rapid CNS clearance
[119] whereas megalin mediates in the cellular uptake and
transport of A�-ApoJ complexes across both the blood–
brain and the blood–CSF barriers [161]. Also involved in
A� eZux at the BBB is p-glycoprotein, highly expressed
on the brain capillary endothelial cells, and the expression
of which appears to correlate inversely with A� deposits
[16, 59].

The notion of defective A� degradation as a contributing
mechanism to brain accumulation should not be over-
looked. Although the pathways by which A� is generated
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from its precursor are largely known (Fig. 3), A� catabo-
lism under physiological and pathological conditions is
only starting to be unveiled. Neprilysin (NEP), endothelin-
converting enzyme (ECE), insulin-degrading enzyme
(IDE), beta-amyloid-converting enzyme 1 (BACE-1), plas-
min and matrix metalloproteases (MMPs) are among the
major enzymes known to participate in brain A� catabolic
pathways (Fig. 5) (for review see [78, 81, 116, 148]).
Reduced levels and/or catalytic activity of A� degrading
enzymes as a result of age and genetic factors as well as
speciWc disease conditions favour A� accumulation, an
issue well documented in murine models in which gene
deletion of diVerent proteases translate into increased levels
of A� deposition (for review see [116, 135, 148]). The spe-
ciWc association of many of these enzymes with vascular
components points to their active participation in CAA
pathogenesis [44, 82].

Experimental models of CAA

CAA due to deposition of A� has been reported in aged
dogs and primates [147]. A number of transgenic mouse
models with A�-CAA has been described, including the
Tg2576 mice overexpressing human APP containing the
Swedish double mutation under the control of a hamster
PrP promoter. In the APP23 transgenic mouse model of
AD, in which the same mutation is utilized under another
neuron-speciWc promoter (murine Thy1), there is CAA with
vasculopathic alterations and CAA-related cerebral haem-
orrhages, enhanced by either passive anti-A� immunother-
apy or thrombolytic treatment [98, 152]. A signiWcant
degree of CAA has also been documented in aged mice
with human APP transgene harbouring the London muta-
tion. As already described above in detail there is severe
CAA in the APPDutch mice, over-expressing E693Q-
mutated human APP under the control of the neuron-spe-
ciWc murine Thy1 promoter [46]. In another transgenic
mouse model (Tg-SwDI) expressing human APP possessing

the Swedish double mutation and Dutch/Iowa (E693Q/
D694 N) mutations at levels below those of endogenous
mouse APP, the animals develop CAA in capillaries and
occasional microhaemorrhages [19]. Recently an animal
model of FDD has been described, which recapitulates
major morphological features of the human disease
including ADan parenchymal deposits and ADan-CAA
[137].

Conclusions

The mechanisms of amyloid formation and deposition in
cerebral blood vessels are certainly complex. Histopatholo-
gical, biochemical, genetic and physicochemical studies in
conjunction with data obtained from genetically engineered
transgenic animal models support the notion that diVerent
amyloid subunits undergo common abnormal folding path-
ways rendering similar endpoint oligomeric and Wbrillar
structures that deposit in the vessels and eventually replace
the whole vessel wall. Once established, these deposits alter
the BBB permeability and aVect the normal supply of oxy-
gen and nutrients, triggering a cascade of secondary events
that include inXammation, oxidative stress and cell toxicity,
key elements in the development of neurodegeneration.
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