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Abstract The Wrst ultrastructural investigations of Alzhei-
mer’s disease noted the prominence of degenerating mito-
chondria in the dystrophic neurites of amyloid plaques, and
speculated that this degeneration might be a major contribu-
tor to plaque pathogenesis. However, the fate of these
organelles has received scant consideration in the interven-
ing decades. A number of hypotheses for the formation and
progression of amyloid plaques have since been suggested,
including glial secretion of amyloid, somal and synaptic
secretion of amyloid-beta protein from neurons, and
endosomal–lysosomal aggregation of amyloid-beta protein
in the cell bodies of neurons, but none of these hypotheses
fully account for the focal accumulation of amyloid in
plaques. In addition to Alzheimer’s disease, amyloid
plaques occur in a variety of conditions, and these condi-
tions are all accompanied by dystrophic neurites characteris-
tic of disrupted axonal transport. The disruption of axonal
transport results in the autophagocytosis of mitochondria
without normal lysosomal degradation, and recent evidence
from aging, traumatic injury, Alzheimer’s disease and trans-
genic mice models of Alzheimer’s disease, suggests that the
degeneration of these autophagosomes may lead to amyloid
production within dystrophic neurites. The theory of amy-
loid plaque pathogenesis has thus come full circle, back to
the intuitions of the very Wrst researchers in the Weld.
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Introduction

Deposits of extracellular amyloid with closely associated
neuronal and glial pathology are commonly identiWed with
Alzheimer’s disease, but amyloid plaques are found in
many other conditions, including transmissible spongiform
encephalopathies and traumatic brain injury. Amyloid
plaques also commonly occur with aging in the absence of
disease, injury or dementia. Plaques form in the cerebral
cortex of aged primates [72, 184, 194], and in many non-
primate species, but only rarely in aged rodents [257].
Animal models of amyloid pathology, created by inserting
Alzheimer’s disease genes into mice, have rapidly expanded
our knowledge in recent years, warranting a reconsideration
of the mechanisms of amyloid plaque pathogenesis.

Amyloid is any proteinaceous polymer having a beta-
pleated sheet conformation that accumulates extracellularly
(for reviews see [205, 275]). In transmissible spongiform
encephalopathies, such as mad cow disease, the amyloid is
composed primarily of prion protein rather than the amy-
loid-beta (A�) peptide of Alzheimer’s disease. A number of
prion diseases, including Creutzfeldt–Jakob disease, Gerst-
mann–Sträussler–Scheinker disease, kuru, and scrapie,
exhibit amyloid plaque pathology similar to that of aging
and Alzheimer’s disease [139]. A number of other cellular
proteins may form amyloid in the brain, and all of these
amyloids induce pathological changes [10, 31, 57, 168].

Amyloid plaques can result from traumatic brain injury
in which axonal damage is distributed diVusely throughout
the brain. Organelle accumulation in disrupted axons over a
period of a few days post-injury leads to axotomy and
plaque formation in animal models of traumatic injury [33,
219, 229]. Likewise in humans, traumatic brain injury with
diVuse axonal damage leads to plaques containing A� pro-
tein [97, 218]. There is also evidence that amyloid plaques
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accumulate in the cerebral cortex of athletes involved in
violent sports such as football and boxing [107, 177, 200].

The fact that insoluble extracellular deposits of Wbrillar
protein accumulate in a similar pattern in so many diVerent
conditions provides interesting clues to the mechanisms of
pathogenesis. Pathogenesis likely involves a site of particu-
lar vulnerability that is disrupted by a variety of insults.
Although amyloid is assembled from cellular proteins,
where this assembly takes place is currently unknown. As
reviewed below, several loci have been proposed for amy-
loid polymerization, including glia cells, neuronal lyso-
somes, and extracellular Xuid, but the current evidence does
not unequivocally endorse any of these loci. The early
hypotheses of Fischer and BonWglio maintained that amy-
loid derives from degenerating axons (reviewed in [78]),
and this alternative is reconsidered in light of the recently
recognized importance of disrupted axonal transport in
amyloid pathology [40, 77, 201, 226].

Amyloid plaque morphologies

Plaques are frequently identiWed by light microscopy using
methods speciWc for Wbrillar amyloid such as thioXavin-S
or Congo Red staining. The commonly used descriptors
“primitive” and “cored” describe the two main types of
amyloid plaques revealed by this kind of histology and by
electron microscopy. Several additional types of amyloid-
related protein deposits have been more recently identiWed
by immunohistochemistry (for a recent review see [241]).

Primitive plaques

Primitive plaques are composed of extracellular wisps of
amyloid woven among a dense cluster of dystrophic neu-
rites. The “dystrophic” label was given to these grossly
swollen neurites because they resemble the spheroid
enlargements of axons found in cases of malnutrition and in
the infantile neuroaxonal dystrophy of Seitelberger [133].
Primitive plaques are sometimes called “neuritic” plaques
because such dystrophic neurites are always present.

The term “dystrophic” is often mistakenly applied to the
more fusiform, distorted neurites containing paired helical
Wlaments (neuroWbrillary tangles) of tau protein. Neurites
with tau tangles are found in plaques in advanced Alzhei-
mer’s disease, but they are absent from plaques in early
disease stages [14, 41, 163, 232, 241, 265, 295]. Many non-
human mammalian species develop amyloid plaques with
aging but do not have neurites with tau inclusions [43, 212,
252]. Transgenic mice carrying Alzheimer’s disease muta-
tions have amyloid plaques without tau tangles (for reviews
see, [70, 221]) while mice engineered to also produce tau
tangles initially form amyloid plaques without them [17, 170,

171]. This evidence establishes that plaques can form in the
absence of neuritic tau accumulations, and that this type of
neurite, while signiWcant to Alzheimer’s disease progression,
is not a general mechanism of amyloid plaque pathogenesis.
In this review, the term “dystrophic neurite” is only used to
refer to the globular type of swelling without tau tangles.

The term “neurite” is used because the distorted mor-
phology makes it diYcult to unequivocally identify the pro-
Wles as axonal or dendritic [148, 151]. However, evidence
from transgenic mice demonstrates that most grossly swol-
len, dystrophic neurites are axons [17, 185, 222, 250, 299].
Dendrites passing through plaques often display spine loss,
increased curvature, and a reduction in shaft diameter,
while Wlopodial extensions and swellings are less fre-
quently observed [81, 195]. The dystrophic swellings in
plaques are more often diverticular oVshoots from unmyeli-
nated axons [63, 195]. Whether these dystrophic axons are
degenerating or regenerating has been debated [2, 151,
258], but the fact that axon densities are reduced in plaques
appears to favor degeneration [13, 52, 222].

By light microscopy, primitive plaques are observed to be
spherical regions of pathology, usually 10–70 �m, but some-
times more than 100 �m, in diameter [6, 24]. Electron
microscopy reveals many more small neuritic plaques than
are apparent by light microscopic examination [239]. The
smallest primitive plaques are clusters of just a few dystro-
phic neurites in the neuropil and do not involve cell bodies
of any kind (Fig. 1). In addition to dystrophic neurites, the
plaque region often contains normal-looking neuronal and
glial processes, but the density of synapses is greatly
reduced from that of normal neuropil [115, 125]. Occasion-
ally, a dystrophic neurite is found to be the presynaptic part-
ner of a synapse [75, 282], but claims that most dystrophic
neurites are abnormal synaptic terminals are not supported
by the available data. The frequency of synapses on dystro-
phic neurites in plaques has never been quantiWed, but
immunolabeling for presynaptic proteins reveals that most
dystrophic neurites lack the full synaptic machinery [18, 62].

The Wrst ultrastructural studies of Alzheimer’s disease
revealed that dystrophic neurites are swollen by abnormal
accumulations of Wlaments, vesicles, tubules and mitochon-
dria [115, 143, 238]. Transitional forms between mitochon-
dria and additional mitochondrial-sized lamellar or dense
bodies are obvious, and all of the early investigators, with
the exception of Terry et al. [238], speculated that the
numerous lamellar and dense bodies were degenerating
mitochondria. Krigman et al. [125] further speculated that
the degeneration of mitochondria in dystrophic neurites
might ultimately lead to cored plaques. These inferences of
progressive degeneration were partly motivated by the sim-
ilarity of dystrophic neurites to axons undergoing Wallerian
degeneration after transection [133, 134]. After Suzuki and
Terry [233] found that the lamellar and dense bodies
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contained acid phosphatase, and classiWed these inclusions
as lysosomes, little further consideration was given to their
origin or fate until recently.

The terminology used to describe plaque types is not
standardized, and some investigators use the term “diVuse
plaque” to describe the distribution of amyloid in primitive
plaques containing both amyloid Wbrils and dystrophic neu-
rites [54, 241, 252]. The adjective “diVuse” has also been
applied to many other types of Wbrillar and non-Wbrillar
deposits, so to avoid confusion “diVuse” will be avoided
altogether in this review.

Cored plaques

Cored plaques diVer from primitive plaques by containing a
large central mass of amyloid. The central mass of amyloid

makes these plaques easily identiWable with amyloid stain-
ing techniques, giving these plaques the moniker “classi-
cal”. The amyloid core sometimes has a star-shaped
appearance with spokes of amyloid extending outward, and
it is usually surrounded by a spherical cluster of dystrophic
neurites and extracellular wisps of amyloid as in the primi-
tive plaque.

Immediately around the core there may be a layer devoid
of amyloid and neuritic processes. Ultrastructural studies
reveal that this halo eVect is created by glia that enclose the
core [110, 150, 223, 257, 270, 296]. Cores of small plaques
are enveloped by one or two activated microglia, while
large plaque cores are surrounded by processes from doz-
ens of microglia and astrocytes [268]. When cored plaques
are not surrounded by dystrophic neurites and wisps of
amyloid they are often referred to as compact or “burnt-out”

Fig. 1 A primitive neuritic plaque from layer III of prefrontal cortex
of a 32-year-old rhesus monkey. Serial section electron microscopy
shows that the plaque is a cluster of dystrophic neurites around darker
extracellular deposits. This section from the center of the plaque shows

the maximum diameter of approximately 12 �m. Surrounding the clus-
ter of dystrophic neurites is normal-looking cortical neuropil in which
glial and neuronal cell bodies are absent
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plaques. Compact plaques are also enveloped by glial cells,
in some cases entirely by astrocytes [115, 239].

Non-amyloid deposits

After the A� peptide was identiWed [152], it became possi-
ble to further examine the distributions of both Wbrillar and
non-Wbrillar forms of A� in Alzheimer’s disease using
immunohistochemistry. Immunolabeling revealed a more
widespread deposition of the A� peptide than was seen pre-
viously with the classical stains for Wbrillar amyloid [234,
281, 291]. Non-amyloid A� deposits, often called “diVuse
plaques”, are frequently seen in the cerebral cortex, cere-
bellum, and striatum. The morphology of the deposits
depends on the characteristics of the tissue. For example in
the cerebellum, non-amyloid deposits extend vertically
through the molecular layer, often appearing to loosely fol-
low Purkinje neuron dendritic arbors [106, 264].

The A� immunoreactivity of non-amyloid deposits often
extends over a large region 200 �m or more in diameter
[234], which is largely devoid of dystrophic neurites or
activated microglia, but occasional dystrophic neurites may
be found on close inspection [18, 292]. While most of the
immunoreactive region appears to lack amyloid, a sparse
distribution of extracellular Wbrils is sometimes revealed by
electron microscopy [292], by Campbell–Switzer silver
staining [241], or by weak thioXavin-S Xuorescence [136].
Some investigations have concluded that amyloid Wbrils are
present in all deposits that are immunoreactive for Wbrillo-
genic forms of the A� peptide, which would include most
types of “non-Wbrillar” deposits [49, 241, 242].

One issue with the identiWcation of non-amyloid depos-
its is the use of formic acid pretreatment to enhance immu-
noreactivity [118]. This procedure deWbrillates amyloid and
solubilizes the constituent peptide, thus precluding amyloid
staining by Congo Red or thioXavin-S [231]. Such treat-
ment may also cause diVusion of the amyloid peptide
within the tissue sample and may even extract amyloid pro-
tein from neurons [48, 174]. It is perhaps not surprising
then that non-amyloid deposits are sometimes large, lake-
like regions of A� immunoreactivity that are either peri-
neuronal or extend beyond a central region of neuritic
pathology. However, other investigators report that distri-
butions of A� immunoreactivity are little changed by for-
mic acid pretreatment [100, 106].

Numerous studies indicate that the molecular composi-
tion of non-amyloid deposits diVers from that of primitive
and cored plaques [80, 90, 158, 196, 245]. Non-amyloid
deposits in the cerebellum, for example, are characterized
by a preponderance of A� fragments in which the amino-
terminal is truncated [100, 131]. This less Wbrillogenic
molecular proWle was conWrmed in aged canines [285], a
species that develops non-amyloid A� deposits but not neu-

ritic plaques [43]. Immunotherapy using antibodies directed
at the amino-terminal of A� successfully removes Wbrillar
plaques but not non-amyloid deposits [183], further sub-
stantiating the diVerence in molecular composition. The
relative lack of neuritic and microglial pathology in non-
amyloid deposits may be related to this diVerent composi-
tion.

Do plaque types reXect a progression of pathology?

Based on ultrastructural studies, Terry and Wisniewski
[239, 240] proposed that small clusters of dystrophic neu-
rites evolve into larger primitive plaques and, with the con-
tinual accumulation of extracellular amyloid, primitive
plaques eventually evolve into cored plaques. While this
plaque evolution hypothesis is certainly consistent with the
structural evidence, it has met with criticism (reviewed in,
[5]). An opposite progression has even been proposed, with
cored plaques transitioning into primitive plaques to end up
as non-amyloid deposits [269].

Struble et al. [230] found that as total plaque density
increased in aged monkeys, there was a corresponding
increase in cored plaques, suggesting that primitive plaques
evolve into cored plaques. Evidence in favor of a plaque
progression in Alzheimer’s disease has been less conclu-
sive, however. Some studies have reported that primitive
plaques precede cored plaques and that cored plaques accu-
mulate as the disease progresses [244], but other studies
have reported that primitive plaques increase with duration
of the disease while cored plaques do not [54]. Supportive
evidence for plaque progression comes from transgenic
mice models of Alzheimer’s disease and from Down’s syn-
drome.

Transgenic mice expressing pathogenic forms of the A�
precursor protein (APP) and its proteolytic enzymes exhibit
increased production of A� from APP. Young mice Wrst
develop mostly small primitive plaques, but later numerous
cored plaques appear [15, 85, 237]. The sizes of cored
plaques and the number of invested microglial cells
increase with age, and in the oldest transgenic mice, large
plaques are often inWltrated by hypertrophic astrocytic pro-
cesses [197, 268]. Older mice also exhibit more cored
plaques with a “burnt-out” morphology in which dystrophic
neurites are largely absent [15].

Down’s syndrome is manifested by an extra copy of
chromosome 21, which leads to overexpression of APP and
early onset of Alzheimer’s disease. The numerical density
of amyloid plaques increases with age in Down’s syndrome
[96, 136]. Non-amyloid deposits appear in the second and
third decades of life, followed by neuritic and cored
plaques in the fourth to Wfth decades [87, 91, 136]. Primi-
tive plaques predominate when Alzheimer’s disease Wrst
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becomes identiWable, but with continued aging there is an
increase in cored plaques. Protein aging studies conWrm
that the amyloid in the cores of classical plaques is older
than the amyloid in primitive plaques, and the cores are sur-
rounded by a halo of younger amyloid [9, 65].

Given the multifarious nature of non-amyloid deposits, it
is diYcult to assign them a speciWc role in the progression
of pathology. Extracellular deposits containing mostly solu-
ble A� protein are often assumed to represent the Wrst step
in amyloid plaque pathogenesis [53, 210, 234]. The best
evidence supporting this contention is usually taken to be
the sequence of pathology reported in Down’s syndrome
[5], but recent evidence from transgenic mice is not conWr-
matory. Non-amyloid deposits appear months after Wbrillar
plaques in most transgenic mice with one or more Alzhei-
mer’s disease mutations [76, 85, 114, 155, 197, 198]. How-
ever, when transgenic mice are engineered to overexpress
APP without mutations, similar to Down’s syndrome, they

initially develop non-amyloid deposits [89]. Non-amyloid
deposits in the cerebellum and striatum, which are highly
insoluble, do not appear to evolve into neuritic plaques over
the course of Alzheimer’s disease [286] or over a lifetime
with Down’s syndrome [147]. The existence of a “pre-amy-
loid” type of deposit therefore, remains controversial.

Proposed mechanisms of plaque pathogenesis

A key attribute of all plaques is the focal deposition of amy-
loid in a local, typically spherical, region. The evidence for
temporal evolution suggests that primitive plaques mature
into cored plaques, and then stabilize as large, spherical
areas of pathology around this focus of Wbrillar amyloid
[36]. Although several diVerent mechanisms for the focal
deposition of amyloid have been proposed (Fig. 2), the
issue of how plaques form is still unresolved.

Fig. 2 Competing hypotheses for the locus of amyloid production and
the pathogenesis of neuritic plaques. a Amyloid deposition is initiated
from blood vessels that release A� (1) which spontaneously Wbrillates
(2) in the perivascular space and creates a toxic environment for axons,
leading to dystrophy (3). b Amyloid deposition is initiated by glia that
secrete A� (1) which spontaneously Wbrillates (2) and produces axonal
dystrophy (3). c A� is secreted from somato-dendritic regions or syn-
aptic terminals of neurons (1). The protein spontaneously aggregates
(2) into amyloid Wlaments that activate microglia (3). Activated micro-
glia secrete toxins that cause axonal dystrophy (4). d A� is secreted by

neurons (1) and processed extracellularly into amyloid Wlaments by
microglia (2). Amyloid toxicity leads to axonal dystrophy (3). e A� or
its precursor protein is internalized through endocytosis and aggre-
gated in lysosomal compartments in the cell body of neurons (1). Lysis
of the cell (2) leads to extracellular deposition, which activates micro-
glia (3). Activated microglia poison axons leading to dystrophy (4).
f Amyloid is formed in autophagosomes (1) trapped in axonal dystro-
phies and deposited by rupture of the swelling (2). Extracellular amy-
loid leads to the formation of more dystrophies (3) by disrupting axonal
transport, and provokes a glial reaction (4)
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Blood vessel origin

Amyloid plaques are frequently accompanied by cerebral
amyloid angiopathy in which amyloid is deposited around
cerebral and leptomeningeal blood vessels. The cause of
cerebral amyloid angiopathy is unknown (for review see
[23]), but similarities in the distributions of amyloid angi-
opathy and plaques suggest that blood vessels might be
involved in amyloid plaque formation [4, 58, 260]. The
severity of Alzheimer’s disease pathology correlates with
the severity of co-occurring cerebral amyloid angiopathy
[7, 8], and large cored plaques are often in close proximity
to blood vessels with amyloid deposits [126, 127], further
suggesting that brain amyloid might originate from sys-
temic circulation or from the cells of the blood vessel walls
[56, 105]. However, small plaques are frequently far from
blood vessels [4, 111], ruling out a nidus of origin involv-
ing blood vessels for these plaques.

Neuron-speciWc expression of Alzheimer’s disease
mutations in mice causes parenchymal amyloid plaques to
form prior to signiWcant perivascular amyloid deposition
[197], making it unlikely that A� originates from blood or
blood vessel walls. Rather, cerebral amyloid angiopathy
appears to develop from neuronal APP, since it also occurs
in APP-null mice expressing mutant APP only in neurons
[25]. In addition, amyloid angiopathy occurs in the thala-
mus, even though neurons in the thalamus do not express
the transgenes, indicating that the transgene products are
transported from cortex, possibly by axons [25].

Glial production of amyloid

All cored plaques contain activated microglia that surround
and interdigitate with the central mass of amyloid. On single
sections, bundles of amyloid are often completely sur-
rounded by microglial proWles, giving the appearance that
amyloid lies within membranous compartments in the
microglia cytoplasm. This appearance led to the supposition
that Wbrillar amyloid is secreted by microglia [160, 238].
Some investigators speculated that amyloid Wbrils are
formed within the endoplasmic reticulum of microglia and
exocytosed to the extracellular space [284]. But evidence
from serial section electron microscopy shows that the amy-
loid Wbrils in cored plaques that appear to lie within micro-
glia are in fact entirely extracellular [204, 223, 257, 268].

The proteolytic enzymes responsible for production of
A� from APP, as well as APP itself, are most strongly
expressed in neurons [42, 44, 124, 215, 256]. Therefore,
glia are unlikely producers of the A� that forms plaques.
The glial secretion hypothesis was accordingly modiWed to
propose that A� from neurons is processed into amyloid at
the plasma membrane of microglia cells [148, 165]. Sup-
port for this hypothesis comes from studies showing acti-

vated microglia in plaques from the onset of amyloid
pathology in transgenic mice [88, 197, 224, 268].

The production of amyloid principally at the surface of
microglia gives a deWnite nidus to amyloid plaque forma-
tion, every plaque would originate at a microglial cell. But
if each microglial cell is independently capable of forming
a plaque, it is unclear why large numbers of microglia clus-
ter around single plaque cores [224]. Furthermore, although
cultured microglia respond to plaques of synthetic amyloid
[98], they do not process synthetic A� into amyloid plaques
[26]. Another diYculty with this hypothesis is that the earli-
est amyloid plaques would be expected to be compact
plaques produced by activated microglia, which would
evolve Wrst into classical plaques, and then into primitive
plaques when microglia retract and astrocytes inWltrate the
amyloid core [269]. Obviously, this evolution is at odds
with the sequence of plaque progression in transgenic mice
models of Alzheimer’s disease, and some of the earliest,
primitive plaques may be devoid of microglia [42, 47, 228].

Microglia and astrocytes may be consumers of amyloid
rather than producers, since cultured microglia internalize
aggregates of A� peptide and rapidly phagocytose plaque
cores [51, 66, 181]. There is also some evidence of phago-
cytosis and digestion of amyloid by microglia in vivo [102,
153, 273], and astrocytes have been shown to migrate to
and degrade amyloid plaques [288]. Consistent with con-
sumption of amyloid instead of production, inhibition of
microglial responses in transgenic mice leads to more rapid
development of amyloid pathology [59, 289].

Neuronal secretion of A�

Neurons in culture secrete A�, and extracellular, soluble
A� peptide has been proposed to be suYcient to initiate
plaque formation [209]. In a simple version of this hypothe-
sis, abnormal proteolysis of APP at the surface of neurons
releases A� peptide directly into the extracellular space.
However, the proteolytic enzymes that generate A� from
APP appear to operate in intracellular compartments rather
than at the neuron plasma membrane (for reviews see [217,
276]). Many diVerent compartments have been proposed as
principal sites of pathogenic cleavage prior to secretion,
including rough endoplasmic reticulum, golgi secretory
apparatus, and endosomes that recycle to the plasma mem-
brane. Whatever the compartment, non-Wbrillar deposits
generated by the secretion of soluble A� would be centered
on neurons, in agreement with data showing some A�
immunoreactivity centered on the cell bodies and primary
dendrites of neurons in Alzheimer’s disease and aging [178,
179, 271]. In the cerebella of Alzheimer’s disease patients,
non-Wbrillar deposits are often closely associated with
accumulations of A� inside the somata and dendrites of
Purkinje neurons [264].
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In conXict with the hypothesis that the neuron soma is
the primary nidus of amyloid plaque formation, many amy-
loid plaques are not centered on neuron cell bodies. As
shown by electron microscopy, small plaques are often
located in the synaptic neuropil and involve only neurites
and glial processes without any neuronal cell bodies or
large proximal dendrites (Fig. 1). The soma is often not the
nidus of plaque formation even when it is the source of A�.
This is evident in mice with genetic constructs designed to
secrete A� through the golgi pathway. In these mice amy-
loid plaques form in the molecular layers of the cerebellum
and hippocampus rather than only in cell body layers [154].

APP is traYcked down the axon [108, 123], suggesting
that A� is produced in synaptic terminals rather than in the
somato-dendritic compartment. One hypothesis based on
this idea is that normal synaptic transmission secretes A�,
which if not cleared quickly leads to pathogenesis [211].
Recent experiments in transgenic mice demonstrate that
extracellular levels of A� rise with epileptiform activity and
decrease when synaptic transmission is blocked [38]. Addi-
tional support for an axonal locus of production comes from
studies in transgenic mice showing that the transection of
axons of the perforant pathway to the hippocampal dentate
gyrus reduces the amount of A� protein deposited in this
brain region [135, 213, 254]. Unlike somatic secretion how-
ever, there is no obvious nidus of Wbrillation with synaptic
secretion. Synaptic release of soluble peptide would disperse
A� widely throughout the neuropil of the cerebral cortex.

Spontaneous extracellular Wbrillogenesis

One proposal for how soluble A� triggers plaque pathogen-
esis is that the peptide spontaneously begins to form Wbrils
as the extracellular concentration of A� reaches high levels
[53, 210, 241]. To explain the formation of a neuritic
plaque, it is assumed that the extracellular amyloid attracts
microglia, which release molecules toxic to nearby axons
and dendrites, causing them to swell and degenerate. Since
microglia and amyloid precede dystrophic neurites in this
hypothesis, it is in conXict with the sequence of plaque pro-
gression discussed above.

Although solutions of synthetic A� spontaneously Wbril-
late in vitro under certain conditions, the extent to which
this happens in vivo is unclear. Comparable concentrations
of A� peptide are found in the extracellular Xuid of normal
mice and transgenics with amyloid pathology [37], and this
concentration appears to be orders of magnitude less than
the concentration required for spontaneous Wbrillation
in vitro [141, 180]. Moreover, the presence of a high con-
centration of A� appears to be insuYcient for both Wbrilla-
tion and plaque pathogenesis in vivo, since intracerebral
injections of A� rarely produce plaques [156, 214, 277 but
see 216].

Additional evidence indicates that oligomerization
begins intraneuronally, with secretion of soluble oligomers
rather than monomers of A� [263]. Pathogenesis may
require this prior aggregation of A� into oligomers or pro-
toWbrils, since the A� peptide is much less toxic to neurons
than these multimers (reviewed in [262]). Experiments with
transgenic mice suggest that soluble A� oligomers may be
involved in the cognitive decline of Alzheimer’s disease
[39, 137], but there is still little evidence for the formation
of focal, neuritic amyloid plaques directly from these oligo-
mers. Intracerebral injections of A� dimers, oligomers or
polymers at physiological concentrations produces little or
no seeding of amyloid plaques, even in transgenic mice
predisposed to amyloid pathology [156]. However, injec-
tion of extracts from brains with extant amyloid pathology
does seed plaques, suggesting that factors in addition to A�
protein are involved in plaque pathogenesis [11, 109, 156].

Neuronal accumulation and lysis

Several groups proposed that A� aggregation within the
cell bodies of neurons is prerequisite to deposition in the
extracellular space (for reviews see [78, 129, 276, 279]). In
Down’s syndrome, granular accumulations of A� can be
seen in neuronal cell bodies prior to the appearance of
plaques or perineuronal deposits [82, 162], and A� peptide
accumulates in a granular pattern in the cell bodies of neu-
rons in Alzheimer’s disease [46, 79]. Transgenic mice with
amyloid pathology also exhibit intraneuronal granules of
A� immunoreactivity [15, 171, 278, 280]. In mice with
highly accelerated pathology, Wbrillar amyloid accumulates
in neurons along with A� prior to deposition of the protein
in the extracellular space [169].

A� could accumulate inside any of the intracellular com-
partments where it is cleaved from APP but not secreted.
Two likely candidates are endoplasmic reticulum [86, 247],
and lysosomes [29, 30, 182]. To reach the lysosomal path-
way, A� might be produced inside endosomes by proteo-
lytic processing of internalized APP, or A� might be
endocytosed from an extracellular pool of soluble protein
[119]. Normal processing of endosomal compartments
would then lead to aggregation of the A� within lysosomes.

Amyloid plaques might be created when lysosome-laden
neurons die and release amyloid into the extracellular space
[46, 74]. In this hypothesis, every plaque is centered on a
dying neuron. Although there is evidence for somal and
lysosomal remnants in some plaques [28, 30, 46], plaques
are not necessarily concentrated in cell body layers, and
transgenic mice engineered to accumulate A� in neuronal
somata exhibit neurodegeneration but not plaques [130].
Further emphasizing that somata are not niduses of all
plaques, non-transgenic brain tissue grafted into transgenic
mice develops amyloid plaques before the rest of the
123



558 Acta Neuropathol (2007) 114:551–571
hippocampus even though the neurons expressing amyloi-
dogenic mutations reside outside the graft [157].

As noted above, many small plaques are clusters of dys-
trophic axons and amyloid in neuropil distant from cell
bodies (Fig. 1). Consequently, the somal accumulation
hypothesis has been extended to include the possible trans-
portation of amyloid-Wlled endosomes or lysosomes from
the soma into neurites [74, 78], where they would presum-
ably accumulate as the lamellar and dense bodies in dystro-
phic swellings. Dystrophic axonal swellings are often far
from the soma, and while evidence shows that endosomal
and lamellar bodies are retrogradely transported along
axons to the soma [94], there is little evidence for antero-
grade transportation of lysosomes to distal axons.

Disruption of axonal transport

Disruption of fast axonal transport leads to focal swellings
Wlled with organelles [95, 251], which resemble Wallerian
degeneration [267]. Similarities to Alzheimer’s disease
pathology led many investigators to surmise that disrupted
axonal transport is responsible for the formation of dystro-
phic neurites in amyloid plaques [69, 115, 134, 192, 240].
Terry and Wisniewski [240], in the vein of Fischer and
BonWglio, suggested that the earliest precursor of a senile
plaque was an axonal swelling, but the mechanism by
which an axonal swelling might serve as a nidus of amyloid
deposition and plaque formation has remained elusive.
Renewed interest in this possibility (as exempliWed by [77,
226]) is largely due to recent Wndings in transgenic mice
models of Alzheimer’s disease.

Transgenic mice with amyloid pathology exhibit swellings
along the lengths of axons long before amyloid deposition
is detectable [227, 250]. These non-synaptic, non-terminal
axonal swellings are Wlled with mitochondria, vesicles, and
mitochondrial-sized lamellar and dense bodies, consistent
with disrupted axonal transport. Furthermore, reduced
expression of microtubule motor proteins in these mice
increases the number of axonal swellings, as well as the
number of amyloid plaques later in the disease, reinforcing
the supposition that disrupted axonal transport contributes
to the formation of amyloid plaques [227].

Traumatic brain injury produces axonal swellings simi-
lar in appearance to plaque dystrophic neurites [33, 219,
229], and these swellings are believed to arise as a result of
impaired axonal transport (reviewed in [22, 190]). Axon
swellings appear within 1–2 h post-injury and demonstrate
intense APP immunoreactivity, consistent with interruption
of the normal axonal transport of this protein [186, 218].
Some swellings also exhibit immunoreactivity for A� pep-
tide and stain for Wbrillar amyloid, suggesting that amyloid
plaques are sequelae of the deposition of amyloid from
axon swellings after traumatic injury [34, 186].

APP-immunoreactive dystrophic neurites that resemble
those of traumatic injury are likewise found in the amyloid
plaques of Alzheimer’s disease [42, 44, 112, 153, 215].
Some investigators hypothesize that extracellular amyloid
causes structural injury to axons in the same manner as
traumatic injury [117, 287]. However, evidence for amyloid
inside axon swellings following traumatic injury also sup-
ports the opposite relationship, namely that dystrophic neu-
rites in plaques produce amyloid.

Autophagic production of amyloid

Dystrophic axons clearly accumulate APP, and cleavage of
APP to A� protein likely occurs within these swellings as
well, because the enzymes responsible for this proteolysis
also accumulate there [21, 34, 248, 299]. One candidate
compartment for this proteolysis is the early endosome.
Although there is scant evidence for signiWcant endocytosis
within dystrophic neurites of amyloid plaques, endosomes
might be traYcked into dystrophic swellings from the distal
axon [166]. However, immuno-electron microscopy of A�
has thus far failed to localize the A� protein to clearly iden-
tiWable endosomal compartments within dystrophic neu-
rites [120–122, 235, 236].

Another candidate site for A� production in dystrophic
neurites is within autophagic vacuoles, which have recently
been implicated in Alzheimer’s and other neurodegenera-
tive diseases (for review see [202]). Analysis of biopsy
material reveals that Alzheimer’s disease brains contain
many more autophagosomes than normal brains [167], and
a similar abnormal accumulation of autophagosomes
occurs in transgenic mice with amyloid pathology [297].
The majority of these autophagosomes are concentrated in
the dystrophic neurites of amyloid plaques, but a few are
found in the somato-dendritic compartment. These auto-
phagic vacuoles appear to be a prominent locus of A� pro-
duction [297, 298]. In cultured cells overexpressing APP,
suppression of autophagy reduces A� secretion while
induction of autophagy increases A� release [297].

The substrate of autophagy is unclear, but recent data
indicate that autophagocytosis of mitochondria is increased
in Alzheimer’s disease [161]. Autophagocytosis followed
by lysosomal processing is the major degradative pathway
for mitochondria, a process sometimes abbreviated as
“mitophagy” (for reviews see [20, 116]). Moreover, the
autophagocytosis of mitochondria would account for
the transitional forms between normal mitochondria and the
lamellar bodies in dystrophic neurites of amyloid plaques
[63, 239, 283]. Amyloid may be produced by dysfunctional
mitophagy, and this possibility is supported by immuno-
electron microscopy showing that APP accumulates in the
mitochondria and lamellar bodies of dystrophic neurites
[17, 50, 112, 148, 215]. Proteolytic enzymes necessary for
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the production of A� from APP have also been identiWed in
mitochondria and autophagosomes [84, 297, 298], as have
the A� peptide and its oligomers [27, 120, 121, 144, 146,
218, 293, 297].

A synthesis of mechanisms

One curious aspect of most proposed mechanisms of plaque
formation is that the central cellular pathology of primitive
plaques, the dystrophic neurite, plays no role in pathogene-
sis (Fig. 2). Dystrophic neurites are often considered to be
an incidental consequence of amyloid deposition or
microglial activation, but not active participants in plaque
pathogenesis. In other words, most hypotheses assume that
extracellular A� peptide and microglial activation are all
that is needed to create a classical amyloid plaque. The data
discussed above, however, suggests that plaques form in
close conjunction with amyloid protein processing in dys-
trophic neurites. When considered in synthesis with the
mechanisms of disrupted axonal transport, mitochondrial
malfunction and oxidative stress, autophagy, impaired lyso-
somal processing, and intraneuronal production of A�, all
of which have been implicated in Alzheimer’s disease, the
dystrophic neurite is a likely nidus of plaque pathogenesis
(Fig. 2f).

Dystrophic axons are antecedents of pathology

The data from traumatic injury, Alzheimer’s disease and
transgenic mice, discussed above, are consistent with axonal
dystrophy playing a key role in plaque formation. Numerous
studies report that the smallest amyloid deposits are closely
associated with dystrophic neurites [15, 176, 199, 227, 283].
In addition, isolated dystrophic neurites are found widely
scattered throughout the cortical neuropil in all conditions
leading to amyloid pathology, including normal aging [113,
149], traumatic brain injury [218, 229], prion diseases [140],
and Alzheimer’s disease [41, 167, 215, 227, 283].

Any insult that disassembles axonal microtubules and
disrupts retrograde transport would be an additional candi-
date for initiating plaque pathogenesis, due to the expected
formation of dystrophic swellings. This would include
excitotoxic injury for example, since high concentrations of
extracellular potassium and glutamate have been shown to
disrupt axonal transport and induce dystrophic swellings
[92, 93]. Relatively few studies have made an association
between amyloid plaques and excitotoxic injury, but there
is evidence that mediators of excitotoxicity such as
hypoxia/ischemia can result in the initial stages of amyloid
pathogenesis [32, 104, 189, 255].

Amyloid plaques might also be expected as an outcome
of any number of pathological conditions in which dystro-

phic neurites commonly occur (for reviews see [103, 140]).
However, depositions of amyloid are not consistently found
in most of these conditions, emphasizing that additional
factors are involved, such as overproduction of Wbrillogenic
fragments of APP. In familial Alzheimer’s disease, the
genetic defects leading to overproduction of Wbrillogenic
A� protein may cause relatively benign axonal dystrophies
to become potent seeds of pathology. Likewise, in late-
onset, sporadic forms of Alzheimer’s disease, the increased
frequency of axonal dystrophies with aging may conspire
with other factors to increase the probability of amyloid
plaque formation.

Mitophagy follows disruption of axonal transport

The organelles that accumulate most during inhibition of
retrograde axonal transport are mitochondria [251], because
these organelles are normally traYcked from the distal
axon to the soma for lysosomal degradation after they
become metabolically dysfunctional [188]. Dystrophic neu-
rites in plaques likewise accumulate large numbers of mito-
chondria, which are metabolically compromised but unable
to reach the soma for lysosomal processing [15, 63]. These
stranded mitochondria consequently enter a mitophagic
pathology leading to production of large numbers of auto-
phagosomes. Autophagosomes might also be traYcked into
dystrophic swellings from the distal axon, along with endo-
somes and amyloid-related proteins, since autophagosomes
are also retrogradely transported [94]. In any case, the large
numbers of mitochondria, and the transitional forms
between these mitochondria and the autophagic vacuoles,
indicate that mitochondria are the main substrate of auto-
phagy in dystrophic neurites [63, 115, 233, 239, 240].

As discussed above, autophagosomes appear to be a
principal site of A� generation in Alzheimer’s disease, but
direct evidence of amyloid production by autophagosomes
in dystrophic neurites is still lacking. Amyloid Wbrillogene-
sis in vitro has been shown to have an intermediate stage
involving a 5 nm-wide protoWbril [3,261], and recent ultra-
structural evidence reveals that clusters of autophagosomes
in some dystrophic neurites degenerate into loose bundles
of 5 nm Wlaments [63]. This suggests that amyloid Wbrillo-
genesis may occur in some dystrophic neurites (Fig. 3), but
veriWcation of the molecular nature of these Wlaments
awaits further studies.

Amyloid disrupts axonal transport and neurite integrity

Extracellular amyloid protein has detrimental eVects on
neuron integrity. Multimers of A� are toxic to neurons [67,
132, 142], and in high enough concentration A� peptide
can kill cultured neurons, possibly due to the spontaneous
formation of such aggregates [45]. SigniWcantly, application
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of A� protein to the axons of cultured neurons induces local
swelling and degeneration [99, 187, 220], consistent with
the evidence that extracellular amyloid protein disrupts
axonal transport [92] and strands mitochondria [203]. The
disruption of axonal transport may be due to the formation
of calcium-permeable channels by multimers of A� [141],
since a pathological inXux of calcium can completely disas-
semble microtubules [64, 207, 266].

The eVects of intracellular amyloid on neuronal integrity
are less well established, but it has been shown that intra-
cellular accumulation of A� can lead to loss of membrane
integrity and eventual neuron degeneration [55, 130, 294].
Internal aggregation of A� could thus lead to disintegration
of a dystrophic neurite and spilling of its cytoplasmic con-
tents into the extracellular space, as proposed by Kawai
et al. [112], Chen et al. [34], and others. Neuritic lysis in

Fig. 3 Dystrophic neurites in a primitive neuritic plaque from layer III
of prefrontal cortex of a 32-year-old rhesus monkey. Degenerated
mitochondria form lamellar bodies that in advanced stages of degener-
ation form tight clusters (asterisks). These clusters appear to degener-
ate further (star) into loose 5 nm-wide Wlaments within the cytoplasm

(arrows). Dystrophic neurites with accumulations of Wlaments and
degenerated organelles form a dense matrix (Xag) that is similar in
appearance to the Wlamentous material found in the extracellular spac-
es of the plaque (arrowheads). Scale bar: 0.5 microns
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plaques is consistent with evidence of neuronal cytoplasmic
and organellar proteins, mRNAs, and membranous organ-
elles among the extracellular amyloid of plaques [28, 30,
63, 73, 138, 191, 193]. These spilled cytoplasmic contents
may be part of the plaque seeding mechanism, which would
help explain why brain extracts, but not synthetic amyloids,
seed plaques [156].

Pathogenesis involves local positive feedback

To account for the focal nature of plaque growth, the pri-
mary pathogenic mechanism likely involves local positive
feedback between the damage caused by extracellular amy-
loid and the intracellular production of amyloidogenic pro-
teins. Of the mechanisms considered (Fig. 2), only the
production and release of amyloid from dystrophic neurites
due to dysfunctional mitophagy appears to fully satisfy this
condition. In this scenario, the neuritic plaque is generated
by a chain reaction of pathology in a local region of the
neuropil, as proposed by Wisniewski and Terry [283], Sto-
kin and Goldstein [226], and others. Rupture of an amyloid-
laden swelling would expose neighboring healthy axons to
the toxic eVects of amyloid, disrupt microtubule-based
transport, and cause them to become dystrophic. Such a
process would explain why dystrophic neurites are clus-
tered tightly together in plaques [18, 259].

Studies of neuritic plaques in transgenic mice reveal that
both human and mouse A� is present, with human A� con-
centrated in amyloid cores due to the Wbrillogenic transg-
enes and wild-type mouse A� concentrated more in the
dystrophic neurites [253], consistent with extracellular
amyloid causing swellings and A� production in neighbor-
ing axons. The rapid formation of neuritic plaques in just a
few days, as observed by in vivo imaging studies of trans-
genic mice [71], indicates that a positive feedback mecha-
nism is responsible for plaque formation. Moreover, the
swelling of neurites in plaques recovers just as rapidly upon
removal of extracellular amyloid [19, 71, 206], consistent
with a restoration of axonal transport.

Intracellular amyloid accumulation

The implication is that dystrophic axons with localized accu-
mulations of APP precede amyloid plaques, as observed
[227]. However, as mentioned above, intraneuronal aggrega-
tions of A� in somata and axon initial segments also precede
extracellular A� deposition [169]. What is the relationship
between the A� formed in dystrophic neurites to that accu-
mulating in the somata of neurons? One possibility is that
neuronal cell bodies endocytose A� that has been released
from nearby dystrophic axons. This is consistent with data
showing that the intrasomal A� accumulation is cleared after
immunotherapy removes extracellular deposits [172].

Another possibility is that intracellular A� production in
dystrophic neurites contributes directly to accumulation in
the cell body, by the retrograde transportation of auto-
phagosomes formed in dystrophic neurites [297]. Such an
explanation is more parsimonious than supposing that lyso-
somes migrate from somata to distal dystrophic neurites.
This possibility is also supported by electron microscopic
evidence that the clusters of lamellar bodies, normally
found in axonal dystrophies where normal microtubule-
based transport is disrupted, are also occasionally found
nearby in the non-dystrophic part of the axon where retro-
grade transport is possible (e.g. Fig. 2b of [63]). Another
interpretation of the Wnding that immunotherapy clears both
plaques and intraneuronal A� [172], would be that removal
of extracellular amyloid allows the recovery of dystrophic
neurites (as shown in [19]) and so removes the intracellular
source of A� from the lysosomal pathway.

Role of glia in plaque pathogenesis

The progressive deposition of amyloid from dystrophic
neurites would activate glia to migrate into the developing
plaque. As plaques accumulate extracellular amyloid,
microglia invade the amyloid deposit and perhaps facilitate
its compaction into a central mass by removing cellular
debris. A plaque may stop growing when neighboring neu-
rites are no longer easily disrupted by exposure to amyloid,
due to enclosure of amyloid by glia and reduced exposure
of healthy neurites to amyloid protoWbrils. Amyloid
plaques appear to be remarkably stable once mature [12,
36, 101, 145].

Astrocytes may participate in the removal of amyloid
plaques, as evidenced by plaque-like regions of gliosis, 40–
100 �m in diameter, with little extracellular amyloid and
few dystrophic neurites. These “remnant” or “vanishing”
plaques as they are sometimes called, are composed of
numerous astrocytes with intracellular granules of A�
immunoreactivity [68, 243, 246, 290]. They appear to be
the Wnal resolution of cored plaques because their density
increases with disease duration in Alzheimer’s disease
[175]. Because astrocytes accumulate A� in this manner
during advanced stages of amyloid pathology, it has been
further suggested that these A�-laden astrocytes might
serve as secondary niduses for plaque formation by cell
lysis [164, 165].

Relationship of dystrophic neurites to non-amyloid deposits

Each dystrophic neurite may experience a unique life his-
tory that depends, in part, on the accumulation and process-
ing of amyloidogenic proteins. Many axons may swell but
remain intact, while others may generate highly disruptive
aggregates of A�. Dystrophic neurites accumulating
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non-Wbrillogenic, but relatively insoluble, fragments of A�,
may disgorge their contents without triggering additional
neuritic degeneration, glial activation, or plaque growth.
For example, a type of deposit known as a “cotton–wool
plaque” is associated with particular presenilin-1 mutations
that predispose neurons to produce amino-terminal trun-
cated fragments of A� [128, 225]. Accumulations of
amino-terminal truncated forms of A� have been seen in
single dystrophic neurites scattered throughout the neuropil
in Alzheimer’s disease [90], substantiating the idea that
particular types of dystrophic neurites are niduses of non-
amyloid deposits.

Relevance to other brain amyloid pathologies

Remarkably, the above synthesis appears to also account
for the formation of amyloid plaques by the proteins
involved in prion disease and in the familial British and
Danish dementias. Like APP, prion protein is traYcked
along the axon and accumulates in dystrophic neurites
along with mitochondria and APP [16, 61, 140, 173]. The
amyloidogenic proteins in familial British and Danish
dementias show similar properties, including fast axonal
transportation [35] and accumulation in dystrophic neurites
[1]. Like A� protein, multimers of these other proteins are
also toxic to neurons, possibly by acting as calcium iono-
phores that disrupt microtubules [57, 168]. Thus, amyloid
plaques in a variety of diseases may be produced by dystro-
phic axons that accumulate amyloidogenic protein. This
common mechanism of pathogenesis is supported by data
showing that the diVerent types of amyloidogenic proteins
are often deposited together in plaques [61, 83, 159, 208,
249].

Amyloidogenic proteins subject to axonal traYcking
may also be contributors to cerebral amyloid angiopathy.
Axons appear to play a role in delivering the amyloid pro-
tein that leads to angiopathy, as mentioned above [25].
Whether some type of axonal secretion is involved remains
unclear, but dystrophic swellings are found adjacent to the
perivascular amyloid [25]. Amyloid angiopathy is also
found in leptomeningeal vessels outside of the neuropil,
which is much less likely to have a direct neuronal origin.
Non-neuronal hypotheses for amyloid angiopathy include
diVusion of A� along perivascular drainage pathways
[274], microglial or smooth muscle production of amyloid
[271, 272], and few others [23].

Conclusions

Amyloid deposits in the brain may be produced through
multiple mechanisms (Fig. 2), but recent data support the
intuitions of the early ultrastructural investigators that

degenerating mitochondria in dystrophic axons are signiW-
cant contributors to amyloid pathology. Rupture of a dys-
trophic neurite that contains amyloid protoWbrils may seed
a neuritic plaque, particularly when this occurs in a region
dense with unmyelinated axons susceptible to further dis-
ruption by the deposited amyloid. Of course, secreted solu-
ble A� might contribute to further plaque growth once a
plaque is seeded [60], and some plaques may be seeded by
lysis of cell bodies or other mechanisms. Further investiga-
tions into the processes of degeneration in dystrophic
axons across the full spectrum of conditions exhibiting
amyloid pathology are needed to fully explicate the role of
this common aspect in the development and progression of
disease.
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