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Abstract The identiWcation of mutations that cause
familial Parkinson’s disease (PD) provides a frame-
work for studies into pathways that may be perturbed
also in the far more common, non-familial form of the
disorder. Following this hypothesis, we have examined
the gene regulatory network that links alpha-synuclein
and parkin pathways with dopamine metabolism in
neuropathologically veriWed cases of sporadic PD. By
means of an in silico approach using a database of
eukaryotic molecular interactions and a whole genome
transcriptome dataset validated by qRT-PCR and his-
tological methods, we found parkin and functionally
associated genes to be up-regulated in the lateral sub-
stantia nigra (SN). In contrast, alpha-synuclein and

ubiquitin carboxyl-terminal hydrolase L1 (UCHL1)
gene expression levels were signiWcantly reduced in
both the lateral and medial SN in PD. Gene expression
for Septin 4, a member of the GTP-binding protein fam-
ily involved in alpha-synuclein metabolism was elevated
in the lateral parkinsonian SN. Additionally, catalase
and mitogen-activated protein kinase 8 and poly
(ADP-ribose) polymerase family member 1 (PARP1)
known to function in DNA repair and cell death induc-
tion, all members of the dopamine synthesis pathway,
were up-regulated in the lateral SN. In contrast, two
additional PD-linked genes, glucocerebrosidase and
nuclear receptor subfamily 4, group A, member 2
(NR4A2) showed reduced expression. We show that in
sporadic PD, parkin, alpha-synuclein and dopamine
pathways are co-deregulated. Alpha-synuclein is a
member of all three gene regulatory networks. Our
analysis results support the view that alpha-synuclein
has a central role in the familial as well as the non-
familial form of the disease and provide steps towards
a pathway deWnition of PD.
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Introduction

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder of adult onset after Alz-
heimer’s disease (AD), and aVects between 1 and 2%
of the population over the age of 65 [14, 20, 54]. The
vast majority of clinical PD cases are sporadic. Studies
of rare familial forms of PD have so far led to the
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identiWcation of six genes in which mutations can cause
PD [4, 17, 34, 36, 37, 40, 54, 55, 60, 65, 66, 72]. The prod-
ucts of these genes are alpha-synuclein (SNCA), parkin
(ubiquitin-conjugating enzyme; UBCH7; PARK2),
ubiquitin C-terminal hydrolase L1 (UCHL1), PTEN-
induced kinase 1 (PINK), DJ-1 and leucine-rich repeat
kinase 2 (LRRK2). Additional loci harbouring pre-
sumptive PD genes have been mapped including
PARK3 [19], PARK10 [24] and PARK11 [51].

Parkinson’s disease results from the progressive
death of dopaminergic neurones in the substantia nigra
(SN) pars compacta, where neuronal loss is most
severe compared to the ventral tegmental area and the
central grey [1]. The neuropathological diagnosis of
PD was based traditionally on the loss of dopaminergic
nigral neurones, accompanying gliosis and the pres-
ence of Lewy bodies (LB), eosinophilic intracytoplas-
mic inclusions, in remaining nerve cells of the SN and
neurochemically related nuclei. More recently, an
international consensus deWnition for the diagnosis of PD,
which takes into account the SNCA burden of the
brain, has been published (http://www.ICDNS.org).
According to this deWnition, assessment of the SNCA
status of the PD brain provides the key criteria for dis-
ease diagnosis. Other investigators have proposed a
staging system for the neuropathological progression
of PD based on the anatomical distribution of SNCA
[5, 13]. However, as this system fails in a signiWcant
number of cases and appears to be of limited clinical
relevance, we prefer the former consensus reference.

The exact aetiology of common sporadic PD remains
elusive, but in addition to age, environmental factors
and genetic predisposition are important for its patho-
genesis [47, 63]. Biological information on the function
of the above PD-associated genes and complementary
information obtained from animal studies of the SN fur-
ther indicate that the selective vulnerability seen in
dopamine-producing neurones is functionally linked to
an abnormal oxidative stress response [30, 74], distur-
bances in mitochondrial complex I and mitochondrial
respiratory-chain enzymes [50, 57, 58], as well as ubiqu-
itin-proteasome dysfunction [16, 42]. A functional link
indicative of a higher-order pathway connecting the
mitochondrial and ubiquitin proteasome subsystems
has been described at the transcriptomic level [15].

In the present study, we examined the regulation of
genes in which mutations can cause PD (see Supple-
mental File 1) and of two PD-associated susceptibility
genes (glucocerebrosidase, GBA; and nuclear receptor
subfamily 4, group A, member 2, NR4A2 or Nurr1).
The current study is based on a detailed analysis of a
validated microarray data set [15, 45], which provides
whole genome coverage.

Materials and methods

Selection of cases

A total of 15 PD cases and 8 controls were provided by
the UK Parkinson’s Disease Society Tissue Bank at
Imperial College London, the Laboratory of Neuropa-
thology, University of Liège, Belgium, and the UK
Multiple Sclerosis Tissue Bank at Imperial College
London [45]. Detailed clinical documentation was
available for each case. Details of the medication used
in the treatment of the PD donors are provided in Sup-
plemental File 2. Clinical histories were assessed by a
consultant neurologist (RKBP) and clinical severity
ratings were assigned to each case using a semi-quanti-
tative grading score (0, absent; 1, mild; 2, moderate; 3,
severe), which takes into account mode and severity of
the respective presenting symptom (e.g., motor dys-
function, falls/ataxia, autonomic dysfunction and hallu-
cinations/delusions) (Table 1). No signiWcant trends
were observed for age of onset, duration of illness,
brain weight, motor dysfunction, falls/ataxia, auto-
nomic dysfunction or hallucinations/delusions (Spear-
man’s correlation). All cases with Parkinsonism had a
clinical diagnosis of PD with the exception of one case
(case 4) with prominent autonomic dysfunction that
had been originally diagnosed as multiple system atro-
phy (MSA). One further case (case 3) presented with
progressive cognitive impairment leading to an addi-
tional clinical diagnosis of AD. All non-neurological
control cases of this study had no history of neurologi-
cal or psychiatric disease and showed no signs of con-
founding pathology upon histological examination as
described previously [45]. Correlation analyses were
carried out using SPSS (version 13.0).

Neuropathological assessment and diagnosis

These were performed using international neuropatho-
logical consensus criteria for the deWnitive diagnosis
of PD (http://www.ICDNS.org) as mentioned above
(Table 1). Alzheimer-type pathology was also assessed
(http://www.ICDNS.org). Brain regions routinely sam-
pled included superior frontal gyrus, cingulate gyrus,
nucleus accumbens, putamen and caudate, nucleus
basalis of Meynert, globus pallidus, hypothalamus with
mamillary bodies, amygdala, thalamus, hippocampus,
temporal cortex, precentral gyrus, visual cortex, parie-
tal lobe, cerebellum with dentate nucleus, SN, pons at
the height of the locus coeruleus, medulla with inferior
olive, dorsal motor nucleus of the vagus nerve and the
spinal cord at three levels where available. The mono-
clonal antibodies used to characterise PD and control
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brains were SNCA (BD Transduction laboratories;
dilution 1:300), major histocompatibility complex
(MHC) Class II antigens (D-M0775; Dako CR3/43;
dilution 1:10), tau (BR-003, Autogen Bioclear UK Ltd;
dilution 1:800), ubiquitin (Z0458, Dako; dilution 1:200)
and beta-amyloid (VP-B203, Novocastra; dilution
1:25). All immunoreactions for SNCA and MHC class
II reactivity were evaluated by two independent
observers as described previously [9, 10].

Microarray work

Tissue samples dissected from medial and lateral SN
as well as superior frontal gyrus were processed as
described [45]. A total of 47 individual tissue samples
were analysed, i.e. 15 samples of medial parkinsonian
SN, 9 samples of lateral parkinsonian SN, 8 medial
nigra control samples and 7 lateral nigra control sam-
ples. Lateral and medial nigra samples were from the
same cases. Samples of the medial and lateral parts of
the SN were taken at the level of the red nucleus. The
SN tissue was hand-dissected, trimmed, cut in half
and snap frozen. No attempt was made to prepare
subnuclei. In addition, the frontal cerebral cortex was
analysed in Wve of the PD cases and in three of the
controls. Only cases within a tissue pH range >6.0 and
<6.8 were used in this study. For each tissue area,
total RNA was extracted per case from snap-frozen
tissue samples using the RNeasy Mini Kit (Qiagen,
Valencia, CA, USA) [44, 45]. Fragmented target

cRNA was hybridised to individual arrays (i.e.,
AVymetrix HG_U133 array set; at total of 94 gene
chips were used) [45]. AVymetrix Microarray Suite
5.0 software (MAS5.0) was then used to generate
CHP Wles. CHP and cell intensity (CEL) Wles of the
microarrays were processed using ArrayAssist soft-
ware (version 3.0; Stratagene Interaction Explorer;
http://www.stratagene.com). The GeneChip Robust
Multi Array (GC-RMA) algorithm [68] was then
applied. SigniWcance levels (t-test) values for the
known PD genes and all pathway components shown
in Figs. 1, 2 and 3 are given in Table 2 and Supple-
mental File 3, respectively (also see [45]). The phrase
‘dopamine synthesis pathway’ (Fig. 2) is used to
describe the dopamine synthesis in a broad sense i.e.,
not only related to the classical dopamine synthesis
pathway starting with tyrosine hydroxylase. Gene
expression values were considered statistically diVer-
ent between groups if P < 0.01 (Student’s t-test). The
commercial Jubilant PathArt database version for
PathwayAssist was used for comparative purposes
(Moran et al., in press). For the hierarchical cluster-
ing, the average linkage method was used with corre-
lation as the similarity metric (ArrayAssist 3.0).

The dataset used in this study will be donated
to the public GEO database at http://www.ncbi.nlm.
nih.gov/entrez in October 2007 which is the
embargo date agreed with the charity that is funding
this large programme, the UK Parkinson’s Disease
Society.

Table 1 Clinical and neuropathological characteristics of Parkinson’s disease (PD) subjects studied

AD Alzheimer’s disease, A-R akinetic-rigid, b brainstem predominant, c cortical predominant, drool drooling, F female, Hemi hemi-
parkinsonism, LBD Lewy body disease, left/right side with predominance of hemiparkinsonism, M male, PD Parkinson’s disease,
Psy psychiatric symptoms
a Semi-quantitative assessment for mode and severity of presenting signs derived from the clinical histories of PD subjects (0 absent,
1 mild, 2 moderate, 3 severe)

PD 
cases

Gender Age of 
onset 
(years)

Duration 
of illness 
(years)

Mode of 
presentation

Motor 
dysfunctiona

Falls/ataxiaa Autonomic 
dysfunctiona

Hallucinations 
/delusionsa

Brain 
weight
(g)

Neuropathological 
diagnosis
(http://www.ICDNS.org)

1 F 76 12 Ataxia 1.5 1 1 2 975 PD (LBD, b)
2 M 75 9 Hemi (right) 2 1 2.5 2.5 1,182 PD (LBD, b)
3 M 65 3 A-R + Psy 1.5 1 1.5 3 1,422 PD (LBD) + AD
4 M 70 10 A-R/voice 2 1.5 2.5 0 1,560 PD (LBD, b)
5 F 72 15 Hemi (left) 1.5 1.5 1 0 1,299 PD (LBD, b)
6 F 67 14 Hemi (right) 2 2 2 2.5 1,330 PD (LBD, b) + dementia
7 F 67 18 Hemi (left) 2 1.5 1.5 2.5 1,286 PD (LBD, c)
8 M 42 34 Hemi (right) 2 1.5 1 2 1,351 PD (LBD, b)
9 M 49 27 Hemi (left) 2 2 1.5 2.5 1,282 PD (LBD, b)

10 F 65 10 Hemi (right) 1.5 1 1.5 0 1,144 PD (LBD, b)
11 M 65 18 A-R 2 2 2 3 1,251 PD (LBD, b)
12 M 70 7 Hemi (left) 2 2 2 1 1,313 PD (LBD, b)
13 M 86 3 A-R 2 1.5 1 0 1,400 PD (LBD, b)
14 F 72 11 Hemi (right) 1.5 2.5 1.5 2.5 1,089 PD (+ AD)
15 M 66 10 Drool/A-R 2 2 1.5 0 1,291 PD (LBD, b)
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Real-time PCR

Microarray data were validated using quantitative real-
time PCR (qRT-PCR) as described previously [44]. In

brief, total RNA from the medial SN of the study cases
was initially treated with 2 U of RNase-free DNase
(Sigma-Aldrich) and was then reverse transcribed with
random decamers using a RetroScript kit (Ambion).

Fig. 1 Alpha-synuclein pro-
duction pathway with sum-
mary expression data overlaid 
(colour coding). Genes up-
regulated in Parkinson’s dis-
ease lateral substantia nigra 
are coloured in red, those that 
were down-regulated are col-
oured blue; grey means no 
change. Small interacting mol-
ecules are marked in jade. 
DiVerential expression (DE) 
values represented here are 
given for the lateral substantia 
nigra (Table 2). Details of the 
numerous 26S proteasome su-
bunits are not shown (cf. [15]) 
because of space limitations. 
Some genes included in the 
Wgure have a less stringent 
signiWcance level in order to 
depict the largest possible 
known gene regulatory net-
work (see Table 2 and Supple-
mental File 3 for comparison)
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Fig. 2 Representation of the 
dopamine synthesis pathway. 
Expression diVerences be-
tween PD and control are giv-
en for the lateral substantia 
nigra (Table 2). Colouring as 
in Fig. 1. Three genes—
poly(ADP-ribose) polymer-
ase family, member 1 
(PARP1), catalase (CAT) and 
mitogen-activated protein ki-
nase 8 (MAPK8)—are signiW-
cantly up-regulated. Some 
genes included in the Wgure 
have a less stringent signiW-
cance level in order to depict 
the largest possible known 
gene regulatory network (see 
Supplemental File 3). Tran-
scripts from the NFKB path-
way were also signiWcantly 
up-regulated (Table 2 )
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Primers to SNCA, UCHL1 and Nurr1 [45] were
designed using MacVector 7.0 software (Accelrys, UK)
and synthesised by Sigma Genosys, UK. Real-time
PCR was conducted using Sybr Green I Mastermix
(Applied Biosystems) using an ABI PRISM™ 7700
Sequence Detection System. Raw data was exported
to SDS 1.7 (Applied Biosystems) and analysed as
eYciency-corrected normalised expression as described
previously [52]. A normalisation factor derived from
the geometric mean of the two internal controls (Beclin
1 (coiled-coil,myosin-like BCL2-interacting protein);
BECN1 and Glutaminyl-tRNAsynthetase; QARS; [45])
was used to correct for diVerences in RNA loading. The
relative expression (fold diVerences) in Parkinson’s
disease versus control medial SN was calculated using
Data Analysis for Real-Time PCR (DART-PCR
Version 1.0) as described by Peirson et al. [52]. Supple-
mental File 4 provides additional information on the
validation of the expression of selected genes.

Results

Expression of the parkin gene was signiWcantly up-regu-
lated in the lateral parkinsonian SN. The expression of
SNCA (PARK1) and UCHL1 (PARK5) were signiW-
cantly down-regulated in both the lateral and medial SN.
In contrast, the changes in expression for PINK1
(PARK6), DJ-1 (PARK7) and LRRK2 (PARK8) were
not signiWcant at P = 0.061, 0.724  and 0.128, respectively
(Table 2). Several other PD susceptibility-related genes
were found to be down-regulated including glucocere-
brosidase (GBA) and nuclear receptor subfamily 4,
group A, member 2 (Nurr1) (Table 2 and Supplemental
File 3). qRT-PCR conWrmed the down-regulation in
expression of SNCA, UCHL1 and Nurr1 in the medial
SN with relative expression diVerences of 0.26, 0.40  and
0.10 for each gene compared to controls, respectively.

Alpha-synuclein, which is common to all pathways
we investigated, interacts with a range of cellular

Fig. 3 Expression-pathway 
overlay for parkin metabolism 
in the lateral substantia nigra 
in Parkinson’s disease. Colour 
coding as in Fig. 1. Details of 
the numerous 26S proteasome 
subunits are not shown (cf. 
[15]) because of space con-
straints. Some genes included 
in the Wgure have a less strin-
gent signiWcance level in order 
to depict the largest possible 
known gene regulatory net-
work (see Supplemental 
File 3). The association be-
tween parkin and t-complex 1 
is based on evidence that 
t-complex 1 plays a role in 
folding of tubulin, and parkin 
binds to tubulin
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proteins as illustrated by the pathways shown in Figs. 1,
2 and 3 (a reference list for each pathway is provided in
Supplemental File 5). The known SNCA production
pathway as extracted from the PathArt database is
shown in Fig. 1. Apart from sept4, which is signiWcantly
increased in the lateral SN, all other pathway compo-
nents including SNCA are down-regulated in the lat-
eral SN (see Supplemental File 3).

The changes in expression in the dopamine synthesis
pathway in the lateral SN in PD brains are illustrated in
Fig. 2 (also see Table 2 and Supplemental File 3).
Poly(ADP-ribose) polymerase family, member 1
(PARP1) is up-regulated in the lateral SN in our PD
cohort. Similarly, mitogen-activated protein kinase 8
(MAPK8), a member of the MAP kinase family also
shows increased expression in the lateral SN. Catalase
(CAT) is signiWcantly up-regulated in both the lateral
and the medial SN in our dataset. In addition, we
observed that many genes encoding proteins associated
with the NFKB pathway are signiWcantly up-regulated
in the lateral SN (Supplemental File 3).

Parkin, an E3-ubiquitin protein-ligase, is a compo-
nent of the proteasomal pathway. Figure 3 illustrates
the other genes that are known to bind and/or inXu-
ence the regulation of parkin in the SN in PD
(Table 2). Parkin is signiWcantly up-regulated in the lat-
eral SN. In our dataset, G-protein-coupled receptor 37
(GPR37), also known as endothelin receptor type B-
like or parkin-associated endothelin-like receptor is
signiWcantly increased. T-complex 1 (TCP1) also has
signiWcantly increased expression in the lateral SN.
This gene encodes a molecular chaperone that is a
member of the chaperonin containing TCP1 complex
(CCT) which is suggested to be important in folding
newly translated proteins. In addition, caspase 4 (apop-
tosis-related cysteine protease; CASP4) has signiW-
cantly increased expression in both the lateral and
medial SN in PD.

Hierarchical clustering (Fig. 4) illustrates interesting
associations between deregulated genes (cf. Table 2).
The top cluster of genes showing highly similar expres-
sion includes Nurr1, SCL6A3 [solute carrier family 6

Table 2 Members of gene regulatory networks known to play a role in Parkinson’s disease

DE diVerential expression

Summary table showing expression values and the diVerences between medial, lateral and control substantia nigra for all established
PD-causing genes which were up-regulated in Figs. 1, 2 and 3 and genes derived from hierarchical clustering analysis (Fig. 4). Gene sym-
bols shown are based on AVymetrix probe ontology (abbreviations given in Supplemental File 3). Transcripts showing signiWcant chang-
es in expression are displayed in ‘bold’ type. Gene expression values of transcripts demonstrating down-regulation are set in ‘italics’ (see
also Supplemental File 3)

In order to depict the largest possible known gene regulatory network, some genes included in the Wgure have a less stringent signiW-
cance level

Gene 
symbol 

Gene title Probe set 
name

Medial substantia 
nigra

Lateral substantia
nigra

DE P value DE P value

SCL6A3 Solute carrier family 6 (neurotransmitter transporter, 
dopamine), member 3

206836_at ¡2.206 0.000 ¡4.044 0.000

MAP2 Microtubule-associated protein 2 225540_at ¡0.664 0.001 ¡0.890 0.000
SNCA Alpha-synuclein 204467_s_at ¡1.250 0.000 ¡1.386 0.000
NR4A2 Nuclear receptor subfamily 4, group A, member 2 216248_s_at ¡1.509 0.000 ¡2.404 0.000
TUBB2 Tubulin, beta 2 204141_at ¡1.167 0.000 ¡1.350 0.000
PARP1 Poly(ADP-ribose) polymerase family, member 1 208644_at 0.120 0.273 0.335 0.008
UCHL1 Ubiquitin carboxyl-terminal hydrolase L1 201387_s_at ¡1.310 0.013 ¡1.325 0.018
CAT Catalase 211922_s_at 0.617 0.039 0.744 0.018
GPR37 G protein-coupled receptor 37 214586_at 0.492 0.084 0.898 0.018
MAP2K4 Mitogen-activated protein kinase kinase 4 203266_s_at ¡0.864 0.050 ¡0.897 0.019
MAPK8 Mitogen-activated protein kinase 8 210671_x_at 0.009 0.814 0.186 0.023
TCP1 t-complex 1 222010_at 0.288 0.077 0.482 0.031
SEPT4 Septin 4 210657_s_at 0.412 0.090 0.573 0.034
CASP4 Caspase 4, apoptosis-related cysteine protease 213596_at 0.153 0.027 0.162 0.035
PARK2 Parkinson disease (autosomal recessive, juvenile) 2, Parkin 207058_s_at 0.001 0.981 0.068 0.043
PINK1 PTEN-induced putative kinase 1 209019_s_at ¡0.233 0.210 ¡0.394 0.061
LRRK2 Leucine-rich repeat kinase 2 229584_at ¡0.226 0.279 ¡0.427 0.128
RELA v-rel reticuloendotheliosis viral oncogene homolog A 209878_s_at 0.139 0.444 0.206 0.272
SOD2 Superoxide dismutase 2, mitochondrial 215223_s_at 0.153 0.655 0.356 0.568
DJ-1 – 200006_at ¡0.045 0.619 0.042 0.724
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(neurotransmitter transporter, dopamine), member 3],
SOD2 (superoxide dismutase 2, mitochondrial),
RELA (v-rel reticuloendotheliosis viral oncogene
homolog A, nuclear factor of kappa light polypeptide
gene enhancer in B-cells 3, p65 (avian)), GPR37, CAT,
SNCA, UCHL1, MAP2K4 (mitogen-activated protein
kinase kinase 4) and TUBB2 (tubulin, beta 2).

Discussion 

Alpha-synuclein (SNCA) is now considered to play a
key role in the pathogenesis of PD and related synuc-
leinopathies (see review [2]). SNCA transcription is
signiWcantly reduced (see Table 2) in the parkinsonian
SN [32, 48]. Here, we describe gene regulatory rela-

tionships between SNCA and two other pathways con-
sidered to be of relevance in PD, dopamine synthesis
and parkin metabolism. Supplemental File 6 provides a
comparison of our gene list with Wndings from other
microarray studies in SN of sporadic PD (see [22, 23,
43, 75]).

In the SNCA production pathway, we report a sig-
niWcant up-regulation of sept4 in the lateral SN. An
immunocytochemical study of both PD and other syn-
ucleinopathies found sept4 protein in cytoplasmic
inclusions [27]. In AD, sept4, in addition to sept1 and
sept2, accumulates in neuroWbrillary tangles [33]. The
common role of sept4 in AD and PD, both presenting
features of abnormal protein processing, suggests the
existence of a common pathway linked to neurodegen-
eration. The increased expression of sept4 observed in

Fig. 4 Hierarchical clustering for genes important in SNCA pro-
duction, dopamine synthesis and parkin metabolism (Table 2).
Up-regulated genes are depicted in shades of red and yellow,
down-regulated genes in shades of blue. Each row represents the
colour-coded expression of one gene whereas each column repre-
sents one of the study cases. Genes with similar expression

patterns are clustering together as shown by the dendrogram
(left). Clusters based on similarity between cases are shown in the
dendrogram at the bottom. Control cases (case 16, 17, 19 and 23;
see [45]) and PD cases (cases 1–7, 11 and 12). There is co-correla-
tion between members of the three pathways—SNCA produc-
tion, dopamine synthesis and parkin metabolism pathways
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the lateral SN may be associated with the higher attri-
tion of dopaminergic neurones in this anatomical
region. Sept4 has been ascribed a role in neuronal
diVerentiation and axon guidance through the control
of mitochondrial function [64] and importantly, causes
caspase activation [21]. Interestingly, in cultured neu-
roblastoma and Wbroblast cells, co-expression of sept4
and SNCA synergistically accelerated cell death
induced by the proteasome inhibitor, lactacystin [27].
Sept4 [formerly known as bradeion and peanut-like 2
(Drosophila)] is a member of the septin gene family
of nucleotide-binding proteins which were originally
described in yeast as cell division cycle regulatory
factors.

Parkinson’s disease is characterised by a marked
reduction in dopamine function, a consequence of mas-
sive neuronal loss in the nigrostriatal pathway. In the
dopamine synthesis pathway, we Wnd that the enzyme
PARP1 is up-regulated. PARP1 negatively modulates
SNCA expression by binding to NACP-Rep1, a poly-
morphic site located upstream of the SNCA gene [7].
PARP1 also functions as a molecular ‘nick sensor’,
binding to DNA single-strand breaks and can silence
transcription, preventing the expression of damaged
genes (see reviews [12, 73]). Interestingly, excessive
activation of PARP1 leads to NAD (+) depletion and
cell death in conditions that generate extensive DNA
damage [69]. PARP1 also contributes to cell death [35,
53, 70]. A study of ischaemic cell death in neuronal
nitric oxide synthase (nNOS) and PARP1 knockout
mice illustrated nNOS/PARP-1 signalling is protective
in females [41]. CAT, which was up-regulated in the
medial and lateral SN, has a known scavenger function
for reactive oxygen species generated by metabolic DA
oxidation [38]. Furthermore, CAT negatively regulates
mitogen-activated protein kinase 8 (MAPK8) [38], a
member of the MAP kinase family which also showed
increased expression in the lateral SN. MAPK8, also
known as JNK/JNK1, is involved in several cellular
processes including proliferation, diVerentiation, tran-
scription regulation and development. In the Drosoph-
ila parkin loss-of-function mutants JNK is strongly
activated in and may contribute to the vulnerability of
the dopaminergic neurones [6].

Four genes were found to be signiWcantly over-
expressed in the parkin synthesis pathway, including
parkin itself. Parkin is essential for the normal function
of the ubiquitin/proteasome pathway. Over-expression
of parkin has been shown to protect human dopami-
nergic neuroblastoma cells against apoptosis induced
by dopamine or 6-hydroxydopamine [30]. Parkin also
attenuates dopamine-induced activation of JNK and
may be important for the survival of dopaminergic

neurones exposed to dopamine oxidation [31]. Parkin
negatively regulates SNCA [49], and Sp22—a glycosy-
lated form of SNCA—interacts with parkin [59]. In
addition to parkins ability to down-regulate SNCA,
synphilin-1 is ubiquitinated by parkin [8], providing
further evidence for the interaction between synuclein
regulation and parkin metabolism. In the present
study, signiWcant changes in parkin expression were
only observed in the lateral part of the nigra, which
contrasts the result of many genes of the parkin synthe-
sis pathway that show change in both the lateral and
medial areas. This may suggest that the latter genes
have a potential role in other cellular functions.

In this study we observed a down-regulation of
mRNA coding for the 26S proteasome in PD (see
Figs. 1, 3). Structural and functional defects in 26/20S
proteasomes have been reported in PD (see review
[42]), and our observations of a down-regulation sup-
port this. Two genes in the parkin pathway were up-reg-
ulated, GPR37 and TCP1. GPR37, an orphan G
protein-coupled receptor, is a known substrate for par-
kin [28] and insoluble aggregates of this protein are
found in juvenile PD patients [39]. Over-expressed
GPR37 protein in dopaminergic neurones becomes
unfolded and insoluble, accumulates in the endoplasmic
reticulum (ER), inducing ER stress and neurodegener-
ation [28, 29]. Parkin reduces GPR37 over-expression-
induced cell death by ubiquitination in the presence of
ubiquitin-conjugating enzymes (resident in the ER)
thereby promoting receptor degradation [28]. GPR37
also regulates SN-striatum dopaminergic signalling [39]
and has a protective eVect on SN neurones treated with
the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine [39]. As for TCP1, a member of the chaperonin
family, limited information for its role in PD is avail-
able. TCP1 has a role in folding of newly translated pro-
teins in the cytosol, including actin and tubulin. Parkin
binds to tubulin and increases ubiquitination and degra-
dation [56]. TCP1 is also important in the presentation
of misfolded proteins to the proteasome complex and
there is evidence of dysregulation of TCP1 in Down
syndrome [71]. CASP4, a cysteine protease, also has sig-
niWcantly increased expression in the medial and lat-
eral SN in PD. CASP4 protein can activate its own, as
well as caspase 1, precursor proteins. Human caspase-4
is localised to the ER membrane, and is cleaved when
cells (human neuroblastoma SK-N-SH and carcinoma
HeLa cells) are treated with ER stress-inducing
reagents [25], suggesting a role for casp4 as an ER
stress-speciWc caspase in humans.

The identiWcation of SNCA mutations in rare famil-
ial forms of PD [36, 54, 55] and its abnormal accumula-
tion in LB in nigral [61] and extranigral neurones in
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sporadic PD has focussed research on the elucidation
of the cellular and biological function(s) of SNCA. An
ever-increasing body of literature supports the multiple
and overlapping roles of SNCA which are visualised in
the gene regulatory pathways (Figs. 1, 2, 3). Analysis of
co-correlated genes (see Fig. 4) provides clear evidence
that SNCA, UCHL1 and parkin are functionally
closely connected and linked to the ubiquitin-protea-
some pathway. There is considerable evidence for links
between DA production and metabolism, AS aggrega-
tion and the pathogenesis of PD (see review [18]).
Nurr1, one of the highly correlated genes, is known to
be important in the diVerentiation and maintenance of
dopaminergic neurones. Mutations in Nurr1 aVect
transcription of the genes encoding tyrosine hydroxy-
lase and SLC6A3 (see review [26]). SNCA, under nor-
mal conditions, negatively modulates dopamine uptake
by SLC6A3 [67]. Taken together, our Wndings strongly
support the view that alpha-synuclein has a central role
in PD pathobiochemistry.

Finally, the data presented here were generated
from tissue homogenates containing multiple cell
types. This seems justiWed as evidence is accumulating
that glial cells can be a primary target of the ‘neurode-
generative’ disease process (see [11] for review;
Slonimsky et al., in preparation). In addition, the wide-
spread pathological alpha-synuclein deposition in PD
and the quantity of change observed in our and other
studies suggest that PD is a disease of brain tissue
rather than of a single cell type. However, there is a
scarcity of information on cellular gene expression in
the CNS, especially in disease conditions, and much
additional work is required to back-map all genes of
interest (PD ‘priority genes’, [45] to individual cellular
compartments in the diVerent brain regions of rele-
vance. For this, adoption of a ‘universal’ oligonucleo-
tide-based hybridisation method [62] may represent an
eVective way forward [46]. Detailed cellular back-map-
ping using whole tissue is of great practical importance
also because there is a strong focus currently in PD
research on only one cell class, the dopaminergic neu-
rone. This is exempliWed by a number of laser capture
and experimental studies. Should more tissue-based
research demonstrate that glia are primarily involved
in PD similar to motor neurone disease [3], then this
will have signiWcant implications for both diagnostic
and treatment considerations including stem cell thera-
pies of PD.

Acknowledgments This work was funded by the UK Parkin-
son’s Disease Society. Tissue samples were supplied by the Par-
kinson’s Disease Society Tissue Bank at Imperial College
London, funded by the Parkinson’s Disease Society of the United
Kingdom, registered charity 948776. We are also grateful to the

Multiple Sclerosis Tissue Bank at Imperial College London and
the University of Liège for control tissue samples. We express our
deepest appreciation to the donors and their families for donating
human brain tissue for research.

References

1. Agid Y, Ruberg M, Javoy-Agid F, Hirsch E, Raisman-Vozari
R, Vyas S, Faucheux B, Michel P, Kastner A, Blanchard V
(1993) Are dopaminergic neurons selectively vulnerable to
Parkinson’s disease? Adv Neurol 60:148–164

2. Bennett MC (2005) The role of alpha-synuclein in neurode-
generative diseases. Pharmacol Ther 105:311–331

3. Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins
NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and
progression in inherited ALS determined by motor neurons
and microglia. Science 312:1389–1392

4. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ,
Krieger E, Dekker MC. Squitieri F, Ibanez P, Joosse M, van
Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G,
van Duijn CM, Oostra BA, Heutink P (2003) Mutations in
the DJ-1gene associated with autosomal recessive early-onset
parkinsonism. Science 299:256–259

5. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur
EN, Braak E (2003) Staging of brain pathology related to spo-
radic Parkinson’s disease. Neurobiol Aging 24:197–211

6. Cha GH, Kim S, Park J, Lee E, Kim M, Lee SB, Kim JM,
Chung J, Cho KS (2005) Parkin negatively regulates JNK
pathway in the dopaminergic neurons of Drosophila. Proc
Natl Acad Sci USA 102:10345–10350

7. Chiba-Falek O, Kowalak JA, Smulson ME Nussbaum RL
(2005) Regulation of alpha-synuclein expression by poly
(ADP ribose) polymerase-1 (PARP-1) binding to the NACP-
Rep1 polymorphic site upstream of the SNCA gene. Am J
Hum Genet 76:478–492

8. Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J,
Ross CA, Dawson VL, Dawson TM (2001) Parkin ubiquiti-
nates the alpha-synuclein-interacting protein, synphilin-1:
implications for Lewy-body formation in Parkinson disease.
Nat Med 7:1144–1150

9. Croisier E, Moran LB, Dexter DT, Pearce RK, Graeber MB
(2005) Microglial inXammation in the parkinsonian substan-
tia nigra: relationship to alpha-synuclein deposition. J Neuro-
inXamm 2:14

10. Croisier E, Elfant D, Deprez M, Goldring K, Dexter DT,
Pearce RKB, Graeber MB, Roncaroli F (2006) Comparative
study of commercially available anti-alpha-synuclein anti-
bodies. Neuropathol Appl Neurobiol 32:1365–2990

11. Croisier E, Graeber MB (2006) Glial degeneration and reactive
gliosis in alpha-synucleinopathies: the emerging concept of pri-
mary gliodegeneration. Acta Neuropathol (Berl) 112:517–530

12. D’Amours D, Desnoyers S, D’Silva I, Poirier GG (1999)
Poly(ADP-ribosylation reactions in the regulation of nuclear
functions. Biochem J 342:249–268

13. Del Tredici K, Rub U, De Vos RA, Bohl JR, Braak H (2002)
Where does parkinson disease pathology begin in the brain?
J Neuropathol Exp Neurol 61:413–426

14. de Rijk MC, Tzourio C, Breteler MM, Dartigues JF, Ama-
ducci, Lopez-Pousa S, Manubens-Bertran JM, Alperovitch
A, Rocca WA (1997) Prevalence of parkinsonism and Parkin-
son’s disease in Europe: the EUROPARKINSON Collabo-
rative Study. European Community Concerted Action on the
Epidemiology of Parkinson’s disease. J Neurol Neurosurg
Psychiatr 62:10–15
123



262 Acta Neuropathol (2007) 113:253–263
15. Duke DC, Moran LB, Kalaitzakis ME, Deprez M, Dexter
DT, Pearce RK, Graeber MB (2006) Transcriptome analysis
reveals link between proteasomal and mitochondrial path-
ways in Parkinson’s disease. Neurogenetics 7:139–148

16. Feany MB, Pallanck LJ (2003) Parkin: a multipurpose neuro-
protective agent? Neuron 38:13–16

17. Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata
F (2002) A new locus for Parkinson’s disease (PARK8) maps
to chromosome 12p11.2–q13.1. Ann Neurol 51:296–301

18. Galvin JE (2006) Interaction of alpha-synuclein and dopa-
mine metabolites in the pathogenesis of Parkinson’s disease:
a case for the selective vulnerability of the substantia nigra.
Acta Neuropathol (Berl) 112:115–126

19. Gasser T, Muller-Myhsok B, Wszolek ZK, Oehlmann R, Cal-
ne DB, Bonifati V, Bereznai B, Fabrizio E, Vieregge P,
Horstmann RD (1998) A susceptibility locus for Parkinson’s
disease maps to chromosome 2p13. Nat Genet 18:262–265

20. Giasson BI, Lee VM (2003) Are ubiquitination pathways
central to Parkinson’s disease? Cell 114:1–8

21. Gottfried Y, Rotem A, Lotan R, Steller H, Larisch S (2004)
The mitochondrial ARTS protein promotes apoptosis
through targeting XIAP. EMBO J 23:1627–1635

22. Grunblatt E, Mandel S, Jacob-Hirsch J, Zeligson S, Amariglo
N, Rechavi G, Li J, Ravid R, Roggendorf W, Riederer P,
Youdim MB (2004) Gene expression proWling of parkinso-
nian substantia nigra pars compacta; alterations in ubiquitin-
proteasome, heat shock protein, iron and oxidative stress reg-
ulated proteins, cell adhesion/cellular matrix and vesicle
traYcking genes. J Neural Transm 111:1543–1573

23. Hauser MA, Li YJ, Xu H, Noureddine MA, Shao YS, Gullans
SR, Scherzer CR, Jensen RV, McLaurin AC, Gibson JR,
Scott BL, Jewett RM, Stenger JE, Schmechel DE, Hulette
CM, Vance JM (2005) Expression proWling of substantia ni-
gra in Parkinson disease, progressive supranuclear palsy, and
frontotemporal dementia with parkinsonism. Arch Neurol
62:917–921

24. Hicks AA, Petursson H, Jonsson T, Stefansson H, Johannsdot-
tir HS, Sainz J, Frigge ML, Kong A, Gulcher JR, Stefansson K,
Sveinbjornsdottir S (2002) A susceptibility gene for late-onset
idiopathic Parkinson’s disease. Ann Neurol 52:549–555

25. Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M,
Koyama Y, Manabe T, Yamagishi S, Bando Y, Imaizumi K,
Tsujimoto Y, Tohyama M (2004) Involvement of caspase-4 in
endoplasmic reticulum stress-induced apoptosis and Abeta-
induced cell death. J Cell Biol 165:347–356

26. Huang Y, Cheung L, Rowe D, Halliday G (2004) Genetic
contributions to Parkinson’s disease. Brain Res Brain Res
Rev 46:44–70

27. Ihara M, Tomimoto H, Kitayama H, Morioka Y, Akiguchi I,
Shibasaki H, Noda M, Kinoshita M (2003) Association of the
cytoskeletal GTP-binding protein Sept4/H5 with cytoplasmic
inclusions found in Parkinson’s disease and other synuclein-
opathies. J Biol Chem 278:24095–24102

28. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R
(2001) An unfolded putative transmembrane polypeptide,
which can lead to endoplasmic reticulum stress, is a substrate
of Parkin. Cell 105:891–902

29. Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T,
Nakayama KI, Takahashi R (2002) CHIP is associated with
Parkin, a gene responsible for familial Parkinson’s disease,
and enhances its ubiquitin ligase activity. Mol Cell 10:55–67

30. Jenner P, Olanow CW (1998) Understanding cell death in
Parkinson’s disease. Ann Neurol 44:S72–S84

31. Jiang H, Ren Y, Zhao J, Feng J (2004) Parkin protects human
dopaminergic neuroblastoma cells against dopamine-induced
apoptosis. Hum Mol Genet 13:1745–1754

32. Kingsbury AE, Daniel SE, Sangha H, Eisen S, Lees AJ,
Foster OJ (2004) Alteration in alpha-synuclein mRNA
expression in Parkinson’s disease. Mov Disord 19:162–170

33. Kinoshita A, Kinoshita M, Akiyama H, Tomimoto H, Akigu-
chi I, Kumar S, Noda M, Kimura J (1988) IdentiWcation of
septins in neuroWbrillary tangles in Alzheimer’s disease. Am
J Pathol 153:1551–1560

34. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura
Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998)
Mutations in the parkin gene cause autosomal recessive juve-
nile parkinsonism. Nature 392:605–608

35. Koh DW, Dawson TM, Dawson VL (2005) Mediation of cell
death by poly(ADP-ribose) polymerase-1. Pharmacol Res
52:5–14

36. Kruger R, Kuhn W, Muller T, Woitalla D. Graeber M, Kosel
S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro
mutation in the gene encoding alpha-synuclein in Parkinson’s
disease. Nat Genet 18:106–108

37. Leroy E, Boyer R, Polymeropoulos MH (1998) Intron–exon
structure of ubiquitin c-terminal hydrolase-L1. DNA Res
5:397–400

38. Luo Y, Umegaki H, Wang X, Abe R, Roth GS (1998) Dopa-
mine induces apoptosis through an oxidation-involved
SAPK/JNK activation pathway. J Biol Chem 273:3756–3764

39. Marazziti D, Golini E, Mandillo S, Magrelli A, Witke W,
Matteoni R, Tocchini-Valentini GP (2004) Altered dopamine
signalling and MPTP resistance in mice lacking the Parkinson’s
disease-associated GPR37/parkin-associated endothelin-like
receptor. Proc Natl Acad Sci USA 101:10189–10194

40. Matsumine H, Saito M, Shimoda-Matsubayashi S, Tanaka H,
Ishikawa A, Nakagawa-Hattori Y, Yokochi M, Kobayashi T,
Igarashi S, Takano H, Sanpei K, Koike R, Mori H, Kondo T,
Mizutani Y, SchaVer AA, Yamamura Y, Nakamur S, Kuzu-
hara S, Tsuji S, Mizuno Y (1997) Localization of a gene for an
autosomal recessive form of juvenile Parkinsonism to chro-
mosome 6q25.2–27. Am J Hum Genet 60:588–596

41. McCullough LD, Zeng Z, Blizzard KK, Debchoudhury I,
Hurn PD (2005) Ischemic nitric oxide and poly (ADP-ribose)
polymerase-1 in cerebral ischemia: male toxicity, female pro-
tection. J Cereb Blood Flow Metab 25:502–512

42. McNaught KS, Olanow CW (2003) Proteolytic stress: a unify-
ing concept for the etiopathogenesis of Parkinson’s disease.
Ann Neurol 53:S73–S84

43. Miller RM, Kiser GL, Kaysser-Kranich TM, Lockner RJ,
Palaniappan C, FederoV HJ (2006) Robust dysregulation of
gene expression in substantia nigra and striatum in Parkinson’s
disease. Neurobiol Dis 21:305–313. Epub 6 September 2005

44. Moran LB, Duke DC, Turkheimer FE, Banati RB, Graeber
MB (2004) Towards a transcriptome deWnition of microglial
cells. Neurogenetics 5:95–108

45. Moran LB, Duke DC, Deprez M, Dexter DT, Pearce RKB,
Graeber MB (2006a) Whole genome expression proWling of
the medial and lateral substantia nigra in Parkinson’s disease.
Neurogenetics 7:1–11

46. Moran LB, Hickey L, Duke DC, Derkacs M, Michael GJ,
Croisier E, Dexter DT, Pearce RKB, Graeber MB (2006b)
Expression proWling demonstrates cerebral cortex involve-
ment in Parkinson’s disease. In: 36th Annual Meeting of the
Society for Neuroscience, Atlanta, GA, 14–18 October 2006.
Society for Neuroscience Abstracts: 173.2/FF26

47. Mouradian MM (2002) Recent advances in the genetics and
pathogenesis of Parkinson disease. Neurology 58:179–185

48. Neystat M, Lynch T, Przedborski S, Kholodilov N, Rzhets-
kaya M, Burke RE (1999) Alpha-synuclein expression in sub-
stantia nigra and cortex in Parkinson’s disease. Mov Disord
14:417–422
123



Acta Neuropathol (2007) 113:253–263 263
49. Oluwatosin-Chigbu Y, Robbins A, Scott CW, Arriza JL, Reid
JD, Zysk JR (2003) Parkin suppresses wild-type alpha-synuc-
lein-induced toxicity in SHSY-5Y cells. Biochem Biophys
Res Commun 309:679–884

50. Orth M, Schapira AH (2002) Mitochondrial involvement in
Parkinson’s disease. Neurochem Int 40:533–541

51. Pankratz N, Nichols WC, Uniacke SK, Halter C, Rudolph A,
Shults C, Conneally PM, Foroud T, The Parkinson Study
Group (2003) SigniWcant linkage of Parkinson disease to
chromosome 2q36–37. Am J Hum Genet 72:1053–1057

52. Peirson SN, Butler JN, Foster RG (2003) Experimental vali-
dation of novel and conventional approaches to quantitative
real-time PCR data analysis. Nucleic Acids Res 31:e73

53. Pieper AA, Verma A, Zhang J, Snyder SH (1999) Poly
(ADP-ribose) polymerase, nitric oxide and cell death. Trends
Pharmacol Sci 20:171–181

54. Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide
SE, Di Iorio G, Sanges G, Stenroos ES, Pho LT, SchaVer AA,
Lazzarini AM, Nussbaum RL, Duvoisin RC (1996) Mapping
of a gene for Parkinson’s disease to chromosome 4q21-q23.
Science 274:1197–1199

55. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia
A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos
E.S, Chandrasekharappa S, Athanassiadou A, Papapetropo-
ulos T, Johnson W.G, Lazzarini AM, Duvoisin RC, Di Iorio
G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-
synuclein gene identiWed in families with Parkinson’s disease.
Science 276:2045–2047

56. Ren Y, Zhao J, Feng J (2003) Parkin binds to alpha/beta
tubulin and increases their ubiquitination and degradation.
J Neurosci 23:3316–3324

57. Schapira AH (1998) Human complex I defects in neurode-
generative diseases. Biochim Biophys Acta 1364:261–270

58. Sherer T.B, Betarbet R, Greenamyre JT (2002) Environ-
ment, mitochondria, and Parkinson’s disease. Neuroscientist
8:192–197

59. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Troc-
kenbacher A, Schneider R. Mizuno Y, Kosik KS, Selkoe DJ
(2001) Ubiquitination of a new form of alpha-synuclein by
parkin from human brain: implications for Parkinson’s dis-
ease. Science 293:263–269

60. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S,
Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum
R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C,
Cookson MR, Muenter M, Baptista M, Miller D, Blancato J,
Hardy J, Gwinn-Hardy K (2003) �-synuclein locus triplica-
tion causes Parkinson’s disease. Science 302:841

61. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goed-
ert M (1998) alpha-Synuclein in Wlamentous inclusions of
Lewy bodies from Parkinson’s disease and dementia with
Lewy bodies. Proc Natl Acad Sci USA 95:6469–6473

62. Storr HL, Clark AJ, Priestley JV, Michael GJ (2005) IdentiW-
cation of the sites of expression of triple A syndrome mRNA
in the rat using in situ hybridisation. Neuroscience 131:113–
123

63. Sveinbjornsdottir S, Hicks AA, Jonsson T, Petursson H,
Gugmundsson G, Frigge ML, Kong A, Gulcher JR, Stefans-
son K (2000) Familial aggregation of Parkinson’s disease in
Iceland. N Engl J Med 343:1765–1770

64. Takahashi S, Inatome R, Yamamura H, Yanagi S (2003) Iso-
lation and expression of a novel mitochondrial septin that
interacts with RMP/CRAM in the developing neurones.
Genes Cells 8:81–93

65. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Har-
vey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy
DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R,
Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey
RJ, Dallapiccola B, Auburger G, Wood NW (2004) Heredi-
tary early-onset Parkinson’s disease caused by mutations in
PINK1. Science 304:1158–1160

66. van Duijn CM, Dekker MC, Bonifati V, Galjaard RJ, Hou-
wing-Duistermaat JJ, Snijders PJ, Testers L, Breedveld GJ,
Horstink M, Sandkuijl LA, van Swieten JC, Oostra BA,
Heutink P (2001) Park7, a novel locus for autosomal recessive
early-onset parkinsonism, on chromosome 1p36. Am J Hum
Genet 69:629–634

67. Wersinger C, Sidhu A (2003) Attenuation of dopamine trans-
porter activity by alpha-synuclein. Neurosci Lett 340:189–192

68. Wu Z, Irizarry RA (2004) Preprocessing of oligonucleotide
array data. Nat Biotechnol 22:656–658

69. Ying W, Sevigny MB, Chen Y, Swanson RA (2001)
Poly(ADP-ribose) glycohydrolase mediates oxidative and ex-
citotoxic neuronal death. Proc Natl Acad Sci USA 98:12227–
12232

70. Ying W, Chen Y, Alano CC, Swanson RA (2002) Tricarbox-
ylic acid cycle substrates prevent PARP-mediated death of
neurons and astrocytes. J Cereb Blood Flow Metab 22:774–
779

71. Yoo BC, Fountoulakis M, Dierssen M, Lubec G (2001)
Expression patterns of chaperone proteins in cerebral cortex
of the fetus with Down syndrome: dysregulation of T-com-
plex protein 1. J Neural Transm Suppl 61:321–334

72. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R,
Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B,
Llorens V, Gomez TE, del Ser T, Munoz DG, de Yebenes JG
(2004) The new mutation, E46K, of alpha-synuclein causes
Parkinson and Lewy body dementia. Ann Neurol 55:164–173

73. Ziegler M, Oei SL (2001) A cellular survival switch:
poly(ADP-ribosyl)ation stimulates DNA repair and silences
transcription. Bioessays 23:543–548

74. Zhang Y, Dawson VL, Dawson TM (2000) Oxidative stress
and genetics in the pathogenesis of Parkinson’s disease. Neu-
robiol Dis 7:240–250

75. Zhang Y, James M, Middleton FA, Davis RL (2005) Tran-
scriptional analysis of multiple brain regions in Parkinson’s
disease supports the involvement of speciWc protein process-
ing, energy metabolism, and signaling pathways, and suggests
novel disease mechanisms. Am J Med Genet B Neuropsychi-
atr Genet 137:5–16. Erratum in: Am J Med Genet B Neuro-
psychiatr Gene 139:122
123


	Analysis of alpha-synuclein, dopamine and parkin pathways in neuropathologically conWrmed parkinsonian nigra
	Abstract
	Introduction
	Materials and methods
	Selection of cases
	Neuropathological assessment and diagnosis
	Microarray work
	Real-time PCR

	Results
	Discussion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


