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Abstract Previously we have employed antibodies to
the tight junction (TJ)-associated proteins ZO-1 and
occludin to describe endothelial tight junction abnor-
malities, in lesional and normal appearing white mat-
ter, in primary and secondary progressive multiple
sclerosis (MS). This work is extended here by use of
antibodies to the independent TJ-speciWc proteins and
junctional adhesion molecule A & B (JAM-A, JAM-
B). We have also assessed the expression in MS of
�-catenin, a protein speciWc to the TJ-associated adhe-
rens junction. Immunocytochemistry and semiquanti-
tative confocal microscopy for JAM-A and �-catenin
was performed on snap-frozen sections from MS cases
(n = 11) and controls (n = 6). Data on 1,443 blood ves-
sels was acquired from active lesions (n = 13), inactive
lesions (n = 13), NAWM (n = 20) and control white
matter (n = 13). In MS abnormal JAM-A expression
was found in active (46%) and inactive lesions (21%),
comparable to previous data using ZO-1. However, a
lower level of TJ abnormality was found in MS
NAWM using JAM-A (3%) compared to ZO-1 (13%).

JAM-B was strongly expressed on a small number of
large blood vessels in control and MS tissues but at too
low a level for quantitative analysis. By comparison
with the high levels of abnormality observed with the
TJ proteins, the adherens junction protein �-catenin
was normally expressed in all MS and control tissue
categories. These results conWrm, by use of the inde-
pendent marker JAM-A, that TJ abnormalities are
most frequent in active white matter lesions. Altered
expression of JAM-A, in addition to aVecting junc-
tional tightness may also both reXect and aVect leuko-
cyte traYcking, with implications for immune status
within the diseased CNS. Conversely, the adherens
junction component of the TJ, as indicated by �-cate-
nin expression is normally expressed in all MS and con-
trol tissue categories.
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Introduction

Multiple Sclerosis is a primary demyelinating inXamma-
tory disease of the central nervous system [57]. The path-
ogenic events in MS are not fully understood and the
cause is unknown; pathological hallmarks include inXam-
mation, formation of demyelinated plaques and neurode-
generation. Lesions are often centred on blood vessels
and from an early stage these become inXamed and leaky
[23]. Indeed, some of the earliest cerebrovascular abnor-
malities in MS brain include BBB dysregulation, an
increase in inXammatory mediators and transendothelial
migration [1, 40]. Moreover, transient or persistent loss of
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blood–brain barrier (BBB) integrity, as indicated by vas-
cular leak and disruption of tight junctions, has been
clearly demonstrated in active and inactive lesions in
both primary and secondary progressive MS [17, 25, 29,
47]. Finally, both MRI and confocal microscopic studies
point to BBB disturbance in MS normal-appearing white
matter [NAWM; 13, 37, 47, 58]. The events which lead to
the initial disruption of the BBB in MS are not yet fully
elucidated but appear to be intimately linked to this
inXammatory cell inWltration into the CNS [12].

The link between inXammatory inWltration and BBB
damage is not entirely straightforward; however, there
are contradictory reports on the eVects of leukocyte
diapedesis on BBB tight junctions. Although many
reports link inXammation to barrier damage and leak
[7, 62], recent experimental studies conWrm the pres-
ence and likely importance of a long-suspected transcel-
lular route for diapedesis of leukocytes which does not
involve paracellular passage [9, 60]. In a model of EAE
which showed this mechanism, the ultrastructure of
tight junctions remained normal during mononuclear
cell diapedesis [60]. Moreover all observations of this
route, including our own in an experimental viral model
(unpublished observations), suggest that the passage of
an individual leukocyte involves minimal disruption to
endothelial integrity. These Wndings if conWrmed by
more direct assessment of the state of the key tight
junctional proteins may imply that at least, where the
Xux of cells is not too great, the process of inXammatory
cell diapedesis need not necessarily cause either detect-
able junctional disruption or signiWcant leak.

However, not all CNS inXammation is so benign in
eVect. In some models of EAE, BBB disruption and
permeability increase can be induced by T-cells [38] or
monocytes [41] and occurs in the presence of increased
expression of inXammatory cytokines. Similarly in
experimental autoimmune uveoretinitis, transient loss
of tight junction protein in retinal venules was seen to
accompany leukocyte adhesion and migration in an ex
vivo retinal whole-mount study [62]. The widespread
occurrence of both disrupted tight junctions and leak in
MS suggests that the inXammation in our long term MS
autopsy cases diVers from that seen in Wolburg’s
recently described EAE model. Thus the BBB pathol-
ogy extended far beyond the inXamed vessels which
might currently have been involved in diapedesis. Two
factors which may account for the diVerence by creating
an unfavourable chemical milieu are (a) the chronic,
lingering nature of inXammation in MS and (b) the
eVect of parenchymal and perivascular microglial acti-
vation, which in MS is a major component of the inXam-
matory pathology. Additionally, the sheer weight of
current and past pathology in the MS brain may

adversely aVect barrier integrity, as for example where
perivascular astrocytes have been displaced by macro-
phages during acute inXammation [24].

In MS, inXammatory cell inWltration at the BBB,
accompanied by the local and diVuse generation of
pro-inXammatory cytokines, such as TNF-�, IL-1B and
interferon-� appears to play a principal role in demye-
lination and lesion formation [40]. Elevations in these
BBB mediators have also been found in cerebrospinal
Xuid taken from MS patients [55] and MRI studies
show a compromised barrier prior to clinical symptoms
[23, 27].

The BBB itself is composed mainly of tight (TJ)
junctions present between adjacent endothelial cells
that act to prevent paracellular diVusion into the brain
and to maintain the important functional polarity of the
barrier endothelium [50]. There are important struc-
tural distinctions in the arrangement of epithelial and
endothelial tight junctions. In the epithelial junctional
complex, adherens junctions (AJ) and TJs are spatially
separate with the AJs located near the basolateral side,
between adjacent epithelial cells. AJs consist mainly of
cadherin proteins, members of a superfamily involved
in cell–cell adhesion, all of which are single transmem-
brane domain proteins. The calcium-dependent cadh-
erin receptors are linked to the actin cytoskeleton at the
adherens junctions by alpha or �-catenin [8, 63]. �-Cate-
nin, a 92 kDa protein, is important in both cell adhesion
and transcriptional activation through the Wnt signal-
ing pathway [20, 53, 64]. Loss of equilibrium between
�-catenin and E-cadherin has been implicated in the
development of tumours arising from non-intestinal
epithelia [19]. In barrier endothelium, however, the
‘adherens’ junctions are not physically separated from
the tight junctions. Rather its components are intermin-
gled and more closely integrated with the molecules
which comprise the tight junctions [52].

The TJs are found as parallel bands of tight apposi-
tion towards the apical side of the lateral membrane
contacts (clefts) between adjacent endothelial cells. Its
main functions are to restrict the paracellular passage of
molecules through the BBB and to maintain endothe-
lial polarity [25]. This enables the endothelial cells to
maintain diVerential expression of various membrane
transporter molecules which act to tightly regulate the
entry and exit of materials to/from the sensitive CNS
parenchyma. TJ proteins include claudins, occludin, the
zonula occludens (ZO) proteins ZO-1, ZO-2 and ZO-3
and junctional adhesion molecules (JAMs). Compro-
mised BBB tight junctions are recognised as hallmarks
of neuroinXammatory and other CNS diseases. Dys-
functional tight junctions and impaired endothelial
function possibly allow more cells and immunologically
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active molecules access to the privileged CNS, thus
amplifying inXammation and parenchymal damage
states [46].

JAMS are glycoproteins containing two extracellu-
lar immunoglobulin folds. Currently JAM-A, B and C
have been identiWed and shown to be present at cell-to-
cell contacts and speciWcally enriched at tight junctions.
Studies have identiWed that JAM proteins are impor-
tant in many cellular processes, including tight junction
assembly and function, leukocyte transmigration,
platelet activation, angiogenesis [2, 22, 31, 42, 59] and
virus binding [4, 34]. Though closely related, the JAMs
have varying functions and localisation.

JAM-A, also known as platelet adhesion molecule 1
(PAM-1), localises to intercellular junctions of polarised
endothelial and epithelial cells but is also expressed on
leukocytes, neutrophils, monocytes, erythrocytes and
platelets [5, 32, 44, 56]. JAM-B, also known as vascular
endothelial junction-associated molecule (VE-JAM),
has a more restricted distribution. It is prominently
expressed on high endothelial venules but is also present
on the endothelial of other vessels [45]. High endothelial
venules are specialised sites along vessels in the lymph
tissue where lymphocytes migrate from the circulating
blood system to the lymphoid organs and due to this
function are generally leaky, unlike the tight junctions
in the BBB [15]. JAMs expression and their ability to
bind many ligands in either a homophilic or a hetero-
philic manner indicate a role for JAMs in tight junction
stability and possibly leukocyte transmigration and cell
activation [5].

We have previously completed a series of post mor-
tem studies which revealed aspects of tight junction
pathology, as revealed principally by ZO-1 immuno-
cytochemistry, in primary and secondary progressive
MS and in various control CNS tissues [25, 29, 47]. The
highest frequency of disruption was present in active
MS lesions but was also apparent in inactive lesions
and in normal appearing white matter (NAWM). The
main objective of the present study is to determine
whether the independent TJ proteins JAM-A and
JAM-B are also aVected in MS. Furthermore, we have
also examined for the Wrst time expression of �-catenin,
a prominent component of the ‘adherens’ component
of blood–brain barrier junctions, in MS.

Materials and methods

Brain tissue samples and characterisation

Case selection was retrospective on the basis of a con-
Wrmed clinical and neuropathological diagnosis of MS.

Snap-frozen MS and control tissue samples were avail-
able from the National MS Brain Bank at Charing
Cross Hospital, London (registered charity No.
207495). Informed consent for research for all brain
tissues and local ethical approval for the conduct of
this study was obtained. The tissue used in the study
encompasses diVerent MS lesions (active and inactive)
and MS normal appearing white matter (NAWM) and
has been compared with white matter from healthy
controls. In total tissue was available from 11 MS
patients all of whom were diagnosed with either pri-
mary or secondary progressive MS. Tissues from six
control cases contained no CNS neuropathology or
inXammatory plaques. The demographic and clinical
data of this MS and control case set has been previ-
ously published [29].

Cryostat sections (12 �m) from all tissue blocks were
cut onto (APES)-coated slides for tissue characterisa-
tion with haematoxylin and eosin (H&E), oil-red O
(ORO), HLA-Dr and MOG immunocytochemistry as
previously described [29]. MS tissue blocks were char-
acterised as containing active or inactive plaques or as
normal appearing white matter as previously described
[47].

ImmunoXuoresence

Cryostat sections were Wxed in ice-cold acetone for
10 min, allowed to air dry, then incubate overnight at
4°C with polyclonal antibodies to ZO-1 (Zymed, PAD
No. Z-R1; 1:200) and JAM-A (Zymed, PAD No.
ZMD.275; 1:200) and monoclonal antibodies to JAM-
B (R&D systems, clone number 156624; 1:100) and
�-catenin (Novocastra, clone 17C2; 1:100). ImmunoXuor-
esence staining was also carried out with biotinylated
Ulex (Vector, 1:500) to assess the integrity of the cere-
bral endothelium. After appropriate washes in PBS
monoclonals were detected by incubation for 1 h at
37°C in anti-mouse -alexa 488 or -alexa 568 secondary
antibodies (Molecular Probes, 1:500). Polyclonal anti-
bodies were visualised with anti-rabbit -alexa 488
(Molecular Probes, 1:500). Sections stained with B.
Ulex were detected with streptavidin-Alexa 488. Sec-
tions were counterstained with propidium iodide and
mounted in citiXuor. All Xuorescence staining was
assessed under 400£ magniWcation on a Leica SP2 con-
focal microscope equipped with a krypton–argon laser.

Assessment of staining

Confocal microscopic images at 400£ were acquired
from samples of all tissue categories (control white
matter, MS NAWM, active and inactive plaque) until
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approximately 25 discrete blood vessels were available
from each sample. Tight junction (ZO-1, JAM-A) or
adherens junction (�-catenin) status at blood vessels
was scored as 0 = no disruption, 1 = more than 25%
disruption. Tight junction abnormality was judged in
comparison to the continuous, linear expression
observed in most control brain or in many normal MS
vessels. A pilot series of blood vessels was used as a
training set to ensure that consensus agreement in the
scoring of abnormalities was reached between two
independent observers in the majority of blood vessels.
Such a method of consensus learning where inter-
observer reliability was high, allowed the remaining
series of images to be analysed by a single observer.
Any expression of the molecules in the tissue paren-
chyma was also noted. JAM-B expression was much
less abundant and only general observations were
possible. Results from analysis of JAM-A expression
were tabulated, graphed and statistically analysed
using Prism 4 software. The non-parametric ANOVA
Kruskal–Wallis test was used to analyse signiWcance of
diVerences between the group means.

Results

Tissue characterisation

A set of snap-frozen tissue blocks from 11 MS
autopsy cases from the UK multiple sclerosis tissue
bank in London were screened by H&E, ORO, HLA-
Dr and MOG to characterise the pathological state of
individual blocks for use in the study. A typical exam-
ple of a section from a cryostat block that contains an
active plaque is shown in Fig. 1a. Such ORO-positive
areas were present in 13 blocks examined (Fig. 1b). A
further 13 ORO-negative blocks with plaque were
classiWed as inactive (Fig. 1 c). Twenty areas of MS
NAWM were examined from blocks with lesions or in
blocks containing lesions, from areas greater than
1 cm from the lesion edge. Thirteen areas of control
white matter were also characterised from six normal
cases.

Inactive plaques were invariably negative for
MOG except for occasional areas of intact myelin
sheaths or MOG-positive oligodendrocytes at the
plaque edge. More pronounced areas of MOG-posi-
tive myelin sheaths were present throughout the
actively demyelinating lesions (Fig. 1d). High densi-
ties of HLA-Dr-positive cells were present in all
active lesions examined (Fig. 1e), and at the edge of
some of the inactive lesions. In control white matter
and MS NAWM HLA-Dr activity was variable

ranging from few (Fig. 1f) to abundant positive cells
per microscopic Weld. All blood vessels in MS and
control tissue categories showed uniform endothelial
integrity as indicated by normal immunostaining for
Ulex (Fig. 1g, h).

Expression of junctional adhesion molecules

As in our previous studies the tight junction associated
protein ZO-1 showed high levels of abnormalities in
active lesions. The present study revealed that a similar
level of abnormality also aVects the independent tight
junction protein JAM-A. Direct comparison on serial
sections of ZO-1 and JAM-A revealed that ZO-1 pro-
duces a clearly deWned, intense, sharp staining of nor-
mal vessels (Fig. 1i). JAM-A staining while continuous
is less intense and more diVuse in individual vessels
(Fig. 1j, k). Despite the less intense immunoXuore-
sence signals obtained using a polyclonal antibody to
JAM-A it was still possible to assess normal from
abnormal expression in individual blood vessels.

JAM-A expression was studied in 328 blood vessels
from 13 areas of normal control white matter, 427 ves-
sels from 20 areas of MS NAWM, 330 vessels from 13
inactive lesions and 358 vessels from 13 active lesions.
Our staining protocols and method of data collection
did not allow us to fully classify the vessels into arter-
ies, capillaries and veins. As in our previous publica-
tion on TJ abnormalities in MS [25], however, we
found that the abnormalities of JAM-A expression
aVected all calibers of vessels ranging from capillaries
·10 �m to large vessels >50 �m to a more or less equal
extent. JAM-A abnormalities were recognised as inter-
ruption or loss of staining or reduced clarity of expres-
sion with distinctive intra-parenchymal staining
adjacent to blood vessels (Fig. 1l, m, n). In some such
areas there was an unusually high density of stained
vessels (Fig. 1m).

Statistical analysis of the incidence of TJ abnormali-
ties in the four tissue categories as indicated by expres-
sion of JAM-A was highly signiWcant using the
Kruskal–Wallis test, indicating that there were diVer-
ences in the group medians (Fig. 2). The incidence of
abnormality in the active plaques (46%) was signiW-
cantly higher than in either normal controls (4%;
P < 0.01) or in MS NAWM (3%; P < 0.001). The diVer-
ence in TJ incidence of abnormality between inactive
lesions (21%) and either control white matter or MS
NAWM while pronounced did not achieve statistical
signiWcance. Abnormalities in JAM-A expression were
observed across a full range of vessel sizes from small
capillaries of <10 �m diameter to large vessels of
>50 �m diameter. Within the tissue categories
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variation in the incidence of JAM-A abnormalities is
similar, irrespective of vessel size.

Analysis of JAM-B expression was also carried out
on the same series of tissue blocks. Expression was at a
level too low to perform quantitative analysis. In con-
trol white matter and MS NAWM JAM-B was only
expressed on a small number of large blood vessels

(Fig. 3a). In three of the active plaques and two of the
inactive plaques examined a slight increase in the num-
ber of blood vessels with JAM-B expression was
observed (Fig. 3b). Furthermore in a small number of
high power Welds, in two active lesions and at the active
edge of two of the inactive lesions, a high level of
JAM-B expression was present on cells in the tissue
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parenchyma. These cells had the morphological
appearance of inXammatory lymphocytes (Fig. 3c).

Expression of adherens proteins

The expression of the adherence junction molecule
�-catenin was also studied in the same set of MS and
control tissue blocks. Unlike the tight junction pro-
teins, ZO1 and JAM-A, where frequent abnormalities
were observed, comparatively uniform expression of
�-catenin was present in cerebral vessels of all sizes
from all tissue categories examined (Fig. 3d–f).
Increased �-catenin was occasionally observed on cells

with the morphological characteristics of astrocytes in
the parenchyma surrounding cerebral vessels. This was
most apparent in areas of active plaque (Fig. 3f).

Discussion

In the present study, we have conWrmed, using an inde-
pendent primary tight junctional molecule JAM-A,
that the blood–brain barrier is persistently impaired in
MS. In keeping with our previous studies [25, 29], TJ
abnormalities were most common in active lesions but
also occur to a lesser extent in inactive lesions. The
observed expression of JAM-A in the tight junctions of
human cerebral endothelium, in a localisation pattern
identical with that of ZO-1, is comparative to the co-
localisation of both these proteins in rabbit corneal
endothelium [35]. The immunoXuorescent signals of
JAM-A expression were not as clearly deWned as those
of ZO-1. For this reason we adopted a cautious
approach to assessment by only describing abnormal
expression if over 25% of the blood vessel proWle was
disrupted.

Knowledge of the role of JAM-A in cell adhesion
and TJ formation arises from evidence of JAMs homo-
philic interactions. During TJ formation in epithelial
cell monolayers, antibodies against JAM-A signiW-
cantly delay the recovery of transepithelial electrical
resistance [30, 32]. In Chinese hamster ovary cells
expression of JAM-A at the apical face of the tight
junction complex causes reduced paracellular perme-
ability [36]. Jam-A appears to function diVerently from
both occludin and the claudins. When ectopically
expressed in Wbroblasts, claudins induce TJ strand for-
mation and occludin is incorporated into these strands
[14]. However, in the same system JAM-A, ectopically
expressed does not induce the formation of TJ strands
[21]. JAM-A has been shown to bind to the �2-integrin
leukocyte function associated antigen-1 (LFA-1), sup-
porting a role in T-cell and neutrophil transendothelial
migration [43]. In the context of MS it is important to
note that LFA-1 on leukocyte subsets also binds to
endothelial intercellular adhesion molecules (ICAMs)
for adhesion [18]. Elevated levels of ICAM-1 are a fea-
ture of the microvasculature adjacent to demyelinating
lesions in MS [6, 10] and pro-inXammatory cytokines,
present in MS lesions [61], such as TNF-� and INF-�
are involved in upregulation of ICAM-1 and VCAM-1.

It is likely that cellular inWltration and cytokine
expression, especially TNF-� and INF-�, contribute to
JAM-A abnormalities in MS. Furthermore, it has been
suggested that prior relocalisation is needed for inter-
action of JAM-A with LFA-1 [11, 43]. In the present

Fig. 1 Histological, immunoperoxidase and immunoXuoresence
labelling of snap-frozen MS autopsy tissues in multiple sclerosis:
immunoXuoresence sections were counterstained with DAPI
(Xuorescence microscopy) or with propidium iodide (confocal
microscopy). a Whole cryostat section containing ORO-positive
active MS lesion. b Centre of active lesion; ORO is strongly posi-
tive. c Inactive lesion centre; ORO negative. d Active lesion edge;
MOG immunoreactivity on myelin sheaths while depleted is still
present in the lesion. Insert shows the entire section containing
the active lesion. e Active white matter lesion; abundant HLA-Dr
immunoreactivity. f Inactive white matter lesion; relatively little
HLA-Dr immunoreactivity. g Edge of inactive white matter le-
sion; ulex demonstrates endothelial integrity. h Active white mat-
ter lesion in PPMS; ulex. i–n Projected images from confocal data
sets. Single Xuorescent labelling with alexa-488 (green). i NAWM
in MS; multiple, continuous, linear ZO-1 reactivity marks normal
tight junctions of blood–brain barrier. j–k NAWM in MS; contin-
uous but more diVuse expression of JAM-A along the vessel
walls. l–n Active white matter lesions in MS: vessels with pro-
nounced abnormalities of JAM-A expression (arrows) are pres-
ent in all Welds. Note also the high density of stained vessels in m.
Scale bars 2 mm in a; 50 �m in b and c; 1 mm in d; 25 �m in e–h;
17 �m in i–l 

Fig. 2 Comparison amongst MS tissue categories of the inci-
dence of vessels showing abnormal junctional adhesion molecule-
A expression. Data is the mean percentage of assessed vessels
rated ‘abnormal’. Columns show mean + SEM. SigniWcant diVer-
ence of abnormality in active lesions from controls and NAWM
(*P < 0.001) are indicated. bv blood vessels
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study the highest level of JAM-A disruption was present
in active lesions with pronounced expression present in
the tissue parenchyma. The absence of parenchymal
expression in samples from inactive lesions is probably
due to the relative absence in these burnt out lesions of
inWltrating leukocytes or macrophages, cell types
known to express JAM-A. However, the consistently
reduced TJ protein expression (both ZO-1 and JAM-A)
in inactive lesions suggests a persistent low amplitude
leakage BBB defect and probable leak that could
hinder both vascular and neural repair mechanisms
within lesions.

An additional factor complicating interpretation is
the increased density of blood vessels seen in some
active lesions where JAM-A expression was high but
disorganised. InXammatory mediators, present in active
phases of MS include the pro-angiogenic vascular
endothelial growth factor [VEGF; 49]. A higher

density of vascular proWles in inactive lesions than in
NAWM has previously been observed in MS [28].
Although tissue shrinkage and atrophy may contribute
to this, VEGF-induced angiogenesis, occurring in
active may also be involved [26, 28]. Despite these
speculations there is no published pathological evi-
dence regarding either the extent of new vessel forma-
tion in MS, or its possible contribution to junctional
abnormality and vascular leak. It should be noted how-
ever that such vessels in brain diseases typically fail to
establish an eVective barrier phenotype [16].

The lack of expression of JAM-B in barrier blood
vessels in control and non-lesional MS tissue is sup-
ported by a study of tight junction expression in frozen
tissue samples from grey matter, cortex and white mat-
ter derived from fetuses and premature infants [3]. The
primary endothelial TJ molecules, including claudin-5,
occludin and JAM-A were expressed as early as

Fig. 3 ImmunoXuoresence labelling of snap-frozen control and
MS autopsy tissues in multiple sclerosis: immunoXuoresence sec-
tions were counterstained with propidium iodide. a Control white
matter; discontinuous JAM-B expression on large blood vessel. b
Active MS lesion; JAM-B expression is observed on three blood
vessels in this Weld. c Edge of inactive lesion; expression of JAM-B

on cells in the tissue parenchyma. d–f �-Catenin is uniformly ex-
pressed along blood vessels in d control white matter. e Inactive
lesion and f active lesion. In both lesion types a low level of
expression of �-catenin is also present in the tissue parenchyma.
Scale bars 17 �m in a–f 
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16 weeks gestation but JAM-B and JAM-C were not
expressed at any gestation time point. Also, in a study
of rodent brain sections JAM-B was not expressed on
the brain–blood vessels [2].

In three active MS lesions JAM-B was expressed
on a greater number of blood vessels suggesting up-
regulation at the most immunologically active sites.
However, expression of JAM-B was also occasion-
ally found on inXammatory cells in the parenchyma
at the edge of two of inactive lesions. It has been
reported that endothelial cells in chronic inXamma-
tory diseases, such as rheumatoid arthritis, can be
activated to phenotypically resemble high endothe-
lial venules [15]. Such blood vessels are more likely
to be involved in leukocyte recruitment into the inX-
amed tissue [39, 51]. JAM-B mRNA expression has
also shown to be associated with sites of inXamma-
tion in lung and kidney tissues. Furthermore, within
primary neoplasms JAM-B expression was only
observed in vessels within or adjacent to the tumour;
normal tissue did not show expression [31]. At these
sites it is thought to act as ligand for T, NK and den-
dritic cells through JAM-C and may therefore be
involved in the process of T lymphocyte, NK cell and
dendritic cell traYcking and recruitment to sites of
inXammation. It is of interest that in MS tissue sam-
ples that we and others have previously shown that
small numbers of dendritic cells are present within
perivascular cuVs in active lesions [48, 54]. An
increased expression of JAM-B, if only at the surface
of a few blood vessels in active lesions, may contrib-
ute to this migration of the most potent antigen-
presenting cells.

�-Catenin can play diVerent roles in the cell, both as
a structural protein at cell–cell adherens junctions, as
an anchor for the actin cytoskeleton and as a transcrip-
tional signalling molecule [19, 64]. Its role in the devel-
opment of tumours has been extensively studied but
we are unaware of any other studies of its expression in
MS tissue samples. In contrast to the variable level of
expression of the TJ speciWc proteins ZO-1 and JAM-
A, �-catenin was uniformly expressed on all sizes of
blood vessels in all MS and control tissue categories. In
both active and inactive lesions a low level of �-catenin
expression was also apparent on cells with the appear-
ance of astrocytes in the tissue parenchyma. Such
parenchymal expression is possibly due to the tran-
scriptional activity of �-catenin in the cells present in
the parenchyma. It is of interest to note that Chla-
mydia pneumoniae, an organism that has been associ-
ated with multiple sclerosis, has the eVect of increasing
�-catenin expression on cultured human brain micro-
vascular endothelial cells [33].

The present study supports our earlier suggestion
that TJ pathology is an important factor both in new
lesion formation and in contributing to the persistent
low amplitude leakage associated with long-term inac-
tive lesions [25, 29, 47]. The resultant increased vascu-
lar permeability both in lesion and non-lesional white
matter is likely to impair homeostasis behind the
blood–brain barrier that aVects disease progression
and repair. Furthermore, we have shown using anti-
body to �-catenin, that there is no detectable disrup-
tion of the closely associated ‘adherens’ component of
the interendothelial junctional complex in any of the
MS tissue categories studied.

The results of this and previous studies are consis-
tent with the occurrence in MS brain vessels of path-
ologically-induced deviations from the normal
barrier status in respect of key TJ molecular compo-
nents. The present work which demonstrates focal
abnormalities in JAM-A expression suggests the
additional possibility that mechanisms and patterns
of leukocyte traYcking including dendritic cell entry
into the brain may also be focally aVected in estab-
lished MS. This may have eVects on the nature and
pattern of subsequent leukocyte traYcking and
immunological upregulation.
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