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Abstract Recent advances in the molecular pathology
and genetics of multiple system atrophy (MSA) indicate
that the disease involves plural pathogenic mechanisms.
The determination of the morphological spectrum of
MSA using quantitative pathological analysis points to
the need for further investigation to determine the pop-
ulation-bound phenotype distribution of MSA. These
notions support the hypothesis that a spectrum of
genetic susceptibility factors underlies MSA pathogene-
sis. A possibly eVective strategy for determining this
genetic susceptibility spectrum is to perform an associa-
tion study of important genes for neurodegenerative
diseases, which are prevalent in a population, using
linkage disequilibrium mapping in MSA patients with
well-characterized morphological phenotypes.

Introduction

Multiple system atrophy (MSA) is an adult-onset neu-
rodegenerative disease that clinically presents with var-
ious combinations of parkinsonism, cerebellar ataxia
and autonomic failure [26, 70]. MSA is characterized
pathologically by glial (oligodendroglial) cytoplasmic
inclusions (GCIs) [52, 65], which are immunopositive
for �-synuclein [45, 76, 90] and other minor proteins.
Biochemical evidence suggests that oxidative and nitra-
tive alterations of �-synuclein protein [2, 16, 24, 59, 60,
68] contribute to MSA pathogenesis. Epidemiologic
evidence suggests that certain environmental toxins are

associated with the increased risk of MSA [12, 29, 53,
87, 88]. Genetic background is also an important factor
for MSA pathogenesis, because most neurodegenera-
tive diseases have familial forms that have facilitated
linkage studies leading to the discovery of pathogenic
genes. However, family-based linkage studies of the
genes responsible for MSA are impossible because this
disease is usually sporadic and there are very few fami-
lies reported to have MSA [75, 97]. Therefore, progress
in the determination of genetic susceptibility factors is
more likely to come from association studies of candi-
date genes in large MSA cohorts. These studies should
be conducted taking into account the observation that
there is a spectrum of pathological involvement of the
striatonigral (SN) and olivopontocerebellar (OPC)
regions in MSA [63]. In this review, we discuss recent
advances in the molecular pathology and genetics of
MSA, and propose a possibly eVective strategy for
determining the spectrum of genetic susceptibility fac-
tors to clarify MSA pathogenesis.

Molecular pathology of multiple system atrophy

The development of extensive GCIs in the central ner-
vous system is a characteristic pathological feature of
MSA (Fig. 1). GCIs contain a Wlamentous structure that
can be recognized by an antibody against �-synuclein [45,
76, 90]. This discovery has lead to biochemical evidence
showing that the major component of GCIs is abnor-
mally misfolded, relatively insoluble �-synuclein [10, 46,
85], which is heavily coated with an amorphous material
[21]. Oxidative and nitrative alterations play a major role
in the modiWcation of �-synuclein [2, 16, 24, 59, 60, 68],
and this possibly causes the dysregulation of cellular
processes. Moreover, �-synuclein interestingly has a
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synergistic action with �-protein, which is another impor-
tant molecule for neurodegerative diseases (reviewed in
[22, 93]). However, �-synuclein is a neuronal protein that
is transiently expressed only in developing but not
mature oligodendrocytes [14, 71]. Moreover, there is no
increase in the level of �-synuclein mRNA in MSA
brains [62] or GCI-bearing oligodendrocytes [47]. There-
fore, the origin of �-synuclein in GCIs and the mecha-
nism by which GCIs are formed remain to be elucidated.

The brain speciWc protein tubulin polymerization
promoting protein (TPPP/p25) is a strong marker of
GCIs [41, 43]. The aggregation of �-synuclein is also
associated with rab3, which is a member of the Ras
super family of small GTP-binding proteins [15]. The
protein 14-3-3 also accumulates in GCIs [25, 38, 40].
14-3-3 is a chaperon protein that regulates various
types of signal transduction pathway through a phos-
phorylation-dependent protein–protein interaction
[18]. Interestingly, 14-3-3 and �-synuclein are also
involved in the development of cytoplasmic inclusions,
which are generated by the overexpression of trinu-
cleotide CAG repeat stretches of the huntingtin gene
[89]. Heat shock protein 90 has been reported to play a
major role in the formation of �-synuclein aggregates
in GCIs [86]. Of note, the Parkinson’s disease (PD)-
associated protein DJ-1 is also involved in the forma-
tion of GCIs [54]. Finally, a variety of other molecules
that abundantly exist in the central nervous system are
involved in the formation of GCIs (reviewed in [94]).

MSA also induces the formation of inclusion bodies in
the neurons of the inferior olivary nucleus, pontine
nucleus, putamen and occasionally in the cerebral cortex
[3, 5, 56, 63, 66, 100]; however, the role of these inclusion
bodies in the induction of neuronal degeneration is not
yet fully understood. Neuronal cytoplasmic inclusions

(NCIs) in the pontine nucleus and putamen appear as
round or ovoid homogenous or skeinlike structures, occu-
pying a large area of the neuronal cytoplasm, whereas
those in the inferior olivary nucleus are irregular in shape
[4, 56, 72]. The major component of NCIs is also modiWed
�-synuclein [55]; however, some NCIs are reported to
have immunoreactivity for p25�, but none for �-synuclein
[6]. Neuronal intranuclear inclusions (NNIs) are com-
posed of densely packed, granuloWlamentous structures
[56]. The presence of both NCIs and NNIs in some neu-
rons has occasionally been observed. A quantitative
investigation of NCIs and NNIs in 14 MSA cases showed
that NCI formation is accelerated by the progression of
the disease process, and that NNI formation occurs ear-
lier than NCI formation [56]. Further investigation is
needed to elucidate whether NCI and NNI formations
are the primary events that govern MSA pathogenesis.

Accumulating genetic evidence of multiple system 
atrophy

From the molecular pathology of GCI formation, the
�-synuclein gene has become the most probable gene
responsible for MSA pathogenesis. However, a genetic
analysis of pathologically conWrmed MSA cases failed to
Wnd any pathogenic mutations in the �-synuclein gene
[50, 64]. Moreover, a case-control association study
using a haplotype tagging approach showed that multi-
ple regions in the �-synuclein gene are not associated
with MSA pathogenesis [61], whereas they are associ-
ated with a sporadic cause of PD [51]. Likewise, other
genes such as those of apolipoprotein E [9, 49, 50], � [49,
50], dopamine �-hydroxylase [11, 31], ubiquitin C-termi-
nal hydrolase-1 [32], fragile £ mental retardation 1 [8,
23, 37, 98], and leucine-rich kinase 2 [33] showed no
association with MSA pathogenesis. Several genes asso-
ciated with the inXammatory process were studied with
regard to MSA pathogenesis. Several studies indicate
that polymorphisms of interleukin-1A [13], interleukin-
1B [57], interleukin-8 [34], and intercellular adhesion
molecule-1 genes [34] are associated with an increased
risk of MSA. Another study demonstrated the associa-
tion between a polymorphism of the �-1-antichymotryp-
sin gene and the risk of MSA [19]. Moreover, the
promoter region polymorphism in the tumor necrosis
factor gene has also been reported to be associated with
the risk of MSA [58]. Further studies with much larger
cohorts are needed to conWrm these Wndings.

Several MSA patients have relatives with PD [95].
MSA and PD have similarities at the molecular level, i.e.,
the accumulation of �-synuclein protein aggregates,
namely, GCIs in MSA [90] and Lewy bodies in PD [77],
indicates that similar pathogenic mechanisms are involved

Fig. 1 Examples of GCIs in the cerebellar white matter. GCIs
are immunopositive for �-synuclein. Bar = 20 �m
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in these two disorders. However, a case control study
demonstrated that a family history of PD is not a risk fac-
tor for MSA [88]. Therefore, the association between
MSA pathogenesis and the genetic susceptibility factors of
PD remains to be elucidated. Interestingly, patients with
sporadic PD are associated with certain haplotypes or
genotypes of the � gene [17, 30, 44, 67], which plays a cru-
cial role in the pathogenesis of other neurodegenerative
parkinsonian syndromes, such as progressive supranu-
clear palsy and corticobasal degeneration. Endeavors to
Wnd MSA patients who have relatives with PD or other
neurodegenerative parkinsonian syndromes are needed to
clarify the genetic background of MSA.

Plural pathogenic mechanisms of multiple system 
atrophy

Growing evidence suggests that oligodendrocytic synuc-
leinopathy underlies MSA pathogenesis. Morphological
analyses of pathologically conWrmed MSA cases
showed signiWcant correlations between the frequency
of GCIs and the severity of neuronal degeneration [35,
63]. An apoptotic cell death mechanism exists in oligo-
dendrocytes but not in the neurons of MSA patients
[69]. The mouse model of MSA showed that the over-
expression of �-synuclein in oligodendrocytes results in
neuronal degeneration in the central nervous system
[73, 78, 99]. These Wndings indicate that the GCI forma-
tion contributes markedly to neuronal degeneration,
and plays a central role in MSA pathogenesis. How-
ever, the question is whether GCIs always induce neu-
ronal degeneration in every vulnerable region in
patients with MSA. A recent neuropathological study
using a novel pathological index called the ‘neuronal
cell loss predominance score’ demonstrated that neuro-
nal degeneration is always severe, whereas the appear-
ance of GCIs is mild in the substantia nigra [63]. These
Wndings indicate that neurodegeneration in the substan-
tia nigra is not simply inXuenced by the accumulation of
oligodendroglial �-synuclein aggregates. Furthermore,
the study also demonstrated that the density of GCIs in
the SN region is signiWcantly lower than that in the OPC
region [63]. From these observations, it is tempting to
hypothesize that GCI formation is the cause of primary
lesions in the OPC region, but not in the SN region, and
also that factors other than GCIs contribute to the neu-
rodegenerative process in the SN region.

The formation of NCIs is another cytopathological fea-
ture of MSA in which Wlamentous �-synuclein aggregates;
however, the frequency of NCIs is not associated with a
particular MSA morphological phenotype [63], and
whether NCI formation primarily causes neuronal degen-
eration remains to be clariWed. Moreover, the Purkinje

cell layer in the cerebellum, which is severely aVected in
MSA, has no NCIs in its remaining Purkinje cells [48, 63].
The absence of NCIs suggests that the Purkinje cells are
not involved in the pathogenic mechanism associated with
�-synuclein aggregation, but they are highly vulnerable to
oligodendroglial dysfunction owing to GCI formation.
Neurons in the substantia nigra have incidental Lewy
bodies [84], which appear in only 10% of MSA cases [63];
however, there are no MSA-speciWc NCIs in the remain-
ing neurons in the substantia nigra. The absence of NCIs
in the substantia nigra is presumably associated with
rapid neuronal degeneration in this area [63]. This
notion points to the need for further investigation to
elucidate whether the neurons in the substantia nigra
of MSA patients have an innate cell death mechanism.

Possibility of population-bound phenotype distribution

In a series of 100 MSA cases, 34% were striatonigral
degeneration (SND)-predominant, 17% were olivopon-
tocerebellar atrophy (OPCA)-predominant, and 49%
had equivalent SND and OPCA pathologies [63]. This
study also indicates that MSA with predominant par-
kinsonism (MSA-P) and MSA with predominant cere-
bellar ataxia (MSA-C) are clinical and pathological
phenotypes that may represent diVerent ends of a spec-
trum. Because selection bias is a crucial factor when the
percentages of MSA-P and MSA-C cases are compared
between populations, a future comparative morphologi-
cal study using a similar approach for determining the
percentages of MSA-P and MSA-C cases is needed.
However, clinical evidence from retrospective case note
reviews raises the possibility that MSA-P is relatively
more frequent than MSA-C among Caucasians [92]. On
the other hand, MSA-C may exist more frequently in
the Japanese population [79, 91]. Likewise, it is sug-
gested that in the Chinese population, MSA-C is rela-
tively more frequent than MSA-P [36]. These Wndings
support the hypothesis that there is a population-bound
phenotype distribution of MSA (Fig. 2). It is reasonable

Fig. 2 Schematic description of population-bound phenotype
distribution of MSA. Clinical evidence from retrospective case
note reviews suggests that MSA-P is relatively more frequent
than MSA-C among Caucasians. On the other hand, MSA-C may
develop more frequently among Japanese population

European
population

Japanese 
population

MSA-P MSA-C MSA-CMSA-P
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to speculate that the subsets of biological factors, which
are responsible for the vulnerability of neurons in the
SN or OPC region, determine this diVerence in the
emphasis of pathological phenotypes between popula-
tions. A combination of genetic factors is likely to
underlie such vulnerability of neurons that diVers
between the SN and OPC regions in MSA.

Hypothesis on spectrum of genetic susceptibility 
factors in multiple system atrophy

A genetic approach should be carried out taking into
account the notion that there is a spectrum of patho-
logical involvement of the SN and OPC regions, and a
possible population-bound phenotype distribution of
MSA. Moderate genetic eVects caused by a subset of
certain genotypes, which are prevalent in a population,
may inXuence the population-bound phenotype distri-
bution of MSA. MSA is genetically distinct from inher-
ited causes of spinocerebellar degeneration [7].
However, some cases of dominantly inherited spinoc-
erebellar ataxia (SCA) have been reported to exhibit
parkinsonism [20, 28, 74, 96], autonomic failure [81],
and phenocopies of MSA [27, 39, 42]. For SCA cases,
the relative prevalence of genotypes diVers between
Caucasians and Japanese; SCA1 and SCA2 are preva-
lent in Caucasians, whereas SCA3, SCA6, and dentato-
rubural pallidoluysian atrophy are prevalent in
Japanese [80]. Interestingly, the frequency of normal
alleles with a relatively large number of CAG repeats
is also associated with the prevalence of these SCA
genotypes [80]. For inherited causes of PD, genetic
studies of diVerent ethnicities show that mutations of
the leucine-rich kinase 2 and DJ-1 are rare in the Asian
population [82, 83]. These endeavors to determine the
relative prevalence of genotypes that diVers between
populations may help elucidate the genetic susceptibil-
ity factors in MSA pathogenesis. Unlike eVective strat-
egies using Mendelian genetics, those for detecting
moderate genetic eVects in populations have been
problematic, and a combination of techniques is rec-
ommended [1]. For MSA, it is likely that the linkage

disequilibrium mapping of some important genes for
neurodegenerative diseases, which are prevalent in a
population, can be used for large MSA cohorts in
which the morphological spectrum is well character-
ized [61]. This strategy is formulated on the basis of the
hypothesis that there are diVerent subsets of genetic
susceptibility factors that are responsible for diVerent
ends of a spectrum such as MSA-P and MSA-C
(Fig. 3). Hence, genetics based on pathology could be
an eVective approach to determining the spectrum of
genetic susceptibility factors in MSA pathogenesis.
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