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Abstract Single and double-labeling immunocyto-
chemistry has been used to learn about the localiza-
tion, distribution, and possible relationship between
beta-amyloid protein (A�) deposition and tau hyper-
phosphorylation in the canine cerebral cortex with age.
Behavioral impairment, as reported by the owners and
tested in all dogs, correlated with increased A� burden
in old dogs. A� plaques were diVuse and they were not
accompanied by modiWcations in synaptic protein
expression. Plaques were not associated with increased
active mitogen activated protein kinase (MAPK/ERK-
P) and p38 kinase (p38-P) expression, and tau hyper-
phosphorylation in neighboring cell processes. Yet tau
hyperphosphorylation, as revealed with phospho-spe-
ciWc antibodies to tauThr181 and tauSer396, increased
with age in individual neurons. Moreover, the subcellu-
lar pattern shifted from perinuclear localization to
granular cytoplasmic and nuclear distribution with age.

Our results in dog suggest that A� diVuse plaque for-
mation and tau hyperphosphorylation are independent
events, both occurring during the process of aging.
Although increased cognitive dysfunction is associated
with increased tau hyperphosphorylation, further
investigation is needed to understand whether tau
hyperphosphorylation is causative of cognitive impair-
ment or an independent process related to aging.
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Introduction

The principal hallmarks of Alzheimer’s disease (AD)
are the formation and deposition of beta-amyloid pro-
tein (A�) in the form of senile plaques (diVuse and
neuritic plaques) and cerebral amyloid angiopathy, and
the hyperphosphorylation and Wbrillization of tau,
which comprises neuroWbrillary tangles (NFTs), neuro-
pil threads, and dystrophic neurites of neuritic plaques
[15, 65]. Combined clinical and neuropathological stud-
ies in AD have shown a strong relationship between
cognitive impairment and load of neuropathological
hallmarks [12]. In the same line, behavioral deWcits cor-
relate with age-related changes described in the brain
of old dogs [3, 8, 10, 11, 14, 48]. Aged dogs spontane-
ously developed A� diVuse plaques that are neuropa-
thologically and sequentially identical to those
observed in humans [30]. The deposition of the A�
protein is widely distributed in cortex and hippocam-
pus, but the brain stem and cerebellum are usually
spared [29]. Yet amyloid plaques in dogs are only
diVuse plaques that do not fulWll the �-pleated-sheet
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conformation and are Congo red and thioXavine nega-
tive, with no apparent neuritic component [8, 14, 48,
57]. In humans, diVuse plaques are also encountered in
Down’s syndrome [22, 27], in normal aging [31, 38],
and in response to trauma [42, 47, 53], in addition to
AD.

Despite the similarity of A� deposition and cogni-
tive decline, development of NFTs is markedly diVer-
ent between canine and human brain. In human tissue,
NFTs are mainly composed of hyperphosphorylated
tau that aggregates as paired helical Wlaments (PHFs).
In addition to NFTs, hyperphosphorylated tau is found
in neuropil threads and in dystrophic neurites sur-
rounding senile plaques [1, 32]. Increased expression of
several kinases including p38 kinase (p38), cyclin-
dependent kinase-5 (CDK-5), glycogen synthase
kinase-3� (GSK-3�), mitogen-activated protein kinase,
and extracellular signal-regulated kinase (MAPK/
ERK1-2) has been implicated in tau hyperphosphory-
lation with diVerent eYciencies for particular sites, and
formation of PHFs [18, 19, 25, 45, 46]. Thus, phosphor-
ylation of tau at Thr181 and at Ser396 can be conveyed
by MAPK/ERK, stress-activated protein kinases c-Jun
N-terminal kinase (SAPK/JNK), p38 or GSK-3�,
whereas at Tau Ser202 phosphorylation may be due to
MAPK/ERK, SAPK/JNK, p38 or GSK-3�/� [2]. Neu-
roWbrillary changes have been described, in the
absence of A� deposition, in nonmammalian models
[61], and in aged nonhuman primates [59], ruminants
[5], polar bears and cats [9, 24, 52].

Phosphorylation at the tau-1 site—amino acid resi-
dues 189 and 207 of the human tau sequence [21]—
takes place in several neuronal populations and oligo-
dendrocytes in dogs [64]. However, no transition from

normal speciWc tau phosphorylation to excessive phos-
phorylation leading to cell degeneration and NFT for-
mation has been detected in dogs [10, 44].

The present study examines the relationship among
A� deposition, tau phosphorylation, and synaptic pro-
tein expression in the vicinity of cerebral A� plaques in
aged dogs with clinically veriWed progressive cognitive
deWcits. This study is geared to increasing our under-
standing of the neuropathological bases of cognitive
deWcits in old dogs.

Materials and methods

Dog samples

The study was performed on the brains of ten dogs,
seven males and three females, of various breeds and
from 1 to 20 years of age, all certiWed by their medical
records from the veterinary hospital Ars Veterinaria of
Barcelona, Spain (Table 1). In addition to the clinical
history, the cognitive status of every dog was evaluated
using a cognitive test with the aid of the pet’s owner
[49]. The Wnal total score reXected the cognitive status
of the animal. In all cases, brain donation was formally
approved by the owner and euthanasia justiWed for
medical reasons; the animals were euthanized with an
intravenous overdose of sodium thiopental (75 mg/kg)
(Thiobarbital, Braun Medical S.A., Spain). All animals
were treated according to European legislation on ani-
mal handling and experiments (86/609/EU) and proce-
dures were approved by the Ethical Committee of the
University of Barcelona, Barcelona, Spain. All eVorts
were made to minimize animal suVering and to use no

Table 1 Characteristics of dogs used in this study, cognitive evaluations and neuropathological Wndings

Stage of A� deposition was evaluated based upon [48, 57]

F female, M male, YC young control, LCD light cognitive deWcits, SCD severe cognitive deWcits. + ¡ +++++ indicates from moderate
to strong total neuronal staining intensity

Dog no. Age 
(years)

Sex Weight 
(kg)

Breed Cognitive
evaluation

Main pathology Stage of
A� deposition

Tau 
Thr181

Tau 
Ser396

Tau Ser202, 
SNAP-25, 
Synaptophysin, 
MAPK/ERK-P,
p38-P

1 1 F 15 Mixed YC (9) Hip trauma – + + –
2 3 M 13.5 Beagle YC (10) Urinary incontinence – + + –
3 6 M 6.3 Mixed YC (10) Arthritis – ++ ++ –
4 8 M 32 Giant Schnauzer LCD (13) Chronic renal disease I ++ ++ –
5 10 M 33 German Shepherd LCD (21) Spleen neoplasm II ++ ++ –
6 14 M 5.5 Poodle SCD (30) Cognitive deWcits II ++++ ++++ –
7 15 F 6 Pekingese SCD (27) Cognitive deWcits II +++ +++ –
8 16 M 12 Fox Terrier SCD (27) Cognitive deWcits III ++++ ++++ –
9 16 F 12 Mixed SCD (29) Cognitive deWcits IV ++++ ++++ –
10 20 M 7.1 Mixed SCD (40) Cognitive deWcits IV +++++ +++++ –
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more than the number of animals needed for reliable
scientiWc data.

Tissue preparation

The tissue preparation was adapted from human brain
bank methods [34]. Immediately after death, the brains
were rapidly removed from the skull and 1-cm-thick
coronal sections of cerebral cortex were immersion-
Wxed in 10% neutral buVered formalin for 2 weeks.
After a 3-day cryoprotection, they were frozen on pow-
dered dry ice and stored at ¡40°C until use.

Immunohistochemistry

Serial consecutive 40-�m-thick sections of the dorsal
anterior prefrontal cortex corresponding to area 8a on
the proreal gyrus [28] were obtained with a cryostat
and processed free-Xoating with the streptavidin–bio-
tin (LSAB) method (Dako LSAB + kit, Dako, Barce-
lona, Spain) following the instructions of the supplier.
BrieXy, after blocking endogenous peroxidases, the
sections were incubated with normal serum for 2 h and
then incubated overnight at 4°C with one of the pri-
mary antibodies. The monoclonal antibody to synaptic-
associated 25,000 molecular weight protein (SNAP-25;
raised against recombinant SNAP-25) and the mono-
clonal antibody against synaptophysin (Dako) were
used at dilutions of 1:500. The phospho-speciWc tau
Thr181, tau Ser202, and tau Ser396 polyclonal rabbit
antibodies (Calbiochem, Madrid, Spain) were used at
dilutions of 1:500, 1:500, and 1:100, respectively. The
phospho-speciWcity of these antibodies was previously
tested in human brain samples with AD by pre-incuba-
tion of the antibodies with alkaline phosphatase
(Sigma, Madrid, Spain). Immunostaining of neuroW-
brillary tangles largely faded following this treatment.
Similar results were obtained in the aged canine brain,
after pre-incubation of the antibody with phosphatase.
The immunoreaction was abolished thus indicating
speciWcity of the antibody for phosphorylated species.
The anti-MAP kinase phospho-speciWc (Tyr204) rabbit
polyclonal antibody (MAPK/ERK-P) was used at a
dilution of 1:200. The phosphorylation-dependent rab-
bit polyclonal antibody to p38(Thr180/Tr182) (p38-P)
(Calbiochem) was used at a dilution of 1:100. For A�
immunohistochemistry, a slight variation of the proto-
col was introduced. Before blocking endogenous per-
oxidases, the sections were incubated with 98% formic
acid for 3 min to enhance antigenicity. The A�8–17
mouse monoclonal antibody (Dako) was used at a dilu-
tion of 1:50. After washing, the sections were incubated
with LSAB for 15 min each at room temperature. The

peroxidase reaction was visualized, as a dark blue pre-
cipitate, with NH4NiSO4 (0.05 M) in phosphate buVer
(0.1 M), 0.05% diaminobenzidine, NH4Cl and 0.01%
hydrogen peroxide, or as a brown precipitate with
3,3�-diaminobenzidine and hydrogen peroxide. Finally,
the sections were dehydrated and mounted with DPX
(Scharlau Chemie, Barcelona, Spain). Blank sections
stained only with the secondary antibodies were used
as negative controls.

Double-labeling immunoXuorescence and confocal 
microscopy

Cryostat sections, 40 �m thick, were rinsed in PBS and
incubated with 98% formic acid for 3 min. After that,
they were mounted on glass slices and stained with a
saturated solution of Sudan black B (Merck, Madrid,
Spain) for 10 min to block the autoXuorescence of lip-
ofucsin granules present in nerve cell bodies, rinsed in
70% ethanol, and washed in distilled water. The sec-
tions were incubated in a blocking solution containing
0.2% gelatine, 0.2% azide, 0.2% Triton X-100, and
20% fetal bovine serum in PBS, pH 7.5 for 1 h at room
temperature. Immediately afterwards, the sections
were incubated at 4°C overnight with the A�1–42 rabbit
polyclonal antibody (kindly provided by Dr. M. Sarasa,
Zaragoza, Spain) [50] at a dilution of 1:500 and with
monoclonal antibody against synaptophysin (Dako)
(1:100) in a vehicle solution composed of 0.2% gela-
tine, 0.2% azide, 0.2% Triton X-100, and 1% fetal
bovine serum in PBS, pH 7.5. Other sections were
incubated with the A�8–17 monoclonal antibody at a
dilution of 1:50 and with one of the following rabbit
polyclonal antibodies against SNAP-25 (1:500), phos-
pho-speciWc tau Thr181 (1:500), tau Ser202 (1:100), or
Ser396 (1:100) (Calbiochem). Finally, other sections
were double-stained for amyloid and anti-MAPK/
ERK-P (1:200), or anti-p38-P (1:100) (Calbiochem), in
the same vehicle solution. After washing in PBS, the
sections were incubated in the dark with a cocktail of
secondary antibodies and diluted in the same vehicle
solution as the primary antibodies for 45 min at room
temperature. Secondary antibodies were Alexa488
antirabbit and Alexa546 antimouse (both from Molec-
ular Probes, Madrid, Spain); these were used at a dilu-
tion of 1:400. Sections only with the cocktail of
secondary antibodies were used as controls. Finally,
TO-PRO-3 (Invitrogen Life Technologies, Barcelona,
Spain) was used to detect the cell nuclei. After that,
sections were mounted in Immuno-Fluore Mounting
medium (ICN Biomedicals, Barcelona, Spain), sealed
and dried overnight. Sections were examined with a
Leica TCS-SL confocal microscope. For each marker,
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two sections per animal were evaluated for total neuro-
nal staining intensity, and rankings were done by one
investigator (MP) blind with respect to the age of the
animal.

Bielschowsky staining

The Bielschowsky staining method was performed
according to the Yamamoto and Hirano modiWcation
using 20% silver nitrate [68]. BrieXy, 40-�m-thick sec-
tions were washed in distilled water and placed in 20%
silver nitrate in the dark at 37°C for 30 min. After that,
strong ammonia was added to the silver nitrate solu-
tion and the sections were left in this solution for
10 min at 37°C. Then the sections were washed in 0.1%
ammonia and 6–10 drops of developer solution (10%
formalin, distilled water, concentrated nitric acid and
citric acid) were added to silver hydroxide solution and
the sections were stained for 3–5 min. After that, the
sections were toned in 0.2% gold chloride for 1–2 min
and Wxed in 5% sodium thiosulphate for 1 min. Finally,
the sections were washed, dehydrated, and mounted in
DPX (Scharlau Chemie).

Results

Based on the presence of established housetraining
habits, disorientation in familiar surroundings,
decreased activity, playfulness, vitality, decreased
interaction with the owner, and modiWcations of the
sleep/awake cycle, dogs were categorized as young

control (YC), i.e. with no signs of behavioral disorder,
light cognitive deWcits (LCD), and severe cognitive
deWcits (SCD) (Table 1).

Starting at the age of 8 years, and increasing with
age and with cognitive deWcit severity, A� immunohis-
tochemistry revealed the presence of delicate
(Fig. 1a, c) and more compact (Fig. 1b, d) diVuse
deposits throughout all cortical layers of the cerebral
cortex in a characteristic four-stage distribution (I–IV)
(Table 1) [48, 57]. No plaques were observed in the
subcortical white matter. The A� plaques were not
stained with antibodies to the synaptic proteins synap-
tophysin and SNAP-25 (data not shown). Increasing
with age from moderate (+) to strong (+++++), immu-
noreactivity with phosphorylation-dependent tau anti-
bodies Thr181 and Ser396 was found in all cases
(Table 1). In young animals, the tau Thr181 and tau
Ser396 immunoreactivity was observed in sparse neu-
rons characterized by a widespread distribution within
all the diVerent cortical layers. Labeling was localized
in the perinuclear cytoplasm and the nuclear mem-
brane of some neurons (Figs. 2a, b, 3a). Yet increased
tau Thr181 and tau Ser396 immunoreactivity in all the
cortical layers was localized in the cytoplasm and,
rarely, in the nuclear membrane in dogs aged between
8 and 20 years (Figs. 2c, 3b). No positivity was noticed
with antitau antibodies Ser202.

In all situations, the distribution of phospho-tau
immunoreactivity lacked any spatial relation with amy-
loid deposition. More precisely, neuronal Thr181 and
Ser396 tau phosphorylation did not localize in the
surroundings of diVuse plaques, thus indicating no

Fig. 1 Representative micro-
photographs of A� immuno-
reactivity in the prefrontal 
cortex of two dogs visualized 
with anti-A�8–17 antibody (a–
d). a, c: In stage II, A� deposi-
tion was localized in the deep 
layers of the cortex (V–VI) 
and showed a diVuse and 
cloud-like aspect (Animal no. 
5, 10 year old). b, d: In stage 
IV, progressively more com-
pact A� deposits extended 
throughout all cortical layers 
(Animal no. 9, 16 year old). a, 
b bar = 50 �m; c, d 
bar = 200 �m
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hyperphosphorylation of tau in neurites surrounding
amyloid plaques (Figs. 2d–f, 3b–d). Conversely, amy-
loid deposition was absent in the vicinity of neurons
bearing hyperphosphorylated tau (Fig. 3e, f). More-
over, diVuse plaque maturation between stage I and IV
observed in aged dogs did not parallel increased tau
Thr181 and Ser396 phosphorylation in neurons
(Table 1). Bielschowsky silver staining conWrmed the
absence of dystrophic neurites and neuroWbrillary tan-
gles in all dogs. Finally, immunoreactivity to MAPK/
ERK-P and p38-P in relation with amyloid plaques was
negative in every case (Table 1).

Discussion

The results of this study support previous observations
regarding amyloid plaque formation and tau phosphor-
ylation in aging canine brain. As previously reported
[49], a variety of behavioral changes can be evidenced
in aged dogs in the present series despite the limited
number of cases studied. These alterations include dis-
orientation in familiar surroundings, decreased activity
and playfulness, altered social relationship and interac-

tion with the owner and with other animals, decreased
self-hygiene, alteration of adaptative capabilities, and
modiWcations of the sleep/awake cycle [49]. As in
humans, the severity of the cognitive deWcit in dogs has
been correlated with the density of the A� deposits in
hippocampus and frontal cortex [11, 12]. In agreement
with other reports, our results have shown that the aged
canine brain contains predominantly diVuse plaques
classiWed into four stages [8, 48, 57]. In this paper, we
found that the Wrst steps of A� deposition take place
around 8 years, an age associated with high levels of
oxidative stress and a dramatic drop in antioxidant
defenses [23, 44] that clinically responds to behavioral
enrichment and dietary fortiWcation [36, 55]. In AD, A�
deposition, a source of oxidative damage and oxidative
stress, is considered to be a proximal event in the patho-
genesis of AD [60]. A direct toxic eVect of the A� depo-
sition related with cognitive deWcits has been
demonstrated in humans and canines [11, 12]. The
reduced dog life span may explain the absence of neu-
ritic plaques, as it does not allow suYcient time for the
1–40 A�-fragment responsible for the cored plaque to
precipitate [8, 13]. Other authors have shown that the
presence of longer A� peptides is not central to the

Fig. 2 Confocal images of progressive increased tau Thr181
immunoreactivity with age, without (a–c) and with A� deposition
(d–f) in prefrontal cortex of dogs. a Dog no. 1 (1 year old) pre-
sented light tau Thr181 immunoXuorescence (green) showing a
granular pattern in the perinuclear cytoplasm and in the nuclear
membrane. b In dog no. 4 (8 year old), the number of tau Thr181-
immunoreactive neurons increased and the granular aspect be-
came more evident. c In old dogs (in this example, dog no. 10,

20 year old), tau Thr181 immunoXuorescence was very strong and
the granular precipitate was localized mainly in the nucleus in
cortical regions without A� deposition. d–f The same dog with
strong tau Thr181 immunoreactivity (green) and A� deposition
(A�8–17, red). In merge (f), no relationship between tau Thr181
and A� deposition was found. No positive neurites surrounding
plaque were detected. The sections were counterstained with
TO-PRO-3 (blue). a bar = 20 �m, b–f bar = 16 �m
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seeding of amyloid in vitro [67], and, therefore, the
absence of neuritic plaques in dogs may be related
rather to other factors such as apolipoprotein E, metal
ions or speciWc astroglial protein expression and
microglial reaction [33, 39, 54, 63, 66]. Because the cog-
nitive impairments seen in AD seem largely related
with the concomitant regional and laminar tau pathol-
ogy [4, 37, 40, 41], several authors correlate the func-
tional deterioration of aged dogs with excessive tau
phosphorylation and resulting abnormalities [64]. The
present study has shown that tau phosphorylation is a
common process in the dog brain during aging, and that
this process occurs in the absence of intraneuronal neu-
roWbrillary changes, neuropil threads, and dystrophic
neurites surrounding amyloid deposits. Some studies
have reported cytoskeletal abnormalities in dogs [44,
56], but our present results and others [16] indicate that
the process of neurodegeneration does not involve
NFTs formation. Furthermore, in AD, abnormal synap-
tic protein expression occurs in human senile plaques
[7, 17], and a similar situation is found in transgenic
mice [26, 43, 62]. Yet no abnormal synaptic protein
expression has been noticed in canine amyloid plaques.

In our study, no-housed aging dogs have been char-
acterized under several paradigms that include in every

animal, study of cognitive function, amyloid plaque
stage deposition, and sites of Tau phosphorylation. As
shown previously, despite the relatively small number
of animals included in this study, our cognitive test is
able to diVerentiate between three groups of canine
cognitive status, that includes the LCD group proposed
as the normal aging one [49]. Our data give evidences
for the Wrst time that increasing tau Thr181 and tau
Ser396 immunoreactivity in canine cortical neurons
may be associated, apart from aging, with the degree of
cognitive dysfunction, but not with the stage of amy-
loid plaque deposition. Whether tau hyperphosphory-
lation is a cause of cognitive impairment or an
independent phenomenon both related with aging is an
open question. Discrete tau hyperphosphorylation in
LCD animals, in absence of clinical signs of cognitive
dysfunction, may reXect normal aging in dogs [49].
Because the presence of cognitive dysfunction, either
light or severe, is also age-dependent, further experi-
ments done with a large number of animals are needed
to properly interpret the relationship between aging,
cognitive dysfunction, and tau phosphorylation. Phos-
phorylation of tau at Ser202 observed by other authors
in housed beagles [24, 35] has not been detected in the
present series. Other studies have shown dog-speciWc

Fig. 3 Confocal images of progressive increased tau Ser396
immunoreactivity in aged dogs. a Dog no. 3 (6 year old) pre-
sented a light pattern of tau Ser396 (green) immunoreactivity
mainly localized in the perinuclear region. The nuclei are visual-
ized with TO-PRO-3 (blue). b–d Strong tau Ser396 immunoXuo-
rescence found in dog no. 8 (16 year old). Panel b corresponds to
phospho-tau Ser396 only (green), c represents only A�8–17 depo-
sition (red), and d is merged. All sections were counterstained

with TO-PRO-3 (blue). e, f Regional distribution of tau Ser396
staining in dog no. 8 (16 year old). Tau Ser396 immunoreactiv-
ity (green) was observed throughout all the cortical layers in re-
gion without amyloid deposition. The nuclei are visualized with
TO-PRO-3 (blue) (e). When amyloid deposition was present, no
apparent association between tau Ser396 phosphorylation
(green) and amyloid plaque (red) was observed (f). a bar = 16 �m,
b–d bar = 20 �m, e, f bar = 40 �m
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tau deposition, using Tau-1 monoclonal antibodies that
recognize the 189 and 207 residues of the human tau
sequence [21, 64]. The accumulation of phospho-tau-
positive material in the nucleoplasm of neurons
observed here is in agreement with the nuclear locali-
zation of tau reported in human frontal cortex [6].

Activation of stress kinases c-Jun N-terminal kinase
(SAPK/JNK) and p-38 in association with tau phos-
phorylation has been reported in neurites surrounding
A� plaques in double mutants for APP (Tg2576) and
PS-1 (P264L) mice [58], APP transgenic mice [20, 50]
and double APP/tau transgenic mice, which show A�
plaques, neuroWbrillary tangles, and dystrophic neu-
rites in senile plaques [51]. However, no increased p38-
P immunoreactivity has been found in the vicinity of
amyloid plaques in aged dogs. Thus, the lack of recip-
rocal interactions between A� deposition and tau alter-
ations challenges the idea that tau pathology is merely
a downstream eVect of A� production and deposition.
In summary, our results in dogs suggest that A� diVuse
plaque formation and tau hyperphosphorylation are
independent processes, both occurring during the pro-
cess of aging. Whether tau hyperphosphorylation is
part of the process leading to severe cognitive dysfunc-
tion would have to be conWrmed in future experiments.
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