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Abstract Cerebral amyloid angiopathy (CAA) was ob-
served for the first time nearly 100 years ago and sys-
tematically described in 1938. It is a common finding in
elderly individuals, defined by b-amyloid peptide (Ab)
depositions in cerebral blood vessels, and associated with
Alzheimer’s disease (AD). A variety of genetic mutations
cause hereditary forms of CAA; in this review, however,
only the sporadic variant of CAA is considered. In CAA,
Ab depositions primarily occur in the abluminal portion
of the tunica media, and with increasing severity all layers
of the blood vessel wall are infiltrated and an additional
spread of Ab into the surrounding neuropil may be seen
(i.e., dyshoric changes). CAA is most pronounced in the
occipital lobe and its distribution is usually patchy. The
relationship between CAA and AD is poorly understood;
however, low positive correlations between the severity of
both CAA and AD pathology have been observed. CAA
is a frequent cause of (warfarin-associated) intracerebral
hemorrhage, and the diagnosis of probable CAA-related
hemorrhage can be made during life with high accuracy.
Both APOE-�4 and APOE-�2 are risk factors for CAA,
while only APOE-�2 increases the risk for hemorrhage in
CAA. Although the role of CAA as an independent risk
factor for cognitive decline is unclear, severe CAA is likely
to lower the threshold for clinically overt dementia in
neurodegenerative diseases. As for the origin of Ab in
CAA, it may be both produced by smooth muscle cells
(vessel wall) and derived from neurons in the course of
perivascular drainage.
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Historical annotation and introduction

Cerebral amyloid angiopathy (CAA) was probably ob-
served for the first time by Oppenheim in 1909, when he
described metachromasia in the core of plaques, which
could also be found in nearby capillaries [97]. In 1909
plaques were generally thought to be necrosis. Their
amyloid nature was discovered by Divry in 1927, who
also observed CAA [22] (for historical review of amyloid
see [62], for review of amyloidosis of the nervous system
see [33]). The first systematic study of CAA, however,
was made by Scholz in 1938 [116]. In this study, Scholz
described a vascular disorder of intracortical arterial
vessels with both morphological and staining peculiari-
ties resembling the ‘‘drusigen Entartung’’ of the nervous
tissue (i.e., amyloid plaques). This resemblance led to the
term ‘‘drusige Entartung’’ of cerebral arteries and cap-
illaries. Other authors called this vascular disorder
‘‘dyshoric angiopathy’’ which referred to CAA with
additional congophilic depositions in the surrounding
neuropil [81, 82, 83, 121]. The term dyshoric was based
on the assumption that amyloid depositions around
blood vessels were a consequence of blood-derived
amyloid crossing the blood-brain barrier (horos: border,
dyshoric refers to dysfunction in the blood-brain barrier;
see also section ‘Morphology of CAA’) [81]. As ‘‘drusige
Entartung’’ included both congophilic depositions con-
fined to the vessel wall and ‘‘dyshoric angiopathy’’ [114],
the latter term referring to a particular pathogenetic
mechanism, Pantelakis and other authors disagreed that
‘‘dyshoric angiopathy’’ and ‘‘drusige Entartung’’ are
diseases based on the same pathological entity and
consequently distinguished between ‘‘dyshoric angiopa-
thy’’ and congophilic angiopathy, the latter referring to
congophilic deposition strictly confined to the vessel wall
[7, 98].

Today, the term CAA is used to describe the patho-
logical changes occurring in cerebral blood vessels, both
leptomeningeal and intracortical, resulting from depo-
sitions of amyloid proteins [105, 106]. Mutations in
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different genes which ultimately result in amyloid
depositions in cerebral blood vessels are described in
hereditary or familial forms of CAA [19, 45, 100, 105,
106, 107]. In the present review, however, the term CAA
refers to the sporadic, non-hereditary variant of CAA.
In general, CAA is defined as depositions of a congo-
philic material (i.e., positive staining with Congo red
dye) in leptomeningeal and intracortical (parenchymal)
arteries, arterioles, capillaries, and rarely veins,
representing depositions of b-amyloid peptide (Ab) in
the vessel walls, sometimes with additional spread into
the surrounding neuropil or depositions in the glia lim-
itans in cases of capillary involvement [3, 4, 19, 50, 51,
102, 105, 106, 138, 139, 141, 151, 157]. Ab is well known
for being the major constituent part of cerebral plaques
associated with normal aging and a variety of neurode-
generative disorders including Alzheimer’s disease (AD);
Ab was, however, initially isolated from cerebral blood
vessels with CAA [34]. Age-related prevalences of CAA
range from 2.3% at age 65–74 years [37] to 100% at over
80 years of age [16], while they range from 70% [3] to
97.6% [51] in AD (Table 1), and therefore it is generally
assumed that CAA is strongly associated with AD. In
the present article, the literature on the morphology and
both neuropathological and clinical diagnoses of CAA
are reviewed, together with data on the relationships
between CAA and AD, APOE genotype, cerebral
vascular lesions, and clinical dementia. Finally, some
proposed pathomechanisms of CAA are discussed.

Morphology of CAA

In hematoxylin and eosin (HE)-stained sections severe
CAA can be recognized by acellular thickening of blood
vessel walls. This morphology is, however, nonspecific
for CAA, since it occurs in a variety of other disorders,
including hypertensive angiopathy [56].

The term amyloid describes highly insoluble fibrils
composed of protein polymers consisting of proteins
rich in a b-pleated sheet secondary structure. Over 20
amyloidogenic proteins are known. Among other
staining methods for amyloid, thioflavin S or T (fluo-
rescent under ultraviolet light) and Congo red (apple
green under polarized light) are commonly used [65, 105,
106, 134, 139, 150]. Both staining methods are specific
for amyloid, as they rely on the high b-sheet content of
amyloid [108]. To identify Ab as the amyloidogenic
protein several antibodies are commercially available
(e.g., mouse monoclonal human Ab protein antibody,
clone 4G8, reactive to amino acid residues 17–24 of
human Ab, and other polyclonal antibodies for further
distinction between Ab 1–40 and Ab 1–42, Signet Lab-
oratories, MA). In CAA, Ab is deposited extracellularly
mainly as amyloid-b fibrils in close contact with smooth
muscle cells [28, 146, 147, 149]. Nonfibrillar, monomeric
and oligomeric Ab was also demonstrated inside smooth
muscle cells [28, 146]. Of note, antibodies directed
against Ab stain both amyloid composed of Ab and

nonfibrillar Ab. Weak and focal immunohistochemical
staining of smooth muscle cells could thus be indicative
of nonfibrillar Ab (to prove amyloid nature Congo red
or thioflavin stains are helpful).

Depending on the severity of CAA, Ab depositions
have been shown primarily in the abluminal portion of
the tunica media, often surrounding smooth muscle
cells, and in the adventitia. With increasing severity, Ab
infiltrates all layers of the vessel wall, which shows loss
of smooth muscle cells. Finally, the vascular architecture
is severely disrupted and ‘‘double barrelling’’, microan-
eurysm formation, fibrinoid necrosis, and evidence of
perivascular leakage may be seen (Figs. 1, 2) [105, 106,
134, 139]. Intracortical (parenchymal) vessels can show
additional spread of Ab into the surrounding neuropil.
Historically this has been referred to as dyshoric chan-
ges, as it was assumed that amyloid crosses the blood-
brain barrier and literally spreads into the surrounding
neuropil [81]. Today, however, dyshoric is a purely
descriptive term with no implications regarding the
underlying pathomechanism (Fig. 2g, i, j). Dyshoric
changes have a similarity to vascular plaques. While
vascular plaques are dense, well-demarcated amyloid
plaques with a central vessel, dyshoric CAA comprises
more diffuse periarterial Ab depositions, lacking a well-
defined border, around Ab-laden blood vessels. In cap-
illaries, CAA presents as linear thin layers of Ab
deposits in the perivascular basement membrane (glia

Table 1 Prevalence of CAA (CAA cerebral amyloid angiopathy,
AD Alzheimer’s disease)

First author
(year)

Age years
(mean)

Prevalence of CAA,
%

Total With AD

Scholz (1938) >70 10
Vinters (1983) 60–97 35.7
Yamada (1987) 59–101 (83) 56.9 88.2
Bergeron (1987) 63.3 86.7
Masuda (1988) 60–69 9

70–79 18
80–89 38

Vonsattel (1991) 27–107 (76) 50 87
Beer (1991) 78
Chui (1992) >60 46

>80 100
Itoh (1995) 59–101 (83) 19.5
Ellis (1996) 78 82.9
Greenberg (1997) 65–74 2.3

75–84 8
>85 12.1

Jellinger (2000) 65–74 22.8
75–84 38
>85 48.1
>65 97.6

Xu (2002) 60–95 (77.5) 31.7 100
60–69 22.1
70–79 26.7
80–89 46.5
>90 66.7

Zekry (2003) >75 96.6 100
Attems (2005) 54–102 (83.5) 68.1 83.7
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limitans) and as globular deposits of Ab on the capillary
wall, often in continuity with dyshoric Ab deposits in the
adjacent neuropil (Fig. 3) [3, 4, 90, 102, 123, 136, 141,
143, 144]. Because of this latter circumstance, the term
dyshoric CAA is sometimes used as a synonym for
capillary CAA [15, 90, 123]. Dyshoric CAA, however,
also occurs in arteries and arterioles, whereas capillary
CAA may be present without dyshoric changes (Fig. 3a,
c). Even in very high degrees of CAA-related changes,

endothelial cells are well preserved and usually not
affected with Ab depositions (Fig. 2h, i, j).

There are conflicting data are reported as to whether
CAA leads to either thickening or thinning of the tunica
media [69, 72, 81, 93, 98, 134, 157], and some authors
have shown a reduction [59, 69, 71], others a dilation [25,
46, 72] of the size of the affected blood vessel’s lumen.
However, in a morphometric study of 28 CAA cases,
Zekry et al. [157] recently found a thickening of the

Fig. 2 Different degrees of CAA: mild (a, b) to moderate (c, d)
leptomeningeal CAA; moderate cortical CAA (e); severe lepto-
meningeal (f, h) and cortical CAA (g, i, and j), with characteristic

double barrelling (arrow) and dyshoric changes (arrowhead); note
that even in high grades of CAA endothelial cells are usually
preserved; 4G8 immunostaining

Fig. 1 Progression of CAA:
mild, Ab depositions in
abluminal portions of the blood
vessel wall; moderate, abundant
Ab depositions in all layers of
the blood vessel wall with loss
of smooth muscle cells; severe,
blood vessel wall replaced by
Ab depositions, additional
double barrelling and/or
dyshoric changes may be
present (for dyshoric changes
see section Morphology of
CAA) (CAA cerebral amyloid
angiopathy, Ab b-amyloid
peptide)
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blood vessel walls and the reduction of the lumen
diameter in small arteries (40–120 lm) with only mod-
erate Ab deposits, but conversely a thinning of the walls
and dilation of the lumen in vessels with severe Ab
deposits. The authors suggest that initial deposition of
Ab in early stages of CAA causes wall thickening,
resulting in narrowing of the lumen. In later, more se-
vere stages of CAA, however, ongoing Ab deposition
causes muscle cell degeneration and fragmentation,
which induces thinning and weakening of the vessel
walls leading to dilation of the lumen [59, 137, 157].

Perivascular hemorrhages are frequent around blood
vessels affected with CAA (for further details see section
CAA-related vascular lesions).

Several authors reported CAA-associated inflam-
mation/vasculitis [24, 117, 130, 139, 154]. Neuropa-
thologically, these cases were characterized by the
presence of severe CAA and chronic inflammation
within the leptomeninges and in and around the walls
of Ab-laden blood vessels. The perivascular and
intramural inflammatory infiltrate consisted of lym-
phocytes, macrophages, and multinucleated giant cells

Fig. 3 Capillary CAA without (a, c) and with prominent dyshoric changes (b); 4G8 immunostaining

Fig. 2 (Contd.)
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[117]. The neuropathological findings in these cases
were similar to the ones observed in the first two
autopsied patients, who had developed meningoen-
cephalitis after immunization against the human Ab
[27, 89]. Briefly, these cases showed severe CAA with
inflammatory cells around Ab-laden blood vessels, but

were largely devoid of Ab plaques. Some Ab was still
present in the cytoplasm of microglia. The latter
observation and the presence of severe CAA, possibly
caused by perivascular drainage of Ab, were inter-
preted as suggesting immune-mediated clearance of Ab
[89].

Fig. 5 Unusual picture of CAA: moderately affected leptomeningeal blood vessels and severely affected intracortical ones with dyshoric
changes (CAA is usually more severe in leptomeningeal vessels); 4G8 immunostaining

Fig. 4 Patchy distribution of CAA: Ab-laden intracortical blood vessel (a, insert), no Ab in leptomeningeal vessels in the same microscopy
field (ellipse in a, b), but Ab-laden leptomeningeal blood vessels in a different microscopy field of the same histological slide (c); 4G8
immunostaining
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Topographical distribution of CAA

In general, the distribution of CAA is characteristically
patchy and segmental [134]. In one given histological
slide there may be foci showing vessels with varying
degrees of Ab depositions adjacent to foci showing
vessels without any Ab deposition (Fig. 4). The patchy
distribution of CAA may thus lead to an under-diag-
nosis of CAA in postmortem examination, as even in
severe cases a given histological slide might not contain
Ab-laden blood vessels.

It has been shown by many authors that CAA is most
frequent in the occipital lobe, followed by either frontal,
temporal or parietal lobes, respectively [5, 99, 101, 125,
126, 129, 135, 153]. Some authors, however, reported the
frontal lobe to be the site most frequently involved in
CAA [76, 150]. The occipital lobe is not only the site
most frequently affected with CAA but also most se-
verely so [5, 125]. CAA is rarely seen in the basal gan-
glia, thalamus, and cerebellum, while both white matter
and brainstem are usually spared [23, 52, 75, 102, 105].

With respect to the distribution of CAA in the dif-
ferent types of cerebral blood vessels, leptomeningeal
arteries seem to be more frequently affected than intra-
cortical ones (i.e., arteries in the gray matter), whereas
blood vessels of the white matter rarely show CAA [4,
106]. It is generally assumed that involvement of lepto-
meningeal arteries represents an early stage in the pro-
cess of the disease, which is followed by involvement of
cortical arteries. In some cases, however, intracortical
arteries are affected more severely than leptomeningeal
ones (Fig. 5). Conflicting data have been reported on the
involvement of intracortical capillaries and leptomenin-
geal veins. Veins, however, tend to be affected less fre-
quently than arterial vessels [105, 106].

Grading of CAA

For practical purposes two grading systems are com-
monly used in routine neuropathology. Olichney et al.
[94] proposed the scale: 0, no Ab-positive blood vessels;
1, scattered Ab positivity in either leptomeningeal or
intracortical blood vessels; 2, strong, circumferential Ab
positivity in either some leptomeningeal or intracortical
blood vessels; 3, widespread, strong, circumferential Ab
positivity in leptomeningeal and intracortical blood
vessels; 4, same as 3 with additional dyshoric changes.
This system has a rather quantitative approach, whereas
Vonsattel et al. [139] grade CAA with respect to the
severity of pathological changes in a given blood vessel:
mild, amyloid is restricted to the tunica media without
significant destruction of smooth muscle cells; moderate,
the tunica media is replaced by amyloid and is thicker
than normal; severe, extensive amyloid deposition with
focal wall fragmentation or even double barrelling of the
vessel wall, microaneurysm formation, fibrinoid necro-
sis, and leakage of blood through the blood vessel wall.

Despite the practical value of these two grading sys-
tems, they have some limitations. The system described
by Olichney et al. [94] links leptomeningeal and intra-
cortical involvement, and does not allow scoring cases
with strong positivity in intracortical vessels but without
(strong) positivity in leptomeningeal vessels. The system
by Vonsattel et al. [139], on the other hand, does not
distinguish between leptomeningeal and intracortical
affection. Many different approaches have been used to
evaluate the severity of CAA more precisely, including
computer-assisted morphometric methods; these meth-
ods, however, are too laborious to be used in every day
routine analysis [3, 4, 123, 124, 157]. We use a system
that not only distinguishes between leptomeningeal and
intracortical affection but also allows noting CAA in
different topographical sites. Leptomeningeal and in-
tracortical vessels are scored separately: 0, no Ab posi-
tive vessels; 1, mild (i.e., scattered positivity in few
vessels); 2, moderate (i.e., scattered positivity in many
vessels or strong positivity in few vessels); 3, severe (i.e.,
strong positivity in many vessels); 4, severe with dyshoric
changes (only in intracortical vessels). For each region,
we record both the leptomeningeal and the intracortical
score separately. To assess the overall severity of CAA
the mean values of all scores are calculated (see [5]).

To date, however, a standardized neuropathological
criteria for rating CAA is not available and, as stated by
Greenberg et al. [41], ‘‘this lack makes it difficult to
compare results across different populations and stud-
ies... and clearly outlines an obstacle to be addressed by
investigators in this field’’.

CAA and AD pathology

The prevalence of CAA in AD is over 70% (Table 1)
and many authors consider CAA as a feature of AD.
Despite this high prevalence, the severity of CAA is
highly variable in AD, and therefore does not seem to
strongly depend on the severity of AD pathology (e.g.,
CERAD, Braak stages, NIA-Reagan Institute (RI) cri-
teria) [3, 21, 125, 150].

Several studies addressed the association of CAA
with both Ab and tau pathology in the parenchyma that
is in close vicinity to Ab-laden blood vessels. No sig-
nificant correlations were seen with respect to the direct

Table 2 CAA in different degrees of NIA-RI criteria. Data from [5]
(RI Reagan Institute, CAAT total score, mean value of four re-
gions)

NIA-RI criteria CAA, Olichney grades (%) CAAT

Negative 1 2 3 4

Negative 76.5 11.8 5.9 5.9 0.3
Low prob. 35.1 29.7 5.4 18.9 10.8 0.8
Medium prob. 18.8 18.8 12.5 31.3 18.8 1.2
High prob. 16.3 9.3 16.3 32.6 25.6 1.3
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association between the density of parenchymal Ab
plaques and the severity of CAA in the same region (i.e.,
same histological slide) [125, 152]. Of note, on combin-
ing data from all investigated regions Tian et al. [125]
found a low but significant negative correlation between
the ratings of both CAA and senile plaques. Several case
reports on various genetically linked familial forms of
dementia/CAA observed severe neurofibrillary tau
pathology around Ab-laden blood vessels [31, 104, 132,
133], whereas data on the association between CAA and
tau pathology in sporadic late onset AD are rare. Fer-
nando and Ince [26] observed a significant association
between intracortical CAA and neurofibrillary tangles,
but did not see such an association between the latter
and leptomeningeal CAA. In a morphometric study on
51 cases of neuropathologically confirmed AD, Williams
et al. [145] recently showed that tau immunolabeling was
significantly stronger around Ab-laden arterial blood
vessels compared to non-Ab-laden ones, where, in turn,
it exceeded immunolabeling in the cortex away from
blood vessels. The authors proposed that the perivas-
cular accumulation of hyperphosphorylated tau, which
is more pronounced around Ab-laden blood vessels,
may be rather a consequence of elevated levels of soluble
Ab around blood vessels (due to perivascular drainage
of Ab), than of a particular aspect of vessel function
(e.g., mediators released by the vessel wall).

We correlated the severity of CAA with the severity
of neuropathological AD criteria (i.e., CERAD, Braak
stages, and NIA-RI criteria) and showed that the
severity of CAA significantly increases with increasing
AD pathology. Only low correlations, however, were
seen (Table 2) [3, 4, 5]. We further distinguished between
CAA severities in different brain regions and showed
that mainly the severity of CAA in the occipital region
significantly increased with increasing AD pathology [5].
Contrasting the low correlation between general CAA
and AD pathology, the severity of capillary CAA highly
correlated with AD pathology [3].

In addition, we found remarkable differences in the
composition of Ab between capillary CAA and general
CAA. Many studies showed that vascular Ab in general
CAA is predominantly composed of Ab peptides ter-
minating at amino acid position 40 (Ab40). Conversely
both senile and neuritic plaques are mainly composed of
Ab peptides terminating at amino acid position 42
(Ab42) [1, 4, 11, 35, 47, 48, 49, 70, 73, 74, 111]. Our
results indicated that general CAA is characterized by
Ab40 and Ab42 depositions in leptomeningeal and in-
tracortical arterial vessels, with Ab40 being more fre-
quent and more severe. By contrast, capillary CAA is
characterized by globular Ab42 deposits in intracortical
capillaries and pericapillary spaces, often in conjunction
with parenchymal Ab42 depositions (dyshoric changes).
Thal et al. [115] described two different types of CAA.
CAA type1 showed Ab deposits in every type of lepto-
meningeal and intracortical blood vessels including in-
tracortical capillaries, whereas in CAA type 2
intracortical capillaries were not involved. APOE-�4 was

a risk factor for CAA type 1 and APOE-�2 for CAA
type 2 (APOE: apolipoprotein E, see also section CAA
and APOE genotype). Since APOE-�4 is a known risk
factor for Ab plaque deposition, the same pathomech-
anism may support intracortical capillary Ab deposition
as a component of neuropil associated Ab deposition in
CAA type 1. In CAA type 1 APOE-�4 and in CAA
type 2 APOE-�2 possibly promote smooth muscle
cell-associated Ab depositions in leptomeningeal and
intracortical blood vessels, respectively. In addition,
both types of CAA were seen in mild and severe CAA,
and their prevalence did not depend on either the pa-
tients’ age or the severity of AD-related Ab load, sug-
gesting that CAA type 1 and CAA type 2 rather
represent different disease entities, than the extent of
CAA to a capillary level in cases of CAA type 1 [123]. In
a study investigating the association between the low
density lipoprotein-receptor related protein (LRP) and
CAA, Christoforidis et al. [15] recently showed that LRP
was associated with CAA in leptomeningeal and intra-
cortical blood vessels but not with capillary CAA. The
authors postulate that particular LRP polymorphisms
could impair LRP function (in general and/or in relation
to Ab metabolism, i.e., removal of soluble Ab [57]) and/
or modify LRP expression in noncapillary cerebral
vessels, leading to a consecutive promotion of vascular
Ab deposition [15]. The underlying pathomechanisms
for each general CAA and CAA involving capillaries are
not clear yet. They are, however, likely to differ and it is
possible that general CAA and capillary CAA represent
different pathologic entities [4, 15, 123].

Clinical diagnosis of CAA

As CAA is a common cause of intracerebral hemor-
rhage, a reliable method for diagnosing CAA during life
would facilitate both future clinical drug trials and
clinical decision making [37, 60]. The latter is highlighted
by data showing CAA to be an important cause of
warfarin-associated intracerebral hemorrhage [43, 110].
The clinical diagnosis of CAA-related hemorrhage is
based on analysis of biopsy tissue and radiographic
techniques which identify the patterns of hemorrhages
characteristic for CAA [37]. Athough a sample of cor-
tical tissue can be obtained safely by biopsy or hema-
toma evacuation [42, 64, 77, 80], tissue samples are
generally not available and their interpretation is com-
plicated by the patchy and segmental distribution of
CAA, which could lead to negative results even in cases
of severe CAA [38, 60]. Greenberg and Vonsattel [38]
showed that the presence of mild to moderate vascular
Ab is a sensitive marker for CAA-related hemorrhage
and the additional presence of fibrinoid necrosis is spe-
cific for CAA-related hemorrhage. As some degree of
Ab in cerebral blood vessels is a common finding in the
elderly, its presence should be interpreted with respect to
the patient’s age. Therefore, the specificity of vascular
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Ab for identifying CAA as cause of hemorrhage de-
creases with increasing patient age [38]. Gradient echo
MRI is the most useful radiographic technique to
demonstrate the pattern of hemorrhage characteristic
for CAA [37]. The localization of CAA-related hemor-
rhage follows the localization of CAA in the cerebral
cortex and corticosubcortical or lobar regions [37, 58,
134], and is typically absent in regions characteristic of
hypertensive hemorrhages (e.g., putamen, thalamus,
pons, and cerebellum [37]).

The Boston criteria for diagnosis of CAA-related
hemorrhage are based on the tendency for CAA-related
hemorrhage to be multiple and to occur primarily in
cortical and corticosubcortical (or lobar) brain regions.
According to these criteria, the diagnosis of definite
CAA-related hemorrhage might only be possible by full
postmortem examination. However, based on tissue
from evacuated hematoma or cortical biopsy (not nec-
essarily needed), MRI/CT, and clinical data, the diag-
nosis of probable CAA-related hemorrhage can be made
during life with high accuracy, as indicated by correla-
tion of these criteria with postmortem neuropathological
findings [60]. In addition, APOE genotyping might be
useful in diagnosing CAA-related hemorrhage in some
cases; in general, however, it has been shown to be nei-
ther sensitive nor specific [37].

CAA and APOE genotype

The apolipoprotein E (APOE) gene encodes a protein,
which is involved in the transport of cholesterol and
other hydrophobic proteins. It is located on the long arm
of human chromosome 19 and has three common alleles
designated �2, �3, and �4. These genetic variations result
in different amino acid substitutions at positions 112 and
158, respectively (ApoE2: Cys 112, Cys 158; ApoE3: Arg
112, Cys 158; ApoE4: Arg 112, Arg 158). In the majority
of Caucasian populations APOE-�3 is the most common
allele; APOE-�2 and APOE-�4 are considered variants
[113, 140]. It is now well established that possession of at
least one APOE-�4 is a risk factor for both CAA and
AD [17, 119, 152]. APOE-�4 has been shown to be
associated with increased Ab deposition in both AD
[103] and CAA [2]. On the other hand, APOE-�4 was
strongly associated with the severity of CAA in AD but
not with parenchymal Ab load, respectively, suggesting
that APOE-�4 favors vascular over parenchymal Ab
deposition [13]. In addition, APOE-�4-associated AD
cases exhibited more severe CAA than AD cases lacking
APOE-�4, and AD cases with severe CAA tend to have
less parenchymal Ab than those with moderate CAA
[13, 143]. Capillary CAA was associated with APOE-�4
[123], and Tian et al. [126, 128] noted that in AD only
the extent of CAA within the occipital cortex increased
with possession of APOE-�4.

APOE-�2 decreases the risk of AD [18] but increases
the risk of early onset CAA [40, 88] and of hemorrhages

in CAA, as APOE-�2 promotes the rupture of Ab-laden
blood vessels [14, 78, 91].

CAA-related vascular lesions

CAA has been associated with intracerebral hemor-
rhages, ischemic infarcts, and white matter loss. With
increasing severity of CAA, smooth muscle and elastic
elements in blood vessel walls are replaced by Ab
depositions, which may result in microaneurysm for-
mation and ultimately lead to intracerebral (lobar)
hemorrhage. Indeed, CAA-related intracerebral hemor-
rhages are seen in 5–20% of all spontaneous (non-
traumatic) cerebral hemorrhages in elderly subjects [23,
51, 139]. Despite the high prevalence of CAA in the
occipital cortex, CAA-related hemorrhages have been
shown to be more evenly distributed [38, 134]. Patients
with both APOE-�2 and CAA seem to be particular
prone to spontaneous hemorrhage [40, 78, 88, 91] and
APOE-�2 was associated with severe pathomorphologi-
cal changes such as ‘‘double barrelling’’, fibrinoid
necrosis, and evidence of paravascular bleeding in CAA
[40, 79]. It was consequently suggested that CAA pa-
tients exposed to clinical risk factors such as anti-
platelet/anticoagulant medication, hypertension, and
minor head trauma may be most at risk of lobar hem-
orrhage if they are also APOE-�2 carriers [78]. Given
that CAA can imitate transient ischemic attacks, maybe
due to focal seizures secondary to petechial hemorrhages
[10, 39, 93], caution should be exercised in prescribing
anticoagulant medications to elderly patients with
transient neurological deficits in the absence of signifi-
cant carotid stenosis [79]. Vessels affected with CAA
frequently demonstrate a ‘‘double barrel’’ lumen, sug-
gestive of weakened vascular extracellular matrix,
resulting in the separation of intima from media during
tissue preparation [32, 93]. Matrix metalloproteinases, a
family of enzymes with over 20 members identified to
date, have been shown to be involved in the regulation
of vascular integrity and have been implicated in a
variety of vasculopathies, including hemorrhagic trans-
formation after cerebral ischemia [55, 63, 120]. Lee et al.
[66, 67] showed recently that Ab peptide induced tran-
scription, cellular release, and proenzyme activation of
matrix-metalloproteinase-9 in cultured cerebral endo-
thelial cells, resulting in increased extracellular matrix
degradation. Additionally, in aged APPsw transgenic
mice [i.e., mouse model overexpressing the Swedish
familial AD mutation of Ab precursor protein (APP):
K670N/M671L], the majority of CAA vessels with evi-
dence of microhemorrhage demonstrated matrix-metal-
loproteinase-9 immunostaining. These findings suggest
that spontaneous hemorrhage in CAA might be partly
caused by Ab-induced vascular matrix-metalloprotein-
ase-9 activation [67].

Although less frequently than in hemorrhages, CAA
has been observed in patients with ischemic cerebral
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infarctions of variable extent [9, 72, 93, 94, 95, 96]. In
tissue biopsies of 108 cases with recent cerebral or cer-
ebellar infarctions, Cadavid et al. [9] found CAA in
13%, while CAA was present in only 3.7% of controls,
suggesting CAA to be a risk factor for ischemic cerebral
infarction. The mechanisms by which CAA increases the
risk of ischemic infarctions are unknown. However, the
deposition of Ab in the blood vessel walls could induce a
disturbance in the vascular reactivity to focal ischemia,
with reduction in collateral circulation and more severe
injury to ischemic tissues at risk for infarction [9, 159]. In
addition, CAA causes both impaired vascular autore-
gulation and hypoperfusion as a result of thickening of
the blood vessel wall and narrowing of the lumen,
respectively [94, 128]. In addition to cortical ischemic
infarcts, this may also lead to white matter damage.

Albeit CAA is only rarely detected in the white
matter, neuropathologically confirmed CAA in the gray
matter and leptomeninges correlated with white matter
loss [127]. CAA causes degeneration of the tunica media
in corticomeningeal arteries, leading to an impairment
of cerebrovascular autoregulation in response to blood
pressure [46]. This impairment may in turn lead to le-
sions in the white matter supplied by Ab-laden men-
ingocortical arteries. White matter lesions in CAA
sometimes resemble those seen in Binswanger’s subcor-
tical encephalopathy and a common mechanism of
hypoperfusion in these two disorders was suggested [36,
125]. In anecdotal reports CAA was associated with
reversible leukoencephalopathy, this, however, is a very
unusual presentation of CAA [12, 92, 112].

CAA and dementia

Several studies suggest severe CAA to be an independent
risk factor for cognitive decline [26, 39, 41, 86, 150, 157],
while others did not find significant differences between
the prevalences of CAA in demented and non-demented
subjects [3, 99]. In the population-based MRC Cognitive
Function and Aging Study, CAA was identified at au-
topsy in 34 of 93 demented (36.6%) and in 7 of 99 non-
demented patients (7.1%), yielding an elevated odds
ratio for dementia of 9.3 in multivariable analysis con-
trolling for age, brain weight, neuritic and diffuse pla-
ques, neocortical and hippocampal neurofibrillary
tangles, Lewy bodies, and cerebrovascular disease [86].
In the Honolulu-Asia Aging Study (HAAS), however,
autopsy performed on 211 individuals did not reveal a
significantly higher prevalence of CAA in clinically de-
mented patients (demented: 54.8% versus non-de-
mented: 38.4%) [99]. While the role of CAA as an
independent, primary cause of dementia awaits further
elucidation, it is, however, widely assumed that CAA
has an aggravating effect on the pathology/pathogenesis
of other neurodegenerative diseases. Thus, severe CAA
may lower the threshold for clinically overt dementia,
especially in AD, where subjects with only medium AD

pathology (e.g., Braak III or IV) but considerable CAA
were clinically demented [51, 53, 99]. As both wide-
spread CAA and arteriosclerosis are associated with
cognitive deficits in AD, the combination of these may
contribute to neurodegeneration in AD [124]. The exact
mechanisms by which CAA affects cognitive function
are yet unclear. However, neuronal loss in AD was
associated with severity of CAA, and ultrastructural
studies have demonstrated the deposition of Ab in
capillaries, which might impede the functional transport
of essential nutrients across the blood-brain barrier [85,
128, 156]. The associations between CAA, white matter
changes, and cognitive impairment suggest that ad-
vanced CAA causes clinically important vascular dys-
function [41].

Pathomechanisms for CAA

The origin of Ab in blood vessel walls is poorly under-
stood, and several mechanisms have been proposed. As
the APP is a membrane protein of nearly every cell type,
it was suggested that Ab derives from the circulation
[105, 106]. Recently, however, two other possible
pathomechanisms received wider attention: (1) produc-
tion of Ab by smooth muscle cells within the vessel walls
and/or pericytes, and (2) derivation of Ab from the
neuropil in the course of perivascular drainage.

Production of Ab by smooth muscle cells within the
vessel walls and/or pericytes

Ab fibrils that have been shown in vascular tunica media
in close contact with smooth muscle cells were mainly
composed of Ab40 [4, 28, 122, 146, 147, 149], while
Ab42 was present in only some deposits in AD [4, 35]
and in Down’s syndrome [68]. Production of Ab by
vascular smooth muscle cells has been confirmed by cell
culture studies which showed intracellular and recently
also extracellular Ab depositions [29, 30, 148]. These Ab
depositions were immunoreactive for Ab sequences 1–16
and 17–24, but not 37–42, suggesting that vascular
smooth muscle cells produce Ab40 [30]. It was further
suggested that proliferating and degenerating smooth
muscle cells produce Ab. Among other factors, including
cytokines, injury by hemodynamic stress or ischemia
might be responsible for the smooth muscle cell activa-
tion, proliferation, formation of Ab, and eventually
degeneration [6, 146]. Similar to smooth muscle cells,
degenerating pericytes overproduce Ab (for review see
[8]). It has been suggested that smooth muscle cells
mainly secrete non-fibrillary Ab and that aggregation of
monomers in fibrils is an extracellular modification
promoted by factors that are present in the ground
substance, which in turn is also produced by smooth
muscle cells. It is consequently assumed that both Ab
and factors promoting fibrillogenesis are secreted by
smooth muscle cells [147].
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Derivation of Ab from the neuropil in the course
of perivascular drainage

This hypothesis proposes that Ab in the blood vessel
walls is of neuronal origin. Brain parenchyma is devoid
of lymphatic vessels, and interstitial fluid has been
shown to drain via perivascular pathways which, by
analogy with other species, are the lymphatic drainage
pathways of the human brain [20, 142, 158]. The
driving force behind that drainage is believed to be, at
least partly, the pulsatile flow of blood in the lumina of
arteries [90]. There is emerging evidence that soluble
Ab, which is constantly produced by neural cells, is
cleared from the brain via several different routes:
perivascular pathways with interstitial fluid drainage,
directly across the blood-brain barrier into the blood-
stream (apparently mediated by LRP-1), and by glia
(microglia, astrocytes) [87, 90, 143]. As indicated by
animal studies (wild-type and APP transgenic mice),
clearance via the perivascular pathway becomes more
significant with age [61, 118]. Weller and colleagues [90,
102, 141, 143, 144] propose that CAA occurs due to
deposition of Ab in the vessel walls in the course of
perivascular drainage. The reason for this deposition

might be both increased production of Ab by neuronal
cells and additional degenerative vascular changes,
which commonly affect aged individuals (e.g., athero-
sclerosis, fibrohyalinosis). The latter leads to reduced
elasticity of arterial walls, which in turn might reduce
perivascular drainage by diminishing pulsatile-driving
movements in the perivascular pathway. It has been
shown that thrombosis of a superficial cortical artery
was associated with accumulation of Ab in the walls of
capillaries supplied by that artery [155]. It was further
suggested that impaired clearance of Ab leads to an
increased concentration of soluble Ab, which in turn
results in precipitation of Ab in the form of plaques,
the development of tau pathology, and neuronal and
synaptic loss [90].

In view of the literature and in combining the 2
pathomechanisms outlined above, the present author
hypothesizes the following (Fig. 6): Ab40 is produced by
smooth muscle cells within the vessel walls [30, 84, 146].
For unknown reasons this process is most pronounced
in the occipital lobe [99, 101, 125, 126, 129, 135, 153].
With the onset of AD, cortical Ab load increases. Be-
cause of the highly fibrillogenic nature of Ab42 [54], it
does generally not enter the perivascular drainage

Fig. 6 Hypothetical pathomechanism for CAA: Neuronally derived Ab42 fibrillizes into plaques and is the major constituent of Ab in
capillary CAA, while Ab40 remains soluble and enters the perivascular drainage pathway where it accumulates in blood vessel walls in the
presence of Ab40, which is produced by smooth muscle cells
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pathway, but fibrillizes in plaques and deposits on cap-
illary walls/pericapillary spaces. Mainly Ab40 remains
soluble and therefore enters the perivascular drainage
pathway [44, 54, 90, 131]. In the course of its perivas-
cular drainage Ab40 accumulates in blood vessel walls
[90, 102, 109, 141, 143, 144]. This accumulation is
probably facilitated by both preexisting Ab derived from
smooth muscle cells and other, additional degenerative
vascular changes (e.g., atherosclerosis). This process
seems to be most pronounced in the occipital lobe as
indicated by the significant increase of the severity of
CAA in the occipital lobe with increasing AD pathology
[5]. This might be because elimination of Ab in the
occipital lobe is, due to high amounts of initially pro-
duced Ab40 by smooth muscle cells (see above), more
impaired than in other regions, which in turn results in
an ‘‘over additive’’ interaction in-between preexisting,
smooth muscle-derived Ab and draining, neuronally
derived Ab.

Conclusions

Sporadic CAA is a common disease in elderly indi-
viduals and its incidence and severity increase with
age. The most important clinical implication of CAA is
its role as a frequent cause for non-traumatic cerebral
hemorrhage. From a pathological point of view, how-
ever, CAA provides a plethora of topics to be ad-
dressed in future research. To better evaluate CAA and
to compare data of different study groups it seems
necessary to refine the criteria for grading CAA in a
way that they are both accurate and practicable.
Investigations addressing the origin of Ab in CAA are
likely to further elucidate some of the principal
pathomechanisms of AD/dementia and may have
implications on future therapeutic strategies. The rela-
tionship between CAA and AD is yet to be resolved; it
seems, however, that CAA and AD have a mutual
aggravating effect with respect to the severity of both
pathomorphological changes and clinical dementia.
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