
Abstract There are numerous observations confirming
that microglia expressing major histocompatibility complex
(MHC) class II molecules are associated with the central
nervous system (CNS) in aging and pathological condi-
tions. In this study, we investigated the distribution of
MHC class II-positive microglia in Parkinson’s disease
(PD) brains. The number of MHC class II-positive microglia
in the substantia nigra (SN) and putamen increased as the
neuronal degeneration of the SN proceeded. These cells
were also ICAM-1 (CD54) and LFA-1 (CD11a) positive.
The number of activated microglia not only in the SN and
putamen but also in the hippocampus, transentorhinal cor-
tex, cingulate cortex and temporal cortex in PD was sig-
nificantly higher than that in the normal control. Most ac-
tivated microglia persisted regardless of the presence or
absence of Lewy bodies. They were frequently associated
not only with α-synuclein-positive Lewy neurites, but also
with TH-16-positive dopaminergic and WH-3-positive sero-
tonergic neurites, as well as MAP-2- and SMI-32-positive
neurites. These activated microglia were also positive for
TNF-α and interleukin-6, which are known to have a neu-
roprotective function. We conclude that MHC class II-pos-
itive microglia are a sensitive index of neuropathological
change and are actively associated with damaged neurons
and neurites.
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Introduction

Microglia qualify as immunocompetent cells in the cen-
tral nervous system (CNS) by virtue of their ability to ex-
press major histocompatibility complex (MHC) class II
antigens. Microglia with a resting or ramified morphology
seldom express those antigens, although in elderly human
tissue MHC class II-positive microglia are very occasion-
ally found in gray matter [45]. Since up-regulation of MHC
class II antigen is an early consequence of activation, the
threshold of detection is reached prior to the onset of vis-
ible morphological change. MHC class II expression on
microglia is also up-regulated in pathological situations
where microglia are activated [27, 28, 29, 40, 45]. Parkin-
son’s disease (PD) is one such condition. The salient
pathological features of PD are selective neuronal loss
presumably by apoptosis [16, 17, 24, 43] and the presence
of Lewy bodies (LBs) in the affected regions. The pres-
ence of activated microglia and the absence of reactive as-
trocytosis in the substantia nigra (SN) of patients with PD
suggest microglial involvement in the pathological process
of dopaminergic neurons [35, 36, 40 ]. In PD brains, degen-
erating neurites have also been detected in the brain stem,
especially in the dorsal vagal nuclei [14], hippocampus
[13] and amygdala [6, 21]. Gai et al. [14] speculated that
a demonstration of extensive ubiquitin-positive degener-
ating neurites might provide a clue to disease activity at
the time of death. In this study, we showed MHC class
II-positive activated microglia to be widely distributed in the
affected regions, frequently in association with α-synu-
clein-positive Lewy neurites (LNs) and monoaninergic neu-
rites in PD patients’ brains.
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Materials and methods

Subjects

Autopsied brains from 12 clinically and neuropathologically con-
firmed cases of PD (ages at death 67–86 years, mean 75.8 years)
and four age-matched individuals (ages at death 73–81 years, mean
75.8 years) were used in this study. All PD patients had presented
clinically with resting tremor, rigidity and akinesia. Neuropatho-
logically, the brain specimens showed neuronal loss in the SN, locus
ceruleus and dorsal vagal nuclei. LBs appeared in the SN, locus
ceruleus, dorsal vagal nuclei and neocortex. There were few or no
neurofibrillary tangles (NFT) or senile plaques (SP). The clinical
data of PD and control cases were summarized in Table 1. The dis-
tribution and frequency of LBs were evaluated according to the
consensus criteria for pathological diagnosis of DLB [39].

Conventional histopathology

All brains were removed within 12 h of death and immersed in
20% neutral-buffered formalin. Fixation periods of all brains were
within 3 weeks. Each brain part was sliced into 5-mm-thick sec-
tions along various planes: cerebrum in the frontal plane, brain stem
and spinal cord in the horizontal plane, and cerebellum in the sagit-
tal plane. The tissues were embedded in paraffin and sectioned at
10-µm thickness. For routine histological examinations, each sec-
tion was stained with hematoxylin and eosin (H-E) and the Klüver-
Barrera (K-B) method. Selected sections were also stained accord-
ing to the Bodian and Holzer methods. In all cases, additional sec-
tions taken from the cerebrum, brain stem, cerebellum and spinal
cord were stained according to the Gallyas-Braak (G-B) method.

Immunohistochemical staining

The 10-µm-thick sections were deparaffinized and rehydrated ac-
cording to the standard procedures for immunohistochemistry.
They were then subjected to microwave treatment for 30 min in
0.01 M citrate buffer at pH 6.0, removed from the buffer to cool
down to room temperature, and treated for 20 min with 0.3% H2O2
solution in 0.01 M phosphate-buffered saline at pH 7.4. After block-

ing, they were then incubated for 74 h at 4°C with primary antibod-
ies, treated with biotinylated second antibodies (DAKO, Carpinteria,
CA) for 1 h at room temperature, and incubated with avidin-labeled
horseradish peroxidase (DAKO) for 1 h at room temperature. Perox-
idase labeling was visualized by a brief incubation in 0.01% 3.3 di-
aminobenzidine and 0.1% H2O2 in 0.05 M TRIS-HCl buffer at
pH 7.6. Nuclei were counterstained with hematoxylin. Double im-
munostaining was also performed. The first cycle was carried out as
mentioned above, and stained sections were again given a micro-
wave treatment for 30 min in 0.01 M of citrate buffer at pH 6.0. The
second immunohistochemical cycle was carried out similarly to the
first except that it was incubated with avidin-labeled alkaline phos-
phatase (DAKO), and immunolabeling was visualized by incuba-
tion in first red. For double immunofluorescence labeling, the cere-
bral hemispheres were fixed in 4% paraformaldehyde in 0.1 mol/l
phosphate buffer, pH 7.4. Three small blocks were dissected from
the putamen, cingulate cortex and hippocampus, and were cut into
10-µm-thick sections on a vibratome. The first cycle was carried
out using the tyramide signal amplification (TSA) method (NEN
Life Science Products, Boston, MA) and was visualized with Alexa
Fluor 488 (emission peak 519 nm; Molecular Probes, USA). Then
the second cycle was carried out using the avidin-biotin combina-
tion method and was immunofluorolabeled with Alexa Fluor 568
(emission peak 603 nm). The primary antibodies used in this study
were monoclonal antibody to human pan macrophage (Ki-M1p)
(clone VI-20) at a dilution of 1:100 (Seikagaku Corporation, Tokyo,
Japan), monoclonal antibody to human HLA-DP, DQ, DR (clone
CR3/43) at a dilution of 1:100 (DAKO, Glostrup, Denmark), mon-
oclonal antibody to human LFA-1, α-chain (CD11a) (clone MHM24)
at a dilution of 1:50 (DAKO), monoclonal antibody to human
ICAM-1 (CD54) (clone W-CAM-1) at a dilution of 1:100 (Chemi-
con, Temecula, CA), monoclonal antibody to human tyrosine hydrox-
ylase (clone TH-16) at a dilution of 1:400 (Sigma, St. Louis, MO),
monoclonal antibody to human tryptophan hydroxylase (clone WH-3)
at a dilution of 1:400 (Sigma), monoclonal antibody to human
MAP-2 (clone HM-2) at a dilution of 1:100 (Sigma), monoclonal
antibody to human non-phosphorylated neurofilament (clone SMI-32)
at a dilution of 1:100 (Sternberger Monoclonals, Lutherville, MD),
polyclonal goat antibody to human α-synuclein (C-20) at a dilu-
tion of 1:100 (Santa Cruz Biotech, CA), polyclonal goat antibody
to human TNF-α at a dilution of 1:100 (DAKO Japan, Kyoto, Japan),
and polyclonal goat antibody to human interleukin (IL)-6 at a dilu-
tion of 1:100 (DAKO Japan).
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Table 1 Clinical presentation and neuropathoiogical findings of PD and control cases (PD Parkinson’s disease, NFT neurofibrillary tangle,
SP senile plaque, LB Lewy body, SN substantia nigra)

Age Sex Duration NFT SP Neuron loss LB counts
(years) SN

Hippo- Transen- Cingu- Tempo-
campus torhinal late ral

PD 1 81 M 14 I – + 20 13 11 0
2 75 F 13 I ± +++ 30 22 26 2
3 84 M 11 I ± +++ 28 17 37 4
4 86 M 11 I – +++ 20 12 16 3
5 71 M 8 I ± +++ 11 10 7 1
6 67 M 2.5 I – +++ 22 15 19 1
7 79 M 13 II ± ++ 26 7 28 1
8 69 M 1.1 I – + 10 5 7 0
9 71 M 12 I – +++ 21 3 5 0

10 74 M 9 I – ++ 10 3 7 0
11 81 M 8 I – ++ 21 2 3 1
12 72 M 4 I – + 14 14 13 0

NC 13 73 F – I – – 0 0 0 0
14 74 M – – – – 0 0 0 0
15 75 M – – – – 0 0 0 0
16 81 M – – – – 0 0 0 0



Western blot analysis

TRIS-buffered saline insoluble fraction of human peripheral blood
mononuclear cells (PBMC) with or without stimulating with lipo-
polysaccharide (LPS) and brain tissues (putamen) from PD pa-
tients were solubilized in 0.5 M TRIS-HCl pH 6.8 containing 10%

SDS and electrophoresed on 10% SDS-PAGE gel, and then trans-
ferred onto a nitrocellulose membrane. After blocking, the membrane
was incubated with monoclonal antibody to human HLA-DP, DQ,
DR (clone CR3/43) (DAKO), polyclonal goat antibody to human
TNF-α (DAKO Japan) and polyclonal goat antibody to human IL-6
(DAKO Japan), then treated with biotinylated second antibodies
(DAKO) for 1 h at room temperature, and incubated with avidin-
labeled horseradish peroxidase (DAKO) for 1 h at room tempera-
ture and then ECL Western blotting detection reagent (Amersham,
UK) to visualize protein bands on X-ray films.

Quantification

The degree of neuronal cell loss in the SN was determined by
counting the average number of pigmented neurons on one side of
the five different midbrain sections of K-B stain, and was graded
from PD I–III: PD I >150, PD II 150–75, PD III <75. Average
numbers of HLA-DP, DQ, DR (CR3/43)-positive cell counts in the
SN, putamen, hippocampus, transentorhinal cortex, cingulated cor-
tex and temporal cortex were calculated as the sum of reactive mi-
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Fig. 1 Distribution of resting and activated microglia in normal
and PD brains investigated by immunohistochemistry. In normal
brains, Ki-M1p-positive resting microglia are seen in the SN (A)
and putamen (C). In PD brains, increased number of Ki-M1p-pos-
itive microglia are seen in the SN (B) and putamen (D). A few
MHC class II (CR3/43)-positive microglia are seen in the SN (E)
and putamen (G) in normal brains. In PD brains, many CR3/43-
positive microglia are seen in those same regions (F, H). In the SN
of normal brains, only endothelial cells are positive for ICAM-1
(I). Many ICAM-1-positive microglia are seen in the SN (J), puta-
men (K) and hippocampus (L) in PD brains (PD Parkinson’s dis-
ease, SN substantia nigra, ICAM intercellular adhesion molecule).
A–I ×157, J–L ×235



croglia in five ×200 fields of the five different sections. Stat View
(Abacus, Cary, NC) was used for statistical analysis. Differences
were analyzed by the Wilcoxon test. Statistical significance was con-
firmed using backward elimination at a probability value of 0.05.

Results

We investigated the distribution of resting and activated
microglia in normal and PD brains, excluding PD brains
with Alzheimer’s disease pathology so as to investigate
only the pure form of PD pathology (Table 1). In normal
brains, many Ki-M1p-positive resting microglia were seen
in the SN and putamen (Fig. 1A, C). In PD brains, higher
numbers of Ki-M1p-positive ramified microglia were seen
in the SN and putamen (Fig. 1B, D). A few CR3/43-posi-
tive microglia were seen in the SN and putamen in normal
brains (Fig. 1E, G). In PD brains, many CR3/43-positive
ramified microglia were seen in those regions (Fig. 1F, H).
In normal brains, endothelial cells were positive for
ICAM-1 (Fig. 1 I), whereas many ICAM-1-positive mi-
croglia were seen in the SN, putamen, and hippocampus
in PD brains (Fig. 1 J–L).

Quantitative analysis of the mean number of CR3/43-
positive microglia in the SN and putamen of PD and nor-
mal control (NC) subjects indicated that patients with PD
were shown to have a significantly higher number of
CR3/43-positive microglia compared with NC. The cell
count of CR3/43-positive microglia in PD increased as the
neurodegeneration of pigmented cells in the SN advanced,
but there was no statistical difference in CR3/43-positve
microglia counts among PDI, PD II and PD III (Fig. 2).

Moreover, quantitative analysis of the mean number of
CR3/43-positive microglia in the limbic system and neo-
cortex in PD and NC indicated that the former had a sig-
nificantly higher number of CR3/43-positive microglia in
the hippocampus, transentorhinal cortex, cingulate cortex
and temporal cortex, but there was no statistical difference
in CR3/43-positve microglia counts among these places
(Fig. 3).

Double immunostainings with CR3/43 and TH-16 are
shown in Fig. 4A–C. In normal brains, there were many
TH-16-positive dopaminergic neurites and a few CR3/43-
positive microglia (Fig. 4A). In PD brains, however, many
CR3/43-positive microglia were associated with TH-16-
positive neurons or neurites (Fig. 4B, C). Double immunos-
tainings with CR3/43 and WH-3 were shown in Fig. 4D–F.
In normal brains, there were many WH-3-positive sero-
tonergic neurites and a few CR3/43-positive microglia
(Fig. 4D), whereas many CR3/43-positive microglia were
associated with WH-3-positive neurites in PD brains 
(Fig. 4E, F). Double immunostaining with CR3/43 and 
α-synuclein showed that CR3/43-positive microglia were
associated with about 20% of α-synuclein-positive LBs.
However, most activated microglia flourished regardless
of LBs (Fig. 4G). On the other hand, activated microglia
were frequently associated with α-synuclein-positive LNs
(Fig. 4H). There was no correlation between the number
of LBs and the number of CR3/43-positive microglia in PD
brain cortices (data not shown). Double immunostainings
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Fig. 2 Bar graphs showing a comparison of the average numbers
± SEM of MHC class II (CR3/43)-positive microglia in the SN
(black bars) and putamen (striped bars) in PD and normal control
(NC) (number/HPF). Patients with PD have a significantly higher
number of CR3/43-positive microglia compared with NC (*P<0.001,
**P<0.005). The cell count of CR3/43-positive microglia in PD in-
creases as the neurodegeneration of pigmented cells in the SN pro-
gresses, but there is no statistical difference in CR3/43-positve mi-
croglia counts among PDI, PD II and PD III (HPF high-power field)

Fig. 3 Bar graphs showing a comparison of the average numbers
± SEM of MHC class II (CR3/43)-positive microglia in the limbic
system and neocortex in PD (striped bars) and NC (black bars)
(number/HPF). Patients with PD have a significantly higher num-
ber of CR3/43-positive microglia in the hippocampus (HC), transen-
torhinal cortex (TE), cingulate cortex (CC) and temporal cortex (TC)
compared with NC (*P<0.01), but there is no statistical difference
in CR3/43-positive microglia counts among HC, TE, CC and TC in
PD brains



with CR3/43 and MAP-2 (Fig. 4I, J) or SMI-32 (Fig. 4K, L)
showed many CR3/43-positive microglia were associated
with MAP-2- or SMI-32-positive neurites in PD brains.

Double immunofluorostainings with ICAM-1 and LFA-1
showed that almost all activated microglia were positive
for both antibodies in the putamen of PD brains (Fig. 5A–C).
Double immunofluorostainings with CR3/43 and TNF-α or

IL-6 showed that CR3/43-positive microglia were also pos-
itive for TNF-α (Fig. 5D–F) or IL-6 (Fig. 5G–I) in the
putamen of PD brains.

Western blots of PD patients PBMC and brain tissue
homogenates showed CR3/43 protein as 34- and 28-kDa
bands, IL-6 protein as a 21-kDa band and TNF-α protein
as a 17-kDa band (Fig. 6).
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Fig. 4 Double immunostaining with MHC class II ( CR3/43 ) and
TH-16 are shown in A–C. In the SN of normal brains, there are
many TH-16-positive dopaminergic neurites (brown) and a few
CR3/43-positive microglia (purple) (A). In the SN of PD brains,
many CR3/43-positive microglia (purple) are associated with TH-
16-positive neurons or neurites (brown) (B, C). Double immunos-
taining with CR3/43 and WH-3 are shown in D–F. In the SN of
normal brains, there are many WH-3-positive serotonergic neurites
(brown) and a few CR3/43-positive microglia (purple) (D). Many
CR3/43-positive microglia (purple) are associated with WH-3-
positive neurites (brown) in the SN of PD brains (E, F). Double
immunostaining with CR3/43 and α-synuclein in the cingulated

cortex of PD brains shows that CR3/43-positive microglia (purple)
are associated with about 20% of α-synuclein-positive LBs
(brown) (G). Activated microglia (purple) were frequently associ-
ated with α-synuclein-positive LNs (brown) (H). Double im-
munostaining with CR3/43 and MAP-2 in the SN (I) and in the
pons (J) shows that many CR3/43-positive microglia (purple) are
associated with MAP-2-positive neurites (brown) in PD brains.
Double immunostaining with CR3/43 and SMI-32 in the cingulate
cortex (K) and in the pons (L) shows that many CR3/43-positive
microglia (purple) are associated with SMI-32-positive neurites
(brown) in PD brains. A–E, I, J, L ×157; F–H, K ×235



Discussion

Microglia comprise the largest population of phagocytes
associated with the CNS. It is now widely accepted that
these cells are of mononuclear, phagocyte lineage [19, 20,
28]. Cells of such a lineage enter the developing nervous
system during embryogenesis, and are involved in the re-
moval of cells undergoing apoptosis as a normal component
of brain development. During brain maturation, the macro-
phages within the parenchyma adopt a highly differenti-
ated morphology and phenotype [45]. Although microglia
do not constitutively express MHC class II antigen in hu-
man brains, they are readily up-regulated by aging as well
as by many forms of CNS pathology, including neurode-

generative diseases. MHC class II expression is necessary
for antigen presentation to CD4+ T cells; recent in vivo
studies, however, demonstrated that microglia and perivas-
cular macrophages are unable to initiate a primary immune
response in the CNS microenvironment [44]. The factors
that regulate MHC class II expression on microglia are
poorly understood. Although microglia are the most sen-
sitive cells to interferon-γ-induced up-regulation of MHC
class II expression, there is no endogenous expression of
interferon-γ within the CNS, and there are few or no T
cells recruited, thus making it unlikely that MHC class II
expression on microglia is driven by T cell-secreted inter-
feron-γ. One possibility is that this is a consequence of ac-
tivation via K+ channels [25]. On the other hand, recent
studies suggest that Cl– channels rather than K+ channels
may be of relevance [7]. IgG deposits in neurons are one
of the first changes to be observed in the CNS of mutant
SOD1 mice. The source and role of IgG are still unclear,
but it is possible that IgG accumulation in neurons is one
of the factors triggering the activation of microglia [2].

Adhesion molecules are important for the transendothe-
lial migration of inflammatory cells and their adhesion to
damaged neurons after CNS injury [9]. Among adhesion
molecules, much interest has been focused on ICAM-1
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Fig. 5 Double immunofluorostaining with ICAM-1 (green) (A)
and LFA-1 (red) (B) in the putamen of PD brains shows that al-
most all activated microglia are positive for both antibodies (C).
Double immunofluorostaining with TNF-α (green) (D) and CR3/43
(red) (E) in the putamen of PD brains shows that CR3/43-positive
microglia are also positive for TNF-α (F). Double immunofluo-
rostaining with IL-6 (green) (G) and CR3/43 (red) (H) in the puta-
men of PD brains reveals that CR3/43-positive microglia are also
positive for IL-6 (I). A–C ×157; D–I ×314



(CD54). Activation of ICAM-1 in relationship to neuronal
injury has been demonstrated after facial nerve axotomy
[55], spinal cord injury [21], Alzheimer’s disease [1] and
amyotrophic lateral sclerosis [37]. In an experimental model
of neurodegeneration, an increase in ICAM-1 expression
was one of the first pathological changes to be observed,
and strong ICAM-1 immunoreactivity was found on mi-
croglia and later on astrocytes [2]. In this study, we showed
an increased expression of ICAM-1 on activated microglia;
another striking observation was the co-expression of
LFA-1 and ICAM-1 on the majority of activated microglia
in PD brains. The expression of both receptors and counter-
receptors on the same cells suggests that activation events
could be bi-directional and triggered via microglia/mono-
cyte contact. These results show that ICAM-1 expression
might be important to the adhesive functions of microglia
as well as for the recruitment of additional cell types such
as monocytes to the site of neuronal injury.

In dementia with LBs (DLB), the presence of cortical
LBs may be the most specific pathological marker of dis-
ease. Mackenzie [31] demonstrated a positive correlation
between the number of MHC class II-positive microglia
and LBs in different brain regions, showing that MHC class
II-positive microglia frequently extended their processes
to degenerated neurons with synuclein-positive LBs. Mi-
croglia in contact with neural somata displayed an acti-
vated appearance and began proliferating, suggesting that
direct contact between damaged neurons and microglia is
one of the causes of microglia activation [52]. In fact, mi-
croglia in contact with damaged neurons do not appear to
elicit neurotoxic effects but may actually enhance the re-
covery of neurons. However, microglia are sometimes as-
sociated with neurons in normal brains while exhibiting a
resting appearance with small somata, and survive to be-
come stimulating factors for the proliferation of microglia.
This suggests that healthy neurons in the normal brain can

not activate microglia, even though they are associated with
them. In this study, we showed that MHC class II-positive
microglia were diffusely distributed in the nigrostriatal
system, limbic system and cerebral cortex in PD brains,
but that they were contacted with only about 20% of cor-
tical LBs. Moreover, there was no correlation between the
number of LBs and the number of activated microglia.
Thus, we speculate that there are other possible candi-
dates for the activation of microglia. α-Synuclein-positive
neurites comprise one such candidate, as well as the many
activated microglia associated with damaged neurites. In
addition, there were many activated microglia in associa-
tion with TH-12- or WH-3-positive monoaminergic neu-
rites and MAP-2- or SMI-32-positive neurites. Our obser-
vation showed that association with damaged or residual
neurites is the leading candidate for the activation of mi-
croglia.

Many studies indicate the vulnerability of neurons to
the potential toxicity of microglia that produce neurotoxic
substances including superoxide anion, nitric oxide (NO),
glutamate and pro-inflammatory cytokines [10, 11, 19, 26,
27, 30, 38]. The presence of microglia expressing TNF-α,
IL-1β and other cytokines in the SN of PD brains has been
reported previously [19] and Nagatsu et al. [43] have re-
ported the presence of an increased concentration of TNF-α,
IL-1β and IL-6 in the striatum of PD by ELISA. In this
study, we showed by immunohistochemistry that activated
microglia in the putamen expressed TNF-α and IL-6. Al-
though these data may suggest an involvement of the pro-
inflammatory cytokines secreted by microglia in the de-
generation of dopaminergic neurons in PD, it is also rec-
ognized that TNF-α and IL-6 have neurotrophic mecha-
nisms [3, 4, 12, 50]. To date, glial cells are acknowledged
to possess neurotrophic properties that are essential for the
survival of dopaminergic neurons [42]. Among them, glial-
derived neurotrophic factor (GDNF) and brain-derived
neurotrophic factor (BDNF), which can be released by ac-
tivated microglia, seem to be the most potent factors in
supporting SN dopaminergic neurons [4]. Although reac-
tive microglia in the vicinity of neuronal injury are gener-
ally considered to be involved in the removal of debris
from degenerating neurons [41, 49], the exact contribution
of microglial activation to synaptic recovery and remodel-
ing is not yet clear. It has been hypothesized that activated
microglia exacerbate neuronal injury through the synthe-
sis and secretion of agents that potentiate synaptic overac-
tivity and aggravate the primary insult [15, 23, 36]. An-
other intriguing possibility is that microglial activation is
a brain-protective mechanism designed to limit neurode-
generation and improve synaptic recovery following dam-
age. In support of this, data from recent studies have indi-
cated that microglial activation can attenuate excitotoxic
or ischemic injury in rodents [5], prevent apoptosis in vitro
[53], and increase neurite outgrowth and functional recov-
ery following injury [29, 46, 47]. Thus, it can be hypothe-
sized that microglia are recruited to areas of neuronal in-
jury to phagocyte degenerating neurons, where they re-
lease trophic factors to support the remaining healthy neu-
rons, thus facilitating synaptic regrowth following injury.

524

Fig. 6 Western blots was performed for CR3/43 (1), IL-6 (2 and 4)
and TNF-α (3 and 5) antibodies with homogenates of PBMC and
brain homogenates of PD patients. PBMC(-) indicates no stimula-
tion and PBMC(+) indicates stimulation with LPS. The CR3/43 an-
tibody shows the 34- and 28-kDa bands in PBMC. The IL-6 anti-
body shows the 21-kDa band and TNF-α antibody shows the 17-kDa
band in both samples (PBMC peripheral blood mononuclear cells)
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