
Abstract Although previous studies have suggested an
increased activation of humoral immunity in neurodegen-
erative diseases, it remains unclear whether this phenom-
enon is secondary to lesion formation or contributes di-
rectly to their development. Using stereotaxic injections
in macaque monkey cerebral cortex, we studied the ef-
fects of human immunoglobulins on the neuronal cyto-
skeleton. Under these conditions, several MC-1-immuno-
reactive axons were observed in the vicinity of injection
site. No MC-1 or TG-3 staining was detected in neuronal
soma. Ultrastructurally, several axons in the same area
displayed curly formations and accumulation of twisted
tubules but not paired helical filaments. These data sug-
gest that Fc fragment induce conformational changes of
tau and subtle structural alterations in axons in this model.
Immunocytochemical analyses in human autopsy materi-
als revealed the presence of human Fc fragments as well
as Fc receptors only in large pyramidal neurons known to

be vulnerable in brain aging and Alzheimer’s disease, fur-
ther supporting a possible role of immunoglobulins in neuro-
degeneration.
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Introduction

There is evidence that increased activation of humoral im-
munity takes place in Alzheimer’s disease (AD). For ex-
ample, increased levels of immunoglobulin (Ig) G have
been reported in the brains of cognitively impaired elderly
individuals [4], and AD patients have high titers of anti-
brain autoantibodies, mainly IgG3 [15, 19]. Importantly,
human autoantibodies to neurofibrillary tangles (NFT)
and astrocytes in AD brains have been produced by cell
lines from AD patients and, to a lesser degree, from nor-
mal elderly individuals [6, 13]. To date, the relationship
between the presence of IgG in the central nervous system
and neurodegeneration remains undetermined. Increased
Ig production has long been considered secondary to the
accumulation of amyloid deposits and NFT, leading sub-
sequently to the initiation of reactive changes in mi-
croglia, and release of potentially neurotoxic products [1].
Using immunocytochemical methods and electron mi-
croscopy, we have investigated the effect of stereotaxic
injections of Ig on the neuronal cytoskeleton in macaque
monkeys. We also examined the cellular distribution of
human Ig and their Fc fragments as well as Fc receptors in
the cerebral cortex in both AD and elderly control cases.

Materials and methods

Four adult male long-tailed macaque monkeys (Macaca fascicu-
laris) were used in the present study. Animals were tranquilized
with ketamine hydrochloride (25 mg/kg i.m.), intubated, and main-
tained under isoflurane general anesthesia (0.5–1.5% as necessary
in air), and strict sterile surgical conditions [9]. They were placed
for surgery in a Kopf stereotaxic large animal head holder. Up to
12 injections (400 nl each, 1 µg) of an aqueous solution of either
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Fig.1A–D Immunocytochemistry in macaque monkey and AD
cerebral cortex. A Numerous MC-1-immunoreactive structures
(arrows) are visible at low magnification (×5) in the vicinity of the
injection site (arrowheads) after Ig injection (asterisk). B At
higher magnification (×10), MC-1-immunoreactive curly axons
are depicted 1 cm away from the site of Ig injection. C–F Compar-

ison of MC-1 thread-like fibers (C, D) and Bodian-stained axons
(E, F) in macaque monkey after Ig injection (C, E, ×40) and human
brain tissue from a 80-year-old patient with early AD pathology in
the hippocampal formation (D, F, ×40). Note the similarities be-
tween C, D and E, F (AD Alzheimer’s disease). Bars A 340 µm, 
B 170 µm, C–F 40 µm
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Ig, Fc or Fab fragments (4 injections for each of them) obtained
from the serum of three elderly control volunteers (one woman, 
83 years old; two men, 78 and 79 years old) were placed within the
superior parietal and inferior temporal cortex using a 5-µl Hamil-
ton microsyringe with a 24-gauge needle. Ig fractions were pre-
pared by ammonium sulfate precipitation (50% w/v) followed by
dialysis against phosphate-buffered saline (PBS, 5 mM sodium
phosphate, pH 7.4, 0.9% NaCl). Fc and Fab fragments were pro-
duced by digestion of human Ig fractions with papain and pepsin,
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Fig.2 Electron microscopy of axons after injection of albumin so-
lution (A) and 12 µg Ig (B–F). A Axons were identified by the
presence of the myelin sheaths. Tubules appear normal after albu-
min injection. B–F Examples of curly formations and accumula-
tion of twisted tubules in axons near the injection site. Arrows
point to regions where tubules merge and form thicker and inter-
linked filaments. The asterisk in B indicates smooth endoplasmic
reticulum. B–D Axonal cytoskeleton 1 cm away from an injection site.
Bar A 250 nm; B, E 140 nm; D 180 nm; C, F 90 nm



respectively [7]. An isotonic saline solution (n=2) or albumin solu-
tion (n=2) was placed in the contralateral hemisphere. Following a
survival time of 22 days, the animals were deeply anesthetized and
transcardially perfused with cold 1% paraformaldehyde in phos-
phate buffer for 1 min followed by cold 4% paraformaldehyde for
14 min [9]. These experimental protocols were conducted within
NIH guidelines for animal research and were approved by the In-
stitutional Animal Care and Use Committee at the Mount Sinai
School of Medicine.

Brains were cut into 4- to 10-mm-thick coronal blocks, post-
fixed for 6–7 h in 4% paraformaldehyde with 1% glutaraldehyde at
4°C, and stored in PBS until processed. Macaque monkey brain
tissue was immunostained with antibody MC-1, which reacts with
conformational epitopes of tau protein [10]. Adjacent sections
were stained with antibody TG-3 against phosphorylated threonine
231 of tau protein, which labels early stages of NFT [11], a highly
specific and fully characterized antibody to the microtubule-asso-
ciated protein tau which detects both intracellular and extracellular
NFT, and Bodian silver stain [24]. For electron microscopy, 
1-mm3 blocks of tissue near to (5–10 mm) and distant from (20–
30 mm) the injection sites were postfixed in a solution containing
equal amounts of 2% (v/v) osmium in water, and 3% potassium
ferrocyanide in phosphate buffer for 30 min. After dehydration in
alcohol and propylene oxide, pieces were embedded in Epon. Thin
sections (70 nm thick) were cut with an ultramicrotome (Ultracut
E, Reichert Jung, Wien, Austria) and placed on a copper grid. Sec-
tions were contrasted with lead citrate for 3 min and observed un-
der a Zeiss EM 10C electron microscope.

To examine the affinity of Ig and their fragments in the human
cerebral cortex, 12-µm-thick sections were prepared from left and
right hippocampus, superior frontal cortex, and nucleus basalis of
Meynert from six cases (three young controls, all men, mean age:
27.5±3.2 years, three aged controls, all men, mean age 82.5±3.5
years, Braak stages I or II; and three neuropathologically con-
firmed AD; all men, mean age 81.5±2.0 years, Braak stages V or VI)
after fixation in 4% paraformaldehyde. Visualization was made
with peroxidase-conjugated anti-human Ig, IgG1, IgG2, IgG3
(Dako, dilution 1:100) and 3,3’-diaminobenzidine, and counter-
staining with cresyl violet (0.1%). Antibodies against human frag-
ments Fc and Fab were obtained from Sigma (Buchs, St Gall,
Switzerland). Albumin detection was performed in adjacent sec-
tions as previously described [18]. In addition, a rabbit anti-human
IgG Fc receptor I (CD64) obtained from Santa Cruz Biotechnology
(Santa Cruz, Calif.) was used to visualize gamma Fc receptor-im-
munoreactive neurons in adjacent sections as well as in the neo-
cortex of a 6-month-old infant who died accidentally. Double la-
beling was also performed in adjacent sections to examine colocal-
ization of Ig (Fab and Fc fragments) and Fcγ receptors as well as
Ig (Fab and Fc fragments) and NFT in AD cases [24]. These ex-
periments were also performed separately for IgG1, IgG2 and
IgG3.

Results

Three weeks following the injection of Ig or Fc fragments
a high number of axons immunoreactive for MC-1 was
detected in the vicinity (<1 cm) of the corresponding in-
jection areas (Fig.1A, B). In addition, numerous axons
were stained with the Bodian silver impregnation. The
patterns of immunostaining and Bodian staining were
comparable to those observed in early phases of neurode-
generation in brain aging (Fig.1C–F). In contrast, follow-
ing ipsilateral injection of Fab fragments and injection of
isotonic saline, or albumin solution in the contralateral
hemisphere, no morphological changes were observed
(data not shown). Neither TG3-immunoreactive pre-NFT
nor intraneuronal and extraneuronal NFT were observed
in any of macaque brains. At the electron microscopy

level, no paired helical filament (PHF) formation or other
major structural abnormality was seen. However, several
axons showed curly formations and accumulation of
tubules displaying filamentous structures at the beginning
of the tubes (Fig.2E, arrow). These subtle structural alter-
ations were completely absent in control experiments.

The patterns of Ig immunoreactivity in the human hip-
pocampus, superior frontal cortex and nucleus basalis of
Meynert did not differ between control and AD cases. Im-
munoreactivity for the intact human Ig and Fc fragments
was observed in the somatodendritic compartment of large
pyramidal cells, some axons and the surrounding neuropil
(Fig.3A, B) but was absent in other neuronal types. Ig-
containing neurons were consistently free of NFT. A weak
immunostaining of Fab fragments was observed in astro-
cytes but was absent in pyramidal cells (Fig.3C, arrow),
suggesting binding selectivity of Fc fragments for neu-
ronal elements. This binding may be partly mediated by
Fcγ receptors which were identified on the somatoden-
dritic part of Fc-immunoreactive pyramidal cells in all
three areas studied (Fig.3D). There was no difference in
neuronal distribution between IgG1 and IgG2. The most
intense immunostaining of large pyramidal neurons was ob-
tained with anti-IgG3 antibody. In control experiments, no
immunoreactivity was detected using antibodies against albu-
min in adjacent sections. Importantly, Fcγ receptors in neu-
rons were also identified in Fc-immunoreactive pyramidal
cells in a normal 6-month-old infant, excluding a cross-re-
action between the antibody used and lipofuscin (Fig.3D).

Discussion

To date, the few in vivo reports addressing the role of im-
mune responses in neurodegenerative processes have
shown that local induction of inflammatory conditions
may lead to degeneration of hippocampal CA3 neurons
and to spatial memory impairment [8], or initiate cholin-
ergic and dopaminergic neuron loss in the medial septal
area and substantia nigra in rats [3, 5]. The microscopic
pathology and ultrastructural tubule changes reported here
does not represent a nonspecific tissue damage reaction
since it does not occur following isotonic saline solution,
Fab fragment or albumin injection. Moreover, it has been
shown that following acute physical trauma in rat neocor-
tex, reactive changes in axon morphology are absent 14
days post-injury [12]. It is also important to note that the
induction of these changes does not depend on the speci-
ficity of Ig since the injection of Fab fragment had no ef-
fect on neuronal integrity. This suggests that a possibly
deleterious effect of Ig in neurons is not related to any
given inflammatory disease, but is rather associated with
the activation of humoral immunity. Although we cannot
exclude that molecules sharing the same molecular size
and charge with Fc could induce comparable morphologi-
cal changes, this is unlikely since similar results were ob-
tained after injection of the entire Ig molecule.

The induction of MC-1-immunoreactive axons by the
Fc fragment prepared from the sera of elderly healthy

61



62



controls indicates that humoral immunity reactions could
participate in the early phases of axonal degeneration in
the absence of cognitive deterioration [14], and could in-
duce conformational changes of tau preceding PHF for-
mation [10]. Importantly, the present experiments did not
reveal the punctuate staining characteristic of pre-NFT or
full development of NFT in neuronal soma, implying that
a possible effect of Ig or Fc fragments on the neuronal cy-
toskeleton is confined to axons and remains still insuffi-
cient to induce the full range of AD pathology [2]. Our ul-
trastructural data further corroborate this hypothesis. In
agreement with previous lines of evidence supporting the
presence of pathological phosphorylation sites of tau in
the absence of structural changes [20], we did not identify
either PHF in axons or other major structural abnormali-
ties in macaque monkey neocortex following Ig and Fc
fragment injection. In fact, delay between injection and
tissue preparation for histological detection may be too
short to develop PHF-like structures in this paradigm.
However, there was a development of curly formations
and twisted tubules in macaque axons which parallels the
microtubule pathology reported in AD and Pick disease
[19, 22] and may represent the first indication of struc-
tural alterations in axonal cytoskeleton following Fc frag-
ment injection. It should kept in mind that it is not possi-
ble to establish a causal relationship between these ultra-
structural changes and the presence of MC-1-immunore-
active axons from our data. Future studies including im-
munoelectron microscopy data are clearly needed to elu-
cidate this point. Although we cannot exclude that these
changes reflect collapsed tubes of endoplasmic reticulum,
this is an unlikely scenario since they were absent in con-
trol experiments.

Our morphological data in the human brain showed
that Ig and Fc fragment, but neither Fab fragment nor al-
bumin, were present in NFT-free large pyramidal neurons
in the hippocampus, superior frontal cortex and nucleus
basalis of Meynert. Serum protein leakage has been previ-
ously reported in both non-demented aged individuals and
AD patients as an evidence of blood-brain barrier damage
[16, 18]. Although this phenomenon may partly reflect
post-mortem changes in blood-brain barrier permeability,
it is noteworthy that Ig and Fc fragments were found only
in this subset of neurons. Moreover, albumin and Fab
fragment immunostaining were absent in neurons, render-
ing it unlikely that the accumulation of Ig and Fc frag-
ments reflects a nonspecific susceptibility to pre- and post-
mortem injury. These observations suggest that Ig and Fc
fragment uptake after leakage into the brain parenchyma

may be confined to cells prone to degenerate in cogni-
tively intact elderly individuals (for review see [17]). The
identification by immunocytochemistry of Fcγ receptors
in the same neuron subtypes that are Ig immunoreactive
suggests a role of these receptors in intraneuronal penetra-
tion of Ig. Although Fc receptors have been localized
mainly on microglial cells [23], one possible scenario is
that when microglial defense mechanisms are not imme-
diately activated, with subsequent phagocytosis of Ig-
coated cells, some of the Ig may still penetrate into neu-
rons and modify the neuronal cytoskeleton. Interestingly,
despite their different affinity for Fcγ receptors in lym-
phocytes, IgG1 and IgG2 display the same pattern of neu-
ronal distribution in the aged human brain. Moreover,
IgG3 immunostaining was particularly intense in large
pyramidal neurons. This suggest that Fcγ receptors are not
the only possible way for intraneuronal penetration of Ig.
Alternatively, the affinity of different Ig subtypes for neu-
ronal Fc receptors may be different from that reported in
lymphocytes. Further biochemical studies are warranted
to elucidate the mechanisms of Ig penetration into the
central nervous system, specify the affinity and binding
site of Fc fragment to tau protein, examine whether phos-
phorylation of tau protein changes Fc-binding properties,
and test the effect of chronic Ig administration on vulner-
able subsets of cortical neurons.
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