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Introduction

Approximate entropy in cardiology

Summary Background The quantification of subtle patterns in sequential
data, and their changes, has considerable potential utility throughout cardi-
ology, including the analysis of heart rate rhythmdém of the studyAp-
proximate entropy (ApEn), a recently developed statistic quantifying serial
irregularity, has been applied in numerous studies throughout mathematics
and applications, especially biology. We indicate results to date, and future
direction, of interest to cardiologistMethods.We define ApEn, indicating
basic properties. We discuss typical applications of ApEn, with special fo-
cus on a representative aspect of ApEn applications to heart rate dynamics,
to pre- and early life studies. Subsequently, we introduce and briefly dis-
cuss cross-ApEn, a thematically similar quantification of two-variable asyn-
chrony. Results ApEn consistently detects subtle shifts in heart rate rhyth-
micity in many studies in which mean levels and classical variability as-
sessments fail to discriminate normative from pathophysiological subjects.
Greater regularity (lower ApEn) clinically corresponds to compromised
physiology in all cardiologic settings discussed herein. We provide a me-
chanistic interpretation of lowered ApEn values, based on mathematical
analysis, yet linked to physiology. We discuss and clarify why ApEn is
complementary to classical ‘moment analysis’, to chaos-related statistical
measures, and to spectral and correlation measures, and oftentimes provides
clearer discriminatory capabilitfConclusions Both ApEn and cross-ApEn
have significant potential to consequentially enhance present statistical
methodologies of analysis of cardiologic data, in both clinical and in re-
search settings.

Key words Approximate entropy — irregularity — asynchrony —
complexity — variability — heart rate

quantify differences among such seensemble amount of randomness’,
ries would be extremely valuableprovide the fundamental insight of

Series of sequential data arissince these series reflect primargubject status. Despite this recogni-
throughout medicine, in a myriad ofphysiological information. Although tion, formulas and algorithms to

contexts. Within cardiology, two es-practitioners and researchers typicaljuantify an ‘extent of randomness’

sential examples are heart rate (oftely quantify mean levels, or rateshave not been developed and/or uti-
R-R interval) and ECG time-seriesand oftentimes the extent of varialized in the above contexts, primar-
related respiratory time-series are ofbility, it is recognized that in many ily since even within mathematics.
ten also of interest in many in-instances, the persistence of certaitself, such a quantification technol#
stances. Enhanced capabilities tpatterns, or shifts in an ‘apparenbgy was lacking until very recently&
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Thus except for the settings in
which egregious(changesin) serial
features presented themselves,
which specialistsare trained to vi-
sually detect,subtlerchangesn pat-
terns would largely remain unde-
tected, unquantified, and/or not
actedupon.

Recently a new mathematida
approachand formula, approximate
entropy (ApEn), has been intro-
ducedasa quantificationof regular
ity of data, motivated by both the
above application needs (29), and
by fundamental questions within
mathematic$38, 42). This approach
calibratesan ensembleaxtentof se-
guential interrelationshig, quantify-
ing a continuum that rangesfrom
totally orderedto completely ran-
dom. The centralfocus of this arti-
cle is to discussApEn, and its ap-
plication to cardiology time-series
especiallythe heartrate series o in-
dicate both resultsto date and po-
tential further applications.

Before presentinga discussionof
regularity we consideran example
(Fig. 1) to illustratewhat we aretry-
ing to measureln Fig.1, the data
representhe beat-to-bat heartrate,

in beats per minute, at equally
spacedime intervals.Tracing (A) is

from an infant who had an aborted
SIDS (Sudden Infant Death Syn-

drome) episodel week prior to the

recording,and (B) is from a healthy
infant (33). The standarddeviations
(SD) of thesetwo tracingsare ap-

proximately equal, and while the

abortedSIDS infant hasa somewhat
higher mean heart rate, both are
well within the normal range. Yet

tracing(A) appeargo be moreregu-
lar thantracing (B). We ask (i) how

do we quantify the apparentdiffer-

encesn regularity?;(ii) do theregu-
larity valuessignificantly distinguish
the datasets?;(iii) how do inherent
limitations posed by moderate
length time-series with noise and

measuremerinaccuracypresentaf-

fect statisticalanalyses?(iv) is there
some general mechanisti hypoth-
esis, applicableto diverse contexts,
that might explain such regularity
differences?

Historical context further frames
this effort. Severalcomplexity mea-
sures,e.g., K-S entropy Lyapunov
spectra, correlatim  dimension (16,
17, 20), have been developedfor

(A) Aborted SIDS Infant
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Fig. 1 Comparisorof quiet sleepheartrate tracingswith similar variability, VAR. A Tracing
from aborted SIDS infant, VAR=17.9ms, ApEn=0.742; B Tracing from normal infant,

VAR=17.2ms, ApEn=1.457

and are properly employedon truly

chaotic processes Chaos refers to

output from deterministicdynamical
systems, where the output is

boundedand aperiodic,thus appear
ing partially “random”. Recently
there have been myriad claims of

chaosbasedon analysisof experi-
mental time-seriesdata, in which

correlationbetweensuccessivanea-
surementdhas beenobserved Since
chaotic systemsrepresentonly one
of manyparadigmshat canproduce
serial correlation,it is generallyin-

appropriateto infer chaosfrom the
correlation alone. The mislabeling
of correlateddata as “chaotic” is a
relatively benignoffense.Of greater
significance, complexity statistics
that were developedfor application
to chaoticsystemsand are relatively
limited in scope have been com-
monly misapplied to finite, noisy
and/or stochasticallyderived time-
series, frequently with confoundng

and non-replicableresults. This ca-
veatis particularly germaneto bio-

logic signals,especiallythosetaken
in vivo, as such signalsusually re-
presentthe output of a complicated
network with both stochasticand
deterministic components.We ela-
borate on thesepoints below With

the developmentof ApEn, we can
now successfullyhandle the noise,
data length, and stochastic/conmgp

site model constraintsin statistical
applications.

We also briefly discuss cross-
ApEn (40, 42), a quantificaton of
asynchronyor conditioral irregular
ity between two signals. Cross-
ApEn is thematically and algorith-
mically quite similar to ApEn, yet
with a critical differencein focus: it
is appliedto two time-seriesrather
thana single series,andthusaffords
a distinct tool from which changes
in the extentof synchronyin inter
connectedsystemsor networkscan
be directly determined.This quanti-
fication strategyis thus especially
germaneto many biological feed-
back and/or control systems and
models for which cross-correlation
and cross-spectraimethods fail to
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fully highlight markedly changing
featuresof the datasetsundercon-
sideration.To date,this hasbeenap-
plied in numerous endocrinologic
applications.We believethat poten-
tial applications within cardiology
are significant, especially to heart
rate—respiratgr paired time-series,
and possibly to paired heart rate—
EEG seriesaswell.

The organization of the rest of
this article is as follows. First, we
define ApEn, and indicate someba-
sic properties. Then a relatively
brief overview of some representa
tive applicationsof ApEn to both
biology and cardiology is given.
Next, we provide somewhatgreater
depthon one aspectof ApEn appli-
cations to heart rate dynamics, to
pre- and early life studies.We then
indicate a mechanistic explanation
betweenlowered ApEn values and
compromised physiology Subse-
guently we discusscross-ApEn,in-
dicated above. We next give a bit
more mathematida discussion on
the relationshipbetweenApEn and
other statisticalapproachego time-
series analysis, to both ‘chaos-re-
lated’ measuresand to spectraland
correlation measures. Finally, we
concludeand suggestseveralareas
for new applicationsof ApEn (and
cross-ApEn).

Quantification of regularity, ApEn

To quantify irregularity we utilize
approximateentropy ApEn, a mod-
el-independentstatistic defined in
ref. (29), with further mathematida
propertiesand representativéiolog-
ical applicationsgiven in refs. (14,
34, 38, 41-44). Approximde entro-
py (ApEn), was introduced as a
guantification of regularity in se-
guencesandtime-seriegata, initial-
ly motivatedby applicationsto rela-
tively short, noisy data sets (29).
Mathematically ApEn is part of a
generaldevelopmenbf approximat-
ing Markov Chains to a process
(30); it is furthermoe employedto

refine the formulations of indepen-
dent, identically distributedrandom
variables, and normal numbersin
numbertheory via ratesof conver
genceof a deficit from maximalir-
regularity (38, 42, 43). Analytical
propertiesfor ApEn canbe foundin
refs. (29, 36, 37, 42); aswell, it pro-
vides a finite sequenceformulation
of randomness,via proximity to
maximalirregularity (38, 42). Statis-
tical evaluationis given in refs. (36
and 37).

ApEn assigns a nonnegative
numberto a sequenc®r time-series
with larger values correspondingo

greaterapparenprocessandomness back system change in

or serial irregularity and smaller
values correspondingto more in-
stancesof recognizablefeaturesor
patternsin the data. Two input pa-
rametersa run lengthm andatoler
ancewindow r, mustbe specifiedto
computeApEn. Briefly, ApEn mea-
suresthe logarithmiclikelihood that
runsof patternsthat are close (with-
in r) for m contiguousobservations
remainclose (within the sametoler
ancewidth r) on the nextincremen-
tal comparison.The opposing ex-
tremes are perfectly regular se-
guences,(e.g., sinusoidal behavior
very low ApEn), and independent
sequential processes (very large
ApEN). It is imperatve to consider
ApENn(m,r) as a family of parame-
ters; comparisonsare intendedwith
fixed m andr.

Formally given N data points
u(1), u(2),...u(N), two input param-
eters, m and r, must be fixed to
compute ApEn (denoted precisely
by ApEn(m,tN)). To define ApEn,
first form vectorsequenes x(1)
through x(N-m+1) from the {u(i)},
defined by x(i)=[u(i),..., u(i+m-
1)]. Thesevectorsrepresenm con-
secutiveu-values,commencingwith
the i point. Define the distance
d[x(i),x(j)] betweenvectorsx(i) and
X()) as the maximum differencein
their respectivescalar components
Usethe sequence(1), x(2),...X(N—
m+1) to construct,for eachi<N-
m+1, C"(r)=(number of x(j) such
that d[x(i),x()]<r)/(N-m+1). The

C"(ry's measurewithin a tolerancer

the regularity or frequency of pat-
terns similar to a given pattern of

window length m. Next, define
®™M(r) as the average value of

In C"(r), where In is the natural
logarithm. We define approximate
entropy by ApEn(m,iN)=®"(r)-

O™,

ApEn evaluatesboth dominant
andsubordinanpatternsn data;no-
tably, it will detectchangesin un-
derlying episodic behavior not re-
flected in peak occurrencer am-
plitudes (39). Additionally, ApEn
providesa direct barometerof feed-
many
coupledsystemg31, 39).

For the studiesdiscussecherein,
ApEn valuesfor all datasetswere
calculated with widely established
parameterwvaluesof m=1 or m=2,
and with r a fixed value between
0.1 to 0.25 SD of the standardde-
viation (SD) of the individual sub-
ject time-series Normalizing r to
eachtime-seriesSD in this manner
gives ApEn translation-and scale-
invariance (33), in that it remains
unchangedunder uniform process
magnification reduction,or constant
shift higher or lower. Multiple pre-
vious studiesthat includedboth the-
oretical analysis (29, 36, 39) and
clinical applications(18, 33-35, 40,
41, 45, 56) have demonstratedhat
theseinput parameterproducegood
statistical reprodudbility for ApEn
for time seriesof lengthsN =60, as
consideredherein.

ApEn is typically calculatedby a
short computer program, with a
FORTRAN listing for a “basic”
code referencefound in ref. ((35),
Appendix B). ApEn is nearly unaf-
fectedby noise of magnitudebelow
‘r’, a de facto filter level. ApEn is
robust or insensitie to artifacts or
outliers: extremely large and small
artifactshave a small affects on the
ApEn calculation,if they occur in-
frequently Both these points are
evidently useful in clinical and ex-
perimentalcontexts.

We reinforce a fundamentaldif-
ferencebetweenregularity statistics,
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such as ApEn, and variability mea-
sures: for variability measuresthe
order of the input datais irrelevant
— the focusis to quantify the degree
of spreadabout a centralvalue. In

contrast, for ApEn, discerning
changesin order from apparently
randomto very regularis the pri-

mary statisticalfocus.

Finally, further technical discus-
sion of mathematidaand statistical
propertiesof ApEn, including mesh
interplay relative consistency of
(m,r) pair choices,asymptoticnor
mality under general assumptions,
and error estimationfor generalpro-
cessescan be found elsewhere(36,
37). To develop a more intuitive,
physiologich understandingof the
ApEn definition, a multistep de-
scription of its typical algorithmic
implementationwith figures,is de-
velopedin ref. (36).

Representative biological
and cardiologic applications

ApEn hasbeenappliedto numerous
settings both within and outside
biology. Within biology and medi-
cine, it has beenappliedto studies
discriminating, e.g., atypical DNA
sequences (8), electroencephelo
grams[EEGs] (4, 46), neuromuscu-
lar control (24), and respiratoy pat-
terns (10) from normative counter
parts. Within endocrinology it has
beenemployedin multifacetedways
to determine subtle disruptions in
pathophysiologial or aging hor
monal secretorypatterns,for many
hormones, including insulin (50),
growth hormone (34), LH (44),
FSH (41), andcortisol (47).

In heart rate studies, ApEn has
shown very significant differences
in a variety of settingsin which mo-
ment (mean, SD) statisticsdid not
show clear distinctions. Possibly
paramountmonggoalsfor new sta-
tistical analysesof heart rate data
would be prediction techniquesfor
ventricularand for atrial fibrillation
(AF), and tachycardia. Recently

ApEn hasbeenshownto be predic-
tive of atrial fibrillation, progres-
sively decreasing from 120min
prior to eventsuntil the episodeit-
self (57). Furthermoe, ApEn has
been shown to quantify subtle dif-
ferencesetweenventricularfibrilla-
tion (VF) and sinus rhythm (51).
Although future studieswill be re-
quired to specify the contexts in
which ApEn may providethe sharp-
estutility to eitheror both of VF or
AF, the potential utility of such
studies,given theseinitial findings,
is considerable.

Additionally, the following repre-
sentative heart rate applicationsil-
lustratethe diversity of the applica-
tions, both presentand potential,for
approximate entropy ApEn has
been utilized to show evidenceof
phase transitions between sleeping
and waking states (1). ApEn de-
creasesmore in hypertensive pa-
tients, and for longer timeframes,
than for normotensivepatients,sug-
gesting that for hypertensive pa-
tients, persistentautonomicactivity

dynamics,specificaly to the setting
of pre-and early life. The intent of
this focusis twofold: (i) to illustrate
severalrepresentativdindings in a
bit of depth,to clarify both scientif-
ic and clinical utility of ApEn; (ii)
to indicate a continuum interpreta-
tion among antepartum, perinatal,
and postnatal heart rate analyses.
This secondpoint is both important
on its own, as well as indicating
that results from new quantitative
tools can then be synthesizedto
achievebroademechanist applica-
tion than had previously been con-
sidered.

Sample applications:
pre- and early life monitoring
studies

The utility of fetal heartrate (FHR)
analysis,and more broadly of fetal
monitoring itself, has beenthe sub-
ject of much recent controvesy.
However it appearghat muchmore

under the condition of suppressed usecould be madeof the FHR data

cardiac complexity may contribute
to the unstablehemodynamidnsults

thanis currentlypracticedwith con-
siderableanticipatedgain along two

from the outsetof generalanesthesia distinct directions.First, a consider

(19). ApEn was seen to predict
autonomic dysfunction, and out-
come, in patients awaiting liver
transplantatiorf13). In a (consciouy
dog study when hypotensionwas
inducedafter sympathgéc inhibition,
ApEn increasedcomparedo hypo-
tension alone (27). Notably and
conversely parasympétetic inhibi-
tion with hypotension resulted in
driving ApEn to nearly 0 (i.e.,
achieving very regular dynamics.
We thus infer that ApEn reflects
parasympétetic modulaton of heart
rate. Finally, ApEn establisheda
genderdifferencein heart rate dy-
namics, especially in elderly sub-
jects, with the heartrate patternsof
women significantly more irregular
thanthoseof matchedmale subjects
(48).

We now provide somemore de-
tail on one aspectof ApEn applica-
tions to cardiologic and heart rate

ableamountof pattern-relatedhfor-
mationin the FHR, aboveand sepa-
ratefrom variability measures;ould
be of crucial clinical value, yet is
currently not assesse@nd remains
clinically ignored. Quantifyirg and
detecting subtle shifts in FHR ir-
regularity (manifestingnsidiouspat-
terns of physiologic consequenge
could well provide importantdeter
minants of whether and when to
either induce labor or to performa
Caesareansection; such findings
would generally be indetectableby
auscultationSecondly the exclusive
focus of presentFHR analysisis to
determinepre- and intralabor man-
agement; inferences and linkages
from FHR datatowardsthe potential
identification of the high-risk infant
aregenerallynot investigatedBased
on severalstudiesdiscussedoelow
all of which associatemore regular
(patterned,lower ApEn) heart rate
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tracingswith compromisedphysiol-
ogy, outcome,and inadequateor in-
completenetwork developmentwe
suggesthat FHR analysescould be
justifiably used as a predictor of
postnatalife course.

Fetalmonitoringstudy

Sincethe inceptionof fetal monitor
ing, therehasbeenextensiveanalysis
of variability measuresn FHR re-
cordings,to assesdetal well-being.
Such analysisdistinguishe a “flat”
from a “reactive” tracing,but cannot
distinguish data as abnormalbased
on a tendency towards regularity
(i.e., low ApEn values)suchasseen
in sinusoidal heart rates. Broadly
the obstetricianhas beentrained to
recognizea variety of tracingsin
FHR dataas causefor concern:bra-
dycardia and tachycardia, variable
andlatedecelerationsandsinusoidal
heartrates.In general,a recognition
of particularheartrate patternsindi-
catedo thetrainedobservethatfetal
distresanay be presentApEn quan-
tifies such regularity in a manner
consistentvith intuition; it alsoquan-
tifies subtlerchangesn regularity of
datathatmay not be soperceptiblao
the observerlt is this latter property
that holds a promisefor new utility
in FHR analysesMotivated by the
aboveperspeave, a fetal monitoring
study appliedto FHR data,wasper
formed (45), and confirmedthe fol-
lowing major hypotheses(i) ApEn
is smallerin truly distressedacido-
tic) fetusesthan in healthy fetuses
(P<0.00003); (ii) ApEn values for
non-acidoticfetuseswith presumed
fetaldistressaresimilarto thosefrom
normals.Acidotic fetuseshad many
more instances (28%) of ApEn
hourly valueslessthan 0.8 than did
the normal and nonacidotic, pre-
sumed distressedfetuses combined
(5%), quantitatively reinforcing the
association between true distress
andareasonablérequencyof highly
regulartracings.In contrast,neither
the meanFHR nor variability mea-
suressignificantly distinguishedthe
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Fig. 2 Comparisorof heartratetracingswith similar variability (VAR). Ordinateis beatsper
minute (B.PM.), abscissais time. A Tracing from normal fetus, first recorded hour,
VAR=8.10, ApEn=1.227; B Tracing from labor of acidotic fetus, first recorded hour,
VAR =9.06, ApEn=0.787;C Tracingfrom samefetusshownin (B), 1 hour prior to delivery

VAR=10.34,ApEn=0.542

acidotic fetuses from either the
healthy fetusesor the non-acidotic,
presumably distressedfetuses. Of

particularnote,in several‘truly dis-

tressedabors”,otherthanlow hourly

ApEn values, there were no noted
clinical indications of fetal distress
prior to anemegencysection Signif-

icanthourly deviationsn ApEn gen-
erally correspondetb a drugadmin-
istration(e.g.,cocaine Nubain)or to

physiologic changessuch as cord

compressiorandits relief.

Fig.2 provides greater under
standingof the differencesin FHR
data,quantifiedby ApEn, that might
suggestfetal distress. Tracing (A)
correspondgo a normal fetus early
in labor, tracing (B) correspondso
an acidotic fetus at a similar early
juncture in labor, and tracing (C)
corresponddgo the samefetusasin
(B), 1 hour before delivery The
threetracings,takenfrom fetal heart

rate datain this study havea simi-
lar amountof nearterm variability.
Tracing (B) hasa significantly smal-
ler value of ApEn thantracing (A),
andso hasgreaterregularity though
the declaration of clear distress
based on recognizablepatternsin
(B) is hardly apparent.In tracing
(C), we seethe evolutionto regular
episodesof bradycardicdips, fore-
shadowedy the low ApEn valuein
(B). While traditionalmeansof data
analysisand risk assessmentight
indicatetracing(C) to be from a po-
tentially distressedetus,suchanaly-
sis and assessmerdo not yield the
sameconclusionsfrom tracing (B).
This suggeststhe use of ApEn in
screeningfor fetal distress,prior to
an indication of distressgiven by
moretraditionalmethods.
Moreover in a significantanimal
model study of fetal distress,Chaf-
fin et. al. (6) showeda highly pro-
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nounceddecreasein ApEn in the
hypoxic ovine fetus, with the extent
of ApEn reduction directly related
to the extentof the hypoxia.

Fetaldevelopmenstudy

Given the increasein systeminte-
gration observedin fetal develop-
mentfrom 20 weeksgestationahge
onwards(28), e.g.,increasedardio-
somaticcoupling (53) and increased
myelinationof the vagusnerve(49),
one would hypothesize from the
mechanistidnterpretatiorabovethat
ApEn would also generallyincrease
during this period. To studythis, fe-
tal heart rate was collected in 14
malesand 17 femalesfor 15min of
undisturbedrecording using a fetal
actocardiograplin conjunctionwith
a Dopplertransducerat 4 weekin-
tervalsfrom 20 to 36 weeksgesta-
tion (12). During that period, ApEn
significantly increasedwith gesta-
tional age. Variability (standardde-
viation) also increasedduring this

meansof obtainingreasonally accu-
rate fetal heart rates.In any case,
the qualitatively similar results
achievedvia distinct data collection
techniques reinforce the primary
finding.

Early life heartrateanalysis

A study of healthy newbornpiglets
up to 33 daysof ageshowedsignif-
icantly increasingheart rate irregu-
larity with autonomic maturation,
and furthermore, an apparent at-
tenuation of heartbeatirregularity
whenright stellateganglioninnerva-
tion is interrupted (21). This pro-
vides empirical physiologic support
postnatally of the mechanist hy-
pothesis (below) associatingApEnN
as a statistical marker of network
development and, concomitantly
that lower ApEn values mark de-
creasedesilienceof an organismto
adaptto stressfulinputs. In a study
of heartrate datafrom normal and
aborted SuddenInfant Death Syn-

timeframe,but in a complementary drome (SIDS) infants (33), 50% of

and noncoincidentmanner to that
for ApEn, in that a genderdiffer-

encewas seenbetweenmaleandfe-

male ApEn evolution, whereasno

gender distinctions were correlated
to variability evolution The ApEn

differencein gendetbaseddevelop-
mentsis physiologicdly interesting,
since the mannerand timeframe of

the gender difference parallels that
of fetal lung maturatimm (23, 26,

58), suggestingApEn as a specific
correlateof cardiorespiratgr devel-
opment. This clinically correlates
with the observatiorthat pretermfe-

males have superior survival rates
comparedto correspondingmales,
especially among the very prema-
ture.

Notably as well, the increaseof
ApEn with gestationahgewas con-
firmed by analysisof 80 fetal mag-
netocardiograsn (FMCGs) in 19
healthy fetuses between the 16th
and 41stweekof gestation(55). In-
deed, for reasonsdiscussedin ref.
(55), FMCGs may be a preferred

abortedSIDS infantsshowedgreater
ApEn instability acrossquiet sleep
than any normal infant exhibited.
This suggestshat autonomicregula-
tion of heart rate occasionally be-
comesabnormalin a high-risk sub-
ject. Of note,therewasa clearasso-
ciation between abnormdly low

ApEn values and aborted SIDS
events5 of 14 abortedSIDS infants
had at least one quiet sleep epoch
with at least 1 ApEn value below
the minimum of 45 normal infant
ApEn values.Neverthelessnuch of

the time in aborted SIDS infants,
and virtually all the time in healthy
infants, the heart rate exhibits a
standard amount of irregularity

Thus, we infer a probabilistc phe-
nomenon:the nearmiss (and possi-
bly SIDS) infant has a fundamen-
tally unstable autonomic nervous
system, manifested by occasional
dangerousregimes, in which the
heartrateis significantly moreregu-
lated than otherwise.As well, this

determination that occasional in-

stabilitiesmark high risk is a funda-
mentally different perspectivethan
thatwhich is generallyheld, of con-
sistent, insidious behavior which
furthermore indicates that signal
averagingdistinct epochsmay blur,
rather than highlight, the detection
of settings with insidious patho-
physiology

Fig. 1, referredto in the Introduc-
tion, providesfurther understanding
of the quantificationof an irregular
difference (here, between normal
and abortedSIDS infants). The RR
interval time-seriefrom the normal
and aborted SIDS infant have
comparable overall variability,
‘VAR’, as indicatedin the legend.
ApEn quantifies the difference in
apparent regularity between these
data: ApEn=0.742 for (A), and
ApENn=1.457 for (B). ApEn is thus
seento describethe greaterregular
ity given by the severalinstanceof
“apparent, approximately periodic”
segmentsseenin the abortedSIDS
infant heartrates.

In another study comparing
groupsof asphyxiatecheonateqse-
vere respiratory distress, persistent
pulmonary hypertension heart fail-
ure) to healthy neonates (35),
matchedfor primary clinical vari-
ables,the unhealthyneonatesxhib-
ited significantlylower ApEn values
than the healthy group. A serial
study was also performedon a sep-
tic infant with persistentpulmonary
hypertension(birth weight, 1090g;
gestationalage, 27 weeks), with a
large and steadyincreasein ApEn
coincidentwith recoveryof the in-
fant (35).

Synthesis

The pre- andearly-life studies taken
in ensemblein conjunctionwith the
mechanistic interpretabn below
suggest associationsbetween low
(heart rate) ApEn values in-utero
and compronised developmentin
the neonateand young infant, indi-
cating possible autonomic nervous
system dysfunction, which future



S.M. Pincus
Approximateentropyin cardiology

145

longitudinal studies should clarify.

More broadly thesefindings suggest
a continuum interpretation among
antepartum perinatal,and postnatal
heartrate analysesThis perspective
is in counterpointto that de facto

employedby practitioners,wherein
the pre-, peri- and post-natalstates
are generallyconsiderd as discrete,
separateepochs,whosefindings are
appliedto more locally time-limited
diagnoses.In particulay we postu-
late that persistenceof atypically
low heartrate irregularity along an

extendedtimeframe,either pre- and

postnatally or exclusively postna-
tally, may become an important
early marker for long-term auto-
nomic dysfunction and/or signifi-

cantly increasedisk for SIDS.

Mechanistic interpretation
for altered regularity

It seemsimportantto determinea

unifying theme suggesting greater
signal regularity in a diverserange
of complicatedcardiologc settings.
We would hardly expect a single
mathematidamodel, or evena sin-

gle family of models,to governa

wide rangeof contexts;furthermore,
we would expectthat in vivo, each
heart rate (R-R) or ECG signal
would usually representthe output
of a complex, multinodal network
with both stochasticand determinis-
tic componentsOur mechanistidy-

pothesisis that in a variety of sys-
tems, greater regularity (lower

ApEnN) correspondgo greatercom-

ponent and subsystem autonomy
This hypothesishasbeenmathemat-
ically establishedvia analysis of

several very different, representa
tional (stochasticand deterministic)
mathematida model forms, confer

ring a robustnes to model form of

the hypothesis (31, 39). Restated
contrapuntally ApEn typically in-

creasewvith greatersystemcoupling
and feedback,and greater external
influences thus providing an explic-

it barometerof autonomyin many
coupled,complicatedsystems.

A proposedmechanistichypoth-
esis, consistentwith all heart rate
findings discussederein,is that, in
a variety of composite systems,
greaterregularity (lower ApEn) cor
respondsto greatercomponentand
subsystemisolation, and clinically
correlateswith compromisedphys-
iology. The point is that in many
contexts,apparentlyincluding heart
rate and EEG settings, ‘healthy’,
more developedsystemshave good
lines of communication,which re-
flect the integration of both the
numbersof externalinfluencesthat
interactand the extentof this inter
action. In such settings, pathology
representsncompletesystemdevel-
opmentand/orlesseningexternalin-
puts, in effect isolating a central
system component and critical
nodesfrom their ambientuniverse.
Crucial biological messages are
either slow to transmitand receive,
or unableto arrive. From an output
signal perspedve, the basesystem
contributesa more dominant com-
ponentof the observedtime series,
manifestedin more regular (lower
ApEnN) output.

Empirically increasingApEn in
the earlylife studies(12, 21, 33, 35,
55) and decreasingApEn with ad-
vancing age (18 and 48) suggest
that network developmentarly and
conversely network decay later in
life arecalibratedby ApEn. Further
more, this perspectivesuggestghat
since cardiovasculanetwork devel-
opmentand myelinationare ongoing
processedluring fetal development

the samemeaningas in the ApEn
setting, herein fixed for applica-
tion to the paired time-series
{u(}{v()}. Cross-Afcn measures,
within tolerancer, the (conditiond)
regularity or frequencyof v-patterns
similar to a given u-patternof win-
dow lengthm. It is typically applied
to standadizedu and v time-series.
Greaterasynchronyindicatesfewer
instancesof (sub)patternmatches,
quantifiedby larger cross-ApEnval-
ues. Fig.3, taken from a recent
study of paired ACTH-corisol en-
docrine hormonal secretory dy-
namicsin Cushings diseasg47), il-
lustratesthe cross-ApEnquantifica-
tion, with greaterACTH-cortisol se-
cretory asynchronyin the diseased
subject,comparedo the control.
Cross-ApEnis generally applied
to comparesequencefrom two dis-
tinct yet intertwined variablesin a
network. Thus we can directly as-
sess network, and not just nodal,
evolution, under different settings—
e.g., to evaluateuncoupling and/or
changesin feedback and control.
Hence, cross-ApEn facilitates ana-
lysesof outputfrom myriad compli-
cated networks, avoiding the re-
guirementto model the underlying
system.This is especiallyimportant,
since accuratemodeling of (physio-
logical) networksis often nearlyim-
possible— even full descriptionof
all systemnodes and pathwaysis
typically unknownin most biologic
systems,to say nothing of subse-
quent good mathematicalapproxi-
mations of the resultantinternet-

and early life, (quantitatie) assess- work dynamics.The key point, sim-

mentsof suchdevelopmenmadeat
earlier stagescould provide clini-
cally relevantpredictiveinformation
of subsequendevelopments

Cross-ApEn

Cross-ApEnis a measureof asyn-
chrony betweentwo time-serieq40,
42); representive applicationsare
givenin refs. (40, 47, 56). Similarly
to ApEn, it is a two parametefami-
ly of statistics,with m andr taking

ilarly for ApEn, is that full model
specificationis not requiredto real-
ize an effective discriminationstrat-
egy Furthermorepf coursethereis
a paucity of general multivariate
time-series statistical tools, dis-
cussedurtherbelow

In additionto the evidentmeans
to potentially discriminate network
aspectsof systems,cross-ApEnal-
lows us to now addresshe follow-
ing critical, yet generic,network is-
sue: are system changesprimarily
nodal (one-variale), or rathey path-
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Fig. 3 Plasmaconcentrationsof ACTH (dotted line) and cortisol (continuousline) in a
femalepatientwith Cushing$ diseasgupperpanel)and a control subject(lower panel),each

sampledat 10-minintervalsfor 24 h

way or central control alterations axis (40). Serum concentrations

(multivariate)? An answer to this
guestionis not only essentiato ba-
sic systemunderstandingbut alsoa
prime determinanin choosing,e.g.,
therapyl/interention strategiedo at-
temptto restorepathobiologicmili-
eus to more normative settings.
Also, given multiple nodenetworks,
we can successivelyprobe pairwise,
via cross-ApEn,to determine the
weakestor altered (paired) links in
the system.The precise definition,
introducedin ref. ((42), Definition
5) is thematicallysimilar to that for
ApEnN. Cross-ApEnhas good statis-
tical replicability for wide rangesof
mathematidamodelsand processes,
similar to thatfor ApEn (40).

A representive exampleof the
applicationof cross-ApEno biolog-
ical datais asfollows. A studywas
performedto determinepossiblese-
cretory irregularity shifts with aging
within the LH-T hormonesecretory

were derivedfor LH and T in 14
young (21-34yr) and 11 older (62—
74 yr) healthy men. For each sub-
ject, blood samplesvere obtainedat
frequent(2.5min) intervalsduring a
sleep period. Although mean (and

fiable establisheghe existenceof a
“partial malemenopause.”

Relationschip to other approaches
Statisticsrelatedto chaos

The historical development of
mathematicsto quantify regularity
hascenteredaroundvarioustypesof
entropymeasurs. Entropyis a con-
cept addressingsystemrandomness
and predictabiliy, with greateren-
tropy often associatedwith more
randomnessand less system order
However there are numerousentro-
py formulations and many entropy
definitionscan not be relatedto one
other (29). K-S entropy developed
by Kolmogorovand expandedupon
by Sinai, allows one to classify de-
terministic dynamical systems by
ratesof information generation(20).
It is this form of entropythat algo-
rithms such as those given by
Grassbager and Procaccia(17) and
by Eckmannand Ruelle (9) esti-
mate. There has beenkeen interest
in the developmenof theseand re-
lated algorithms over the last 15
years,sinceentropyhasbeenshown
to be a parametethat characterias
chaoticbehavior(52).

Unfortunate}, the K-S entropy
was not developedor statisticalap-
plications, and has major debits in

SD) of LH and T concentrations this regard. The original and pri-

were indistinguishale in the 2 age
groups, cross-ApEnwas applied to

the paired LH-T time-series Older
subjects exhibited greater cross-
ApEn values (1.961+0.121) com-
pared to younger subjects
(1.574+0.249),P<107* with nearly
100% sensitivity and specificity in-

dicatinggreaterLH-T asynchronyin

the older group. Moreoverand nota-
bly, no significantLH-T linear cor

relation (Pearson“R”) differences
were found between the younger
and older cohorts,P>0.6. Mechan-
istically, the results implicate (LH-

T) network uncoupling as marking
malereproductie aging,and quanti-

mary motivationfor the K-S entropy
was to handle a highly theoretical
mathematics problem, determining
when 2 Bernoulli shifts are iso-
morphic. In its proper context, this
form of entropyis primarily applied
by emodic theoriststo well-defined
theoretical transformatios, for
which no noise and an infinite
amountof “data” are standardmath-
ematical assumptios. Attempts to
utilize K-S entropyfor practicaldata
analysisrepresenbut-of-contextap-
plication, which often generateser
ious difficulties, asit doeshere.K-S
entropy is badly compromisedby
steady (even very) small amounts
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of noise, generally requiresa vast
amount of input data to achieve
convegence(25, 59), andis usually
infinite for stochastigrandom)pro-
cessesHencea “blind” application
of the K-S entropyto practicaltime-
series will only evaluate system
noise,not underlyingsystemproper
ties. All thesedebitsare key in the
presentcontext, since most physio-
logical time-serieslikely are com-
prised of both stochasticand deter
ministic components.

ApEn was constructechlong the-
matically similar lines to the K-S
entropy though with a different fo-
cus: to provide a widely applicable,
statistically valid formula that will
distinguish data sets by a measure
of regularity (29, 35). The technical
observatiormotivating ApEn is that
if joint probability measuredor re-
constructeddynamics that describe
each of two systemsare different,
then their mauginal probability dis-
tributionson a fixed partition, given
by conditional probabilities, are
likely different. We typically need
ordersof magnitudefewer pointsto
accurately estimate these maginal
probabilities than to accuratelyre-
constructthe attractor measurede-
fining the processApEnN hasseveral
technicaladvantagesn comparison
to K-S entropyfor statisticalusage.
ApEn is nearly unafected by noise
of magnitudebelow , the filter lev-
el, gives meaningful information
with a reasonablenumber of data
points, and is finite for both sto-
chasticand deterministicprocesses.
This last point allows ApEn the cap-
ability to distinguish versions of
compositeand stochasticprocesses
from eachother while K-S entropy
would be unableto do so.

There exists an extensivelitera-
ture about understanding(chaotic)
deterministic dynamical systems
throughreconstructedlynamics.Pa-
rameterssuch as correlationdimen-
sion (16), K-S entropy andthe Lya-
punov spectrum have been much
studied,as havetechniquego utilize
relatedalgorithmsin the presencef
noise and limited data (3, 15, 22).

Even more recently prediction
(forecasting)techniqueshave been
developedfor chaotic systems(5,
11, 54). Most of thesemethodssuc-
cessfullyemploy embeddingdimen-
sionslargerthanm=2, asis typical-
ly employedwith ApEn. Thus in
the purely deterministic dynamical
system setting, for which these
methods were developed,they re-
constructthe probability structureof
the spacewith greaterdetail than
doesApEn. However in the general
(stochasticespeciallycorrelatedsto-
chastic process)setting, the statisti-
cal accuracyof the aforemeribned
parameterand methodsis typically
poor — they suffer what is denoted
by statisticiansasa ‘curse of dimen-
sionality’, akin to a statisticalmodel
overfit. Seerefs. (29, 42), and espe-
cially SectionVIl and Fig.4 of ref.
(32) for further elucidation, both
analyticallyand visually, of this op-
erationallycentralpoint.

Furthermore the predictiontech-
niques(5, 11, 54) areno longersen-
sibly definedin the generalcontext.
Complex, correlatedstochasticand
composite processesare typically
not evaluated as they are not truly
chaotic systems.The relevantpoint
hereis that sincedynamicalmecha-
nisms of most biological signalsre-
main undefined,a suitable statistic
of regularity for thesesignals must
be more “cautious”, to accommo-
date general classesof processes
and their much more diffuse recon-
structeddynamics

Generally changes in  ApEn
agree with changesin dimension
and entropy algorithmsfor low-di-
mensional, deterministic systems.
The essentialpoints here, assuring
broad utility, are that (i) ApEn can
potentially distinguish a wide vari-
ety of systemsiow-dimensionalde-
terministic systems, periodic and
multiply periodic systems,high-di-
mensionalchaotic systems,stochas-
tic and mixed (stochasticand deter
ministic) systems(29, 39), and (ii)
ApEn is applicableto noisy, medi-
um-sized data sets, such as those
typically encounteredin biological

time-seriesanalysis. Thus ApEn can
be appliedto settingsfor which the
K-S entropy and correlationdimen-
sion are either undefinedor infinite,
with good replicability propertiesas
indicatedabove.

Complementdty to correlation
andspectralanalyses

Mathematically the needfor ApEn,
and particularly for cross-ApEn,is
clarified by considering alternative
parameterghat might addresssimi-
lar conceptsin comparingtwo dis-
tinct signalsor variables(e.g.,to as-
sessa degree of synchrony) pri-
mary parametershat one might em-
ploy include the cross-correlation
function, andthe cross-spectrur(ir),
with single variablecounterpag the
auto-correlabn function and the
powerspectrum.

Most importantly the autocorre-
lation function and power spectrum,
and their bivariate counterpartsare
mostilluminating in linear systems,
e.g., SARIMA (seasonahutoregres-
sive integrated moving average)
models,for which a rich theoretical
developmentexists (2). For many
other classesf processesthesepa-
rametersoften are much less effec-
tive at highlighting certain model
characteristis, even apartfrom sta-
tistical considerationsThis point is
clearly illustratedin ref. ((40), Ap-
pendix), via study of a simple, yet
representativenodel, which we de-
note as a “variable lag” pulsatile
process.Similar limitations of the
spectraand autocorrelatin function
are inherentto wide classesof pro-
cesses.Notably for many two-di-
mensional analogs of variable lag
processes,and indeed for many
two-dimensionalsystemsin which
no small set of dominantfrequen-
cies encapsulatesnost of the total
power (i.e., for broad-bandedpec-
tra with few sharppeaks) the cross-
spectrum and the cross-correlation
function often will similarly fail to
highlight episodicitis in the under
lying model and data, and thus fail
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to highlight concomitantchangeso
suchepisodiccomponents.

As a consequencef this, both
for many empiricaldatasetsand for
complicated, composite models,
ApEn and cross-ApEn frequently
guantify more clearly time-series
distinctions than do spectral and
correlation assessmentgboth uni-
variate and bivariate). This is illu-
stratedin ref. (40), as noted above,
in which older subjectshad highly
significantly greater cross-ApEn
(LH-T) values than did younger
subjects,while no significant LH-T
linear correlation (Pearsor'R”) dif-
ferenceswere found between the
younger and older cohorts, either
laggedor unlagged.

Conclusions and future direction

The principal focus of this article
hasbeenthe descriptionof ApEn, a
guantification of serial irregularity
and its application to cardiologic
time-seriesdata. Several properties
of ApEn facilitateits utility for such
analysis:(i) ApEn canbe appliedto
time seriesof 50 or more points,
with good reprodudility; (i) ApEn
is nearly unafected by noise of
magnitudebelow a de facto speci-
fied filter level; (iii) ApEn is robust
to outliers; (iv) ApEn is finite for
stochastic, noisy deterministic and
composite(mixed) processesthese
last of which are likely modelsfor

complicatedbiological systems;(v)
increasingApEn corresponddo in-
tuitively increasing process com-
plexity in the settingsof (iv); (vi)
changesin ApEn have beenshown
mathematiddy to correspondo me-
chanisticinferencesconcerningsub-
system autonomy feedback, and
coupling, in diversemodel settings.
The applicability to medium-sized
datasetsand generalstochastigoro-
cessess in markedcontrastto cap-
abilities of “chaos” algorithmssuch
as the correlationdimension,which
are properly applied to low-dimen-
sional iterateddeterministicdynami-
cal systems.The potential uses of
ApEn to provide new insightswhen
appliedto cardiologicdataare thus

considerald, from a complementary tant correlates. Similarly,

perspectiveo thatgiven by classical
statisticalmethods.

Moreover we also proposed
cross-ApEn, a related measure of
two-variabé asynchronyas a mea-
sure of potentialinterest,especially
e.g., to pairedheartrate—respiraty
dynamics Applying cross-ApEnwe
candirectly assessietwork,and not
just nodal, evolution,underdifferent
settings— e.g., to directly evaluate
uncoupling,and/orchangesdn feed-
backandcontrol.

Applications to multiple heart
rate studies confirmed that ApEn
consistentlydetectedsubtle shifts in
heart rate rhythmicity with greater
regularity (lower ApEn) clinically
corresponding to  compromised

physiology in all settings. A me-

chanistic interpretatbn, mathemati-
cally establishedlsewhereand con-

sistentwith the heartrate studies,is

that such greaterregularity typically

manifestscompronised network de-

velopmentor performane.

In most of the studiesdiscussed
above, R-R intervals (‘heart rate’)
were the derived measureof choice
from the ECG on which subsequent
time-seriesanalysis(ApEn or other
wise) was performed.It would be
interesting, and potentially worth-
while, to performApEn on otherin-
terval sequencessuch as Q-T seg-
ments,to determineif shiftsin their
patternsover time correspondedo
and predictedphysiologicély impor
ApEn
could be appliedto sequencesf in-
terbeattimes betweenectopicbeats,
to determinewhetherthe timing of
such,andnot just the frequency has
clinical significance

Finally, an inadequatly explored
areaof importantresearctwould be
that of drug effectson the complex-
ity or irregularity of cardiovasular
dynamics. ApEn could be usedto
discernthe effects of, e.g., cocaine,
opiates,methadonealcohol and to-
bacco, on cardio-respatory data;
and it could be employedto assess
responseto anesthetics,including
‘depth of anesthesia’yia either or
both of ECG/heartrate or EEG ana-
lyses.
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