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Summary Background. The quantification of subtle patterns in sequential
data, and their changes, has considerable potential utility throughout cardi-
ology, including the analysis of heart rate rhythms.Aim of the study.Ap-
proximate entropy (ApEn), a recently developed statistic quantifying serial
irregularity, has been applied in numerous studies throughout mathematics
and applications, especially biology. We indicate results to date, and future
direction, of interest to cardiologists.Methods.We define ApEn, indicating
basic properties. We discuss typical applications of ApEn, with special fo-
cus on a representative aspect of ApEn applications to heart rate dynamics,
to pre- and early life studies. Subsequently, we introduce and briefly dis-
cuss cross-ApEn, a thematically similar quantification of two-variable asyn-
chrony. Results.ApEn consistently detects subtle shifts in heart rate rhyth-
micity in many studies in which mean levels and classical variability as-
sessments fail to discriminate normative from pathophysiological subjects.
Greater regularity (lower ApEn) clinically corresponds to compromised
physiology in all cardiologic settings discussed herein. We provide a me-
chanistic interpretation of lowered ApEn values, based on mathematical
analysis, yet linked to physiology. We discuss and clarify why ApEn is
complementary to classical ‘moment analysis’, to chaos-related statistical
measures, and to spectral and correlation measures, and oftentimes provides
clearer discriminatory capability.Conclusions. Both ApEn and cross-ApEn
have significant potential to consequentially enhance present statistical
methodologies of analysis of cardiologic data, in both clinical and in re-
search settings.

Key words Approximate entropy – irregularity – asynchrony –
complexity – variability – heart rate

Introduction

Series of sequential data arise
throughout medicine, in a myriad of
contexts. Within cardiology, two es-
sential examples are heart rate (often
R-R interval) and ECG time-series;
related respiratory time-series are of-
ten also of interest in many in-
stances. Enhanced capabilities to

quantify differences among such se-
ries would be extremely valuable,
since these series reflect primary
physiological information. Although
practitioners and researchers typical-
ly quantify mean levels, or rates,
and oftentimes the extent of varia-
bility, it is recognized that in many
instances, the persistence of certain
patterns, or shifts in an ‘apparent

ensemble amount of randomness’,
provide the fundamental insight of
subject status. Despite this recogni-
tion, formulas and algorithms to
quantify an ‘extent of randomness’
have not been developed and/or uti-
lized in the above contexts, primar-
ily since even within mathematics
itself, such a quantification technol-
ogy was lacking until very recently.



Thus except for the settings in
which egregious(changesin) serial
features presented themselves,
which specialistsare trained to vi-
sually detect,subtlerchangesin pat-
terns would largely remain unde-
tected, unquantified, and/or not
actedupon.

Recently, a new mathematical
approachand formula, approximate
entropy (ApEn), has been intro-
ducedasa quantificationof regular-
ity of data, motivated by both the
above application needs (29), and
by fundamental questions within
mathematics(38, 42). This approach
calibratesan ensembleextentof se-
quential interrelationships, quantify-
ing a continuum that rangesfrom
totally ordered to completely ran-
dom. The central focus of this arti-
cle is to discussApEn, and its ap-
plication to cardiology time-series,
especiallythe heartrateseries,to in-
dicate both results to date and po-
tential furtherapplications.

Beforepresentinga discussionof
regularity, we consideran example
(Fig. 1) to illustratewhat we aretry-
ing to measure.In Fig. 1, the data
representthe beat-to-beat heart rate,

in beats per minute, at equally
spacedtime intervals.Tracing (A) is
from an infant who had an aborted
SIDS (Sudden Infant Death Syn-
drome)episode1 week prior to the
recording,and (B) is from a healthy
infant (33). The standarddeviations
(SD) of thesetwo tracingsare ap-
proximately equal, and while the
abortedSIDS infant hasa somewhat
higher mean heart rate, both are
well within the normal range. Yet
tracing(A) appearsto be moreregu-
lar than tracing(B). We ask (i) how
do we quantify the apparentdiffer-
encesin regularity?;(ii) do the regu-
larity valuessignificantlydistinguish
the datasets?;(iii) how do inherent
limitations posed by moderate
length time-series, with noise and
measurementinaccuracypresent,af-
fect statisticalanalyses?; (iv) is there
some general mechanistic hypoth-
esis, applicableto diversecontexts,
that might explain such regularity
differences?

Historical context further frames
this effort. Severalcomplexity mea-
sures,e.g., K-S entropy, Lyapunov
spectra,correlation dimension (16,
17, 20), have been developedfor

and are properly employedon truly
chaotic processes. Chaos refers to
output from deterministicdynamical
systems, where the output is
boundedand aperiodic,thus appear-
ing partially “random”. Recently,
there have been myriad claims of
chaosbasedon analysisof experi-
mental time-seriesdata, in which
correlationbetweensuccessivemea-
surementshasbeenobserved.Since
chaotic systemsrepresentonly one
of manyparadigmsthat canproduce
serial correlation,it is generallyin-
appropriateto infer chaosfrom the
correlation alone. The mislabeling
of correlateddata as “chaotic” is a
relatively benignoffense.Of greater
significance, complexity statistics
that were developedfor application
to chaoticsystemsandarerelatively
limited in scope have been com-
monly misapplied to finite, noisy
and/or stochasticallyderived time-
series,frequently with confounding
and non-replicableresults.This ca-
veat is particularly germaneto bio-
logic signals,especiallythosetaken
in vivo, as such signalsusually re-
presentthe output of a complicated
network with both stochastic and
deterministic components.We ela-
borateon thesepoints below. With
the developmentof ApEn, we can
now successfullyhandle the noise,
data length, and stochastic/compo-
site model constraintsin statistical
applications.

We also briefly discuss cross-
ApEn (40, 42), a quantification of
asynchronyor conditional irregular-
ity between two signals. Cross-
ApEn is thematically and algorith-
mically quite similar to ApEn, yet
with a critical differencein focus: it
is applied to two time-series, rather
thana singleseries,andthusaffords
a distinct tool from which changes
in the extentof synchronyin inter-
connectedsystemsor networkscan
be directly determined.This quanti-
fication strategy is thus especially
germaneto many biological feed-
back and/or control systems and
models for which cross-correlation
and cross-spectralmethods fail to
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Fig. 1 Comparisonof quiet sleepheartrate tracingswith similar variability, VAR. A Tracing
from aborted SIDS infant, VAR=17.9ms, ApEn=0.742; B Tracing from normal infant,
VAR=17.2ms,ApEn=1.457



fully highlight markedly changing
featuresof the datasetsundercon-
sideration.To date,this hasbeenap-
plied in numerous endocrinologic
applications.We believethat poten-
tial applications within cardiology
are significant, especially to heart
rate–respiratory paired time-series,
and possibly to paired heart rate–
EEG series,aswell.

The organization of the rest of
this article is as follows. First, we
defineApEn, and indicatesomeba-
sic properties. Then a relatively
brief overview of some representa-
tive applicationsof ApEn to both
biology and cardiology is given.
Next, we provide somewhatgreater
depthon one aspectof ApEn appli-
cations to heart rate dynamics, to
pre- and early life studies.We then
indicate a mechanisticexplanation
betweenlowered ApEn values and
compromised physiology. Subse-
quently, we discusscross-ApEn,in-
dicated above. We next give a bit
more mathematical discussion on
the relationshipbetweenApEn and
other statisticalapproachesto time-
series analysis, to both ‘chaos-re-
lated’ measures,and to spectraland
correlation measures.Finally, we
concludeand suggestseveralareas
for new applicationsof ApEn (and
cross-ApEn).

Quantification of regularity, ApEn

To quantify irregularity, we utilize
approximateentropy, ApEn, a mod-
el-independentstatistic defined in
ref. (29), with further mathematical
propertiesand representativebiolog-
ical applicationsgiven in refs. (14,
34, 38, 41–44).Approximate entro-
py (ApEn), was introduced as a
quantification of regularity in se-
quencesand time-seriesdata,initial-
ly motivatedby applicationsto rela-
tively short, noisy data sets (29).
Mathematically, ApEn is part of a
generaldevelopmentof approximat-
ing Markov Chains to a process
(30); it is furthermore employedto

refine the formulationsof indepen-
dent, identically distributedrandom
variables, and normal numbers in
numbertheory, via ratesof conver-
genceof a deficit from maximal ir-
regularity (38, 42, 43). Analytical
propertiesfor ApEn canbe found in
refs.(29, 36, 37, 42); aswell, it pro-
vides a finite sequenceformulation
of randomness,via proximity to
maximalirregularity(38, 42). Statis-
tical evaluationis given in refs. (36
and37).

ApEn assigns a nonnegative
numberto a sequenceor time-series,
with larger valuescorrespondingto
greaterapparentprocessrandomness
or serial irregularity, and smaller
values correspondingto more in-
stancesof recognizablefeaturesor
patternsin the data. Two input pa-
rameters,a run lengthm anda toler-
ancewindow r, mustbe specifiedto
computeApEn. Briefly, ApEn mea-
suresthe logarithmic likelihood that
runsof patternsthat areclose(with-
in r) for m contiguousobservations
remainclose(within the sametoler-
ancewidth r) on the next incremen-
tal comparison.The opposing ex-
tremes are perfectly regular se-
quences,(e.g., sinusoidal behavior,
very low ApEn), and independent
sequential processes (very large
ApEn). It is imperative to consider
ApEn(m,r) as a family of parame-
ters; comparisonsare intendedwith
fixed m andr.

Formally, given N data points
u(1), u(2),. . .u(N), two input param-
eters, m and r, must be fixed to
compute ApEn (denoted precisely
by ApEn(m,r,N)). To define ApEn,
first form vector-sequences x(1)
through x(N–m+1) from the {u(i)},
defined by x(i) =[u(i), . . . , u(i+m–
1)]. Thesevectorsrepresentm con-
secutiveu-values,commencingwith
the ith point. Define the distance
d[x(i),x(j)] betweenvectorsx(i) and
x(j) as the maximum differencein
their respectivescalar components.
Usethe sequencex(1), x(2),. . .x(N–
m+1) to construct, for each i ≤N–
m+1, Ci

m(r)=(number of x(j) such
that d[x(i),x(j)] ≤ r)/(N–m+1). The

Ci
m(r)'s measurewithin a tolerancer

the regularity, or frequency, of pat-
terns similar to a given pattern of
window length m. Next, define
Um(r) as the average value of
ln Ci

m(r), where ln is the natural
logarithm. We define approximate
entropy by ApEn(m,r,N)=Um(r)–
Um+1(r).

ApEn evaluatesboth dominant
andsubordinantpatternsin data;no-
tably, it will detectchangesin un-
derlying episodic behavior not re-
flected in peak occurrencesor am-
plitudes (39). Additionally, ApEn
providesa direct barometerof feed-
back system change in many
coupledsystems(31, 39).

For the studiesdiscussedherein,
ApEn valuesfor all data setswere
calculated with widely established
parametervaluesof m=1 or m=2,
and with r a fixed value between
0.1 to 0.25 SD of the standardde-
viation (SD) of the individual sub-
ject time-series. Normalizing r to
eachtime-seriesSD in this manner
gives ApEn translation-and scale-
invariance (33), in that it remains
unchangedunder uniform process
magnification, reduction,or constant
shift higher or lower. Multiple pre-
vious studiesthat includedboth the-
oretical analysis (29, 36, 39) and
clinical applications(18, 33–35,40,
41, 45, 56) have demonstratedthat
theseinput parametersproducegood
statistical reproducibility for ApEn
for time seriesof lengthsN560, as
consideredherein.

ApEn is typically calculatedby a
short computer program, with a
FORTRAN listing for a “basic”
code referencefound in ref. ((35),
Appendix B). ApEn is nearly unaf-
fectedby noiseof magnitudebelow
‘r ’, a de facto filter level. ApEn is
robust or insensitive to artifacts or
outliers: extremely large and small
artifactshavea small affects on the
ApEn calculation,if they occur in-
frequently. Both these points are
evidently useful in clinical and ex-
perimentalcontexts.

We reinforce a fundamentaldif-
ferencebetweenregularitystatistics,
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such as ApEn, and variability mea-
sures: for variability measures,the
order of the input data is irrelevant
– the focusis to quantify the degree
of spreadabout a central value. In
contrast, for ApEn, discerning
changesin order from apparently
random to very regular is the pri-
marystatisticalfocus.

Finally, further technical discus-
sion of mathematical and statistical
propertiesof ApEn, including mesh
interplay, relative consistency of
(m,r) pair choices,asymptoticnor-
mality under general assumptions,
anderror estimationfor generalpro-
cessescan be found elsewhere(36,
37). To develop a more intuitive,
physiological understandingof the
ApEn definition, a multistep de-
scription of its typical algorithmic
implementation, with figures, is de-
velopedin ref. (36).

Representative biological
and cardiologic applications

ApEn hasbeenappliedto numerous
settings both within and outside
biology. Within biology and medi-
cine, it has beenapplied to studies
discriminating, e.g., atypical DNA
sequences (8), electroencephelo-
grams[EEGs] (4, 46), neuromuscu-
lar control (24), and respiratory pat-
terns (10) from normative counter-
parts. Within endocrinology, it has
beenemployedin multifacetedways
to determine subtle disruptions in
pathophysiological or aging hor-
monal secretorypatterns,for many
hormones, including insulin (50),
growth hormone (34), LH (44),
FSH (41), andcortisol (47).

In heart rate studies,ApEn has
shown very significant differences
in a varietyof settingsin which mo-
ment (mean,SD) statisticsdid not
show clear distinctions. Possibly
paramountamonggoalsfor new sta-
tistical analysesof heart rate data
would be prediction techniquesfor
ventricularand for atrial fibrillation
(AF), and tachycardia. Recently,

ApEn hasbeenshownto be predic-
tive of atrial fibrillation, progres-
sively decreasing from 120min
prior to eventsuntil the episodeit-
self (57). Furthermore, ApEn has
been shown to quantify subtle dif-
ferencesbetweenventricularfibrilla-
tion (VF) and sinus rhythm (51).
Although future studieswill be re-
quired to specify the contexts in
which ApEn may providethe sharp-
estutility to eitheror both of VF or
AF, the potential utility of such
studies,given theseinitial findings,
is considerable.

Additionally, the following repre-
sentativeheart rate applicationsil-
lustratethe diversity of the applica-
tions, both presentandpotential,for
approximate entropy. ApEn has
been utilized to show evidenceof
phase transitions between sleeping
and waking states (1). ApEn de-
creasesmore in hypertensivepa-
tients, and for longer timeframes,
than for normotensivepatients,sug-
gesting that for hypertensive pa-
tients, persistentautonomicactivity
under the condition of suppressed
cardiac complexity may contribute
to the unstablehemodynamicinsults
from the outsetof generalanesthesia
(19). ApEn was seen to predict
autonomic dysfunction, and out-
come, in patients awaiting liver
transplantation(13). In a (conscious)
dog study, when hypotensionwas
inducedafter sympathetic inhibition,
ApEn increased,comparedto hypo-
tension alone (27). Notably, and
conversely, parasympathetic inhibi-
tion with hypotension resulted in
driving ApEn to nearly 0 (i.e.,
achieving very regular dynamics).
We thus infer that ApEn reflects
parasympathetic modulation of heart
rate. Finally, ApEn establisheda
genderdifferencein heart rate dy-
namics, especially in elderly sub-
jects,with the heartrate patternsof
women significantly more irregular
than thoseof matchedmalesubjects
(48).

We now provide somemore de-
tail on one aspectof ApEn applica-
tions to cardiologic and heart rate

dynamics,specifically to the setting
of pre- and early life. The intent of
this focus is twofold: (i) to illustrate
severalrepresentativefindings in a
bit of depth,to clarify both scientif-
ic and clinical utility of ApEn; (ii)
to indicate a continuum interpreta-
tion among antepartum,perinatal,
and postnatal heart rate analyses.
This secondpoint is both important
on its own, as well as indicating
that results from new quantitative
tools can then be synthesizedto
achievebroadermechanistic applica-
tion than had previously beencon-
sidered.

Sample applications:
pre- and early life monitoring
studies

The utility of fetal heartrate (FHR)
analysis,and more broadly, of fetal
monitoring itself, has beenthe sub-
ject of much recent controversy.
However, it appearsthat muchmore
usecould be madeof the FHR data
thanis currentlypracticed,with con-
siderableanticipatedgain along two
distinct directions.First, a consider-
ableamountof pattern-relatedinfor-
mationin the FHR, aboveandsepa-
ratefrom variability measures,could
be of crucial clinical value, yet is
currently not assessedand remains
clinically ignored. Quantifying and
detecting subtle shifts in FHR ir-
regularity(manifestinginsidiouspat-
terns of physiologic consequence)
could well provide importantdeter-
minants of whether and when to
either induce labor or to perform a
Caesareansection; such findings
would generallybe indetectableby
auscultation.Secondly, the exclusive
focus of presentFHR analysisis to
determinepre- and intralabor man-
agement; inferences and linkages
from FHR datatowardsthepotential
identificationof the high-risk infant
aregenerallynot investigated.Based
on severalstudiesdiscussedbelow,
all of which associatemore regular
(patterned,lower ApEn) heart rate
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tracingswith compromisedphysiol-
ogy, outcome,and inadequateor in-
completenetwork development,we
suggestthat FHR analysescould be
justifiably used as a predictor of
postnatallife course.

Fetalmonitoringstudy

Sincethe inceptionof fetal monitor-
ing, therehasbeenextensiveanalysis
of variability measuresin FHR re-
cordings,to assessfetal well-being.
Such analysisdistinguishes a “flat”
from a “reactive” tracing,but cannot
distinguish data as abnormalbased
on a tendency towards regularity
(i.e., low ApEn values)suchasseen
in sinusoidal heart rates. Broadly,
the obstetricianhas been trained to
recognizea variety of tracings in
FHR dataascausefor concern:bra-
dycardia and tachycardia,variable
andlatedecelerations,andsinusoidal
heartrates.In general,a recognition
of particularheartratepatternsindi-
catesto thetrainedobserverthatfetal
distressmay be present.ApEn quan-
tifies such regularity in a manner
consistentwith intuition; it alsoquan-
tifies subtlerchangesin regularityof
datathatmaynotbesoperceptibleto
the observer. It is this latterproperty
that holds a promisefor new utility
in FHR analyses.Motivated by the
aboveperspective, a fetal monitoring
study, appliedto FHR data,wasper-
formed (45), and confirmedthe fol-
lowing major hypotheses:(i) ApEn
is smallerin truly distressed(acido-
tic) fetusesthan in healthy fetuses
(P<0.00003); (ii) ApEn values for
non-acidoticfetuseswith presumed
fetaldistressaresimilarto thosefrom
normals.Acidotic fetuseshad many
more instances (28%) of ApEn
hourly valueslessthan 0.8 than did
the normal and nonacidotic, pre-
sumed distressedfetusescombined
(5%), quantitatively reinforcing the
association between true distress
anda reasonablefrequencyof highly
regular tracings.In contrast,neither
the meanFHR nor variability mea-
suressignificantly distinguishedthe

acidotic fetuses from either the
healthy fetusesor the non-acidotic,
presumably distressedfetuses. Of
particularnote, in several“truly dis-
tressedlabors”,otherthanlow hourly
ApEn values, there were no noted
clinical indications of fetal distress
prior to anemergencysection.Signif-
icanthourly deviationsin ApEn gen-
erally correspondedto a drugadmin-
istration(e.g.,cocaine,Nubain)or to
physiologic changessuch as cord
compressionandits relief.

Fig. 2 provides greater under-
standingof the differencesin FHR
data,quantifiedby ApEn, thatmight
suggest fetal distress.Tracing (A)
correspondsto a normal fetus early
in labor, tracing (B) correspondsto
an acidotic fetus at a similar early
juncture in labor, and tracing (C)
correspondsto the samefetus as in
(B), 1 hour before delivery. The
threetracings,takenfrom fetal heart

rate data in this study, havea simi-
lar amount of near-term variability.
Tracing(B) hasa significantlysmal-
ler value of ApEn than tracing (A),
andso hasgreaterregularity, though
the declaration of clear distress
based on recognizablepatterns in
(B) is hardly apparent.In tracing
(C), we seethe evolution to regular
episodesof bradycardicdips, fore-
shadowedby the low ApEn valuein
(B). While traditionalmeansof data
analysisand risk assessmentmight
indicatetracing(C) to be from a po-
tentially distressedfetus,suchanaly-
sis and assessmentdo not yield the
sameconclusionsfrom tracing (B).
This suggeststhe use of ApEn in
screeningfor fetal distress,prior to
an indication of distressgiven by
moretraditionalmethods.

Moreover, in a significantanimal
model study of fetal distress,Chaf-
fin et. al. (6) showeda highly pro-
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Fig. 2 Comparisonof heartratetracingswith similar variability (VAR). Ordinateis beatsper
minute (B.P.M.), abscissais time. A Tracing from normal fetus, first recorded hour,
VAR=8.10, ApEn=1.227; B Tracing from labor of acidotic fetus, first recorded hour,
VAR=9.06, ApEn=0.787;C Tracingfrom samefetusshownin (B), 1 hour prior to delivery,
VAR=10.34,ApEn=0.542



nounced decreasein ApEn in the
hypoxic ovine fetus,with the extent
of ApEn reduction directly related
to the extentof the hypoxia.

Fetaldevelopmentstudy

Given the increasein systeminte-
gration observedin fetal develop-
ment from 20 weeksgestationalage
onwards(28), e.g., increasedcardio-
somaticcoupling (53) and increased
myelinationof the vagusnerve(49),
one would hypothesize from the
mechanisticinterpretationabovethat
ApEn would also generallyincrease
during this period.To study this, fe-
tal heart rate was collected in 14
malesand 17 femalesfor 15min of
undisturbedrecordingusing a fetal
actocardiographin conjunctionwith
a Doppler transducer, at 4 week in-
tervals from 20 to 36 weeksgesta-
tion (12). During that period,ApEn
significantly increasedwith gesta-
tional age. Variability (standardde-
viation) also increasedduring this
timeframe,but in a complementary
and noncoincidentmanner to that
for ApEn, in that a genderdiffer-
encewasseenbetweenmaleandfe-
male ApEn evolution, whereasno
gender distinctions were correlated
to variability evolution. The ApEn
differencein gender-baseddevelop-
mentsis physiologically interesting,
since the mannerand timeframeof
the genderdifferenceparallels that
of fetal lung maturation (23, 26,
58), suggestingApEn as a specific
correlateof cardiorespiratory devel-
opment. This clinically correlates
with the observationthat pretermfe-
males have superior survival rates
comparedto correspondingmales,
especially among the very prema-
ture.

Notably, as well, the increaseof
ApEn with gestationalagewascon-
firmed by analysisof 80 fetal mag-
netocardiograms (FMCGs) in 19
healthy fetuses between the 16th
and 41st weekof gestation(55). In-
deed, for reasonsdiscussedin ref.
(55), FMCGs may be a preferred

meansof obtainingreasonably accu-
rate fetal heart rates. In any case,
the qualitatively similar results
achievedvia distinct datacollection
techniques reinforce the primary
finding.

Early life heartrateanalysis

A study of healthynewbornpiglets
up to 33 daysof ageshowedsignif-
icantly increasingheart rate irregu-
larity with autonomic maturation,
and furthermore, an apparent at-
tenuation of heartbeat irregularity
whenright stellateganglioninnerva-
tion is interrupted (21). This pro-
vides empirical physiologic support
postnatally of the mechanistic hy-
pothesis (below) associatingApEn
as a statistical marker of network
development and, concomitantly,
that lower ApEn values mark de-
creasedresilienceof an organismto
adaptto stressfulinputs. In a study
of heart rate data from normal and
aborted Sudden Infant Death Syn-
drome (SIDS) infants (33), 50% of
abortedSIDS infantsshowedgreater
ApEn instability acrossquiet sleep
than any normal infant exhibited.
This suggeststhat autonomicregula-
tion of heart rate occasionallybe-
comesabnormalin a high-risk sub-
ject. Of note,therewasa clearasso-
ciation between abnormally low
ApEn values and aborted SIDS
events:5 of 14 abortedSIDS infants
had at least one quiet sleep epoch
with at least 1 ApEn value below
the minimum of 45 normal infant
ApEn values.Nevertheless,muchof
the time in aborted SIDS infants,
and virtually all the time in healthy
infants, the heart rate exhibits a
standard amount of irregularity.
Thus, we infer a probabilistic phe-
nomenon:the near-miss (and possi-
bly SIDS) infant has a fundamen-
tally unstable autonomic nervous
system, manifested by occasional
dangerousregimes, in which the
heartrateis significantlymoreregu-
lated than otherwise.As well, this
determination that occasional in-

stabilitiesmark high risk is a funda-
mentally different perspectivethan
that which is generallyheld, of con-
sistent, insidious behavior, which
furthermore indicates that signal
averagingdistinct epochsmay blur,
rather than highlight, the detection
of settings with insidious patho-
physiology.

Fig. 1, referredto in the Introduc-
tion, providesfurther understanding
of the quantificationof an irregular
difference (here, between normal
and abortedSIDS infants). The RR
interval time-seriesfrom the normal
and aborted SIDS infant have
comparable overall variability,
‘VAR’, as indicated in the legend.
ApEn quantifies the difference in
apparent regularity between these
data: ApEn=0.742 for (A), and
ApEn=1.457 for (B). ApEn is thus
seento describethe greaterregular-
ity given by the severalinstancesof
“apparent, approximately periodic”
segmentsseenin the abortedSIDS
infant heartrates.

In another study comparing
groupsof asphyxiatedneonates(se-
vere respiratory distress,persistent
pulmonary hypertension,heart fail-
ure) to healthy neonates (35),
matched for primary clinical vari-
ables,the unhealthyneonatesexhib-
ited significantly lower ApEn values
than the healthy group. A serial
study was also performedon a sep-
tic infant with persistentpulmonary
hypertension(birth weight, 1090g;
gestationalage, 27 weeks), with a
large and steady increasein ApEn
coincidentwith recoveryof the in-
fant (35).

Synthesis

Thepre-andearly-lifestudies,taken
in ensemble,in conjunctionwith the
mechanistic interpretation below,
suggest associationsbetween low
(heart rate) ApEn values in-utero
and compromised development in
the neonateand young infant, indi-
cating possible autonomic nervous
system dysfunction, which future
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longitudinal studies should clarify.
More broadly, thesefindingssuggest
a continuum interpretation among
antepartum,perinatal,and postnatal
heartrate analyses.This perspective
is in counterpointto that de facto
employedby practitioners,wherein
the pre-, peri- and post-natalstates
are generallyconsidered as discrete,
separateepochs,whosefindings are
appliedto more locally time-limited
diagnoses.In particular, we postu-
late that persistenceof atypically
low heart rate irregularity along an
extendedtimeframe,either pre- and
postnatally, or exclusively postna-
tally, may become an important
early marker for long-term auto-
nomic dysfunction and/or signifi-
cantly increasedrisk for SIDS.

Mechanistic interpretation
for altered regularity

It seemsimportant to determinea
unifying theme suggestinggreater
signal regularity in a diverserange
of complicatedcardiologic settings.
We would hardly expect a single
mathematical model, or even a sin-
gle family of models, to govern a
wide rangeof contexts;furthermore,
we would expectthat in vivo, each
heart rate (R-R) or ECG signal
would usually representthe output
of a complex, multinodal network
with both stochasticand determinis-
tic components. Our mechanistichy-
pothesisis that in a variety of sys-
tems, greater regularity (lower
ApEn) correspondsto greatercom-
ponent and subsystem autonomy.
This hypothesishasbeenmathemat-
ically establishedvia analysis of
several very different, representa-
tional (stochasticand deterministic)
mathematical model forms, confer-
ring a robustness to model form of
the hypothesis (31, 39). Restated
contrapuntally, ApEn typically in-
creaseswith greatersystemcoupling
and feedback,and greaterexternal
influences,thusproviding an explic-
it barometerof autonomyin many
coupled,complicatedsystems.

A proposedmechanistichypoth-
esis, consistentwith all heart rate
findings discussedherein,is that, in
a variety of composite systems,
greaterregularity(lower ApEn) cor-
respondsto greatercomponentand
subsystemisolation, and clinically
correlateswith compromisedphys-
iology. The point is that in many
contexts,apparentlyincluding heart
rate and EEG settings, ‘healthy‘,
more developedsystemshave good
lines of communication,which re-
flect the integration of both the
numbersof external influencesthat
interactand the extentof this inter-
action. In such settings,pathology
representsincompletesystemdevel-
opmentand/orlesseningexternalin-
puts, in effect isolating a central
system component and critical
nodesfrom their ambient universe.
Crucial biological messages are
either slow to transmitand receive,
or unableto arrive. From an output
signal perspective, the basesystem
contributesa more dominant com-
ponentof the observedtime series,
manifestedin more regular (lower
ApEn) output.

Empirically, increasingApEn in
the early life studies(12, 21, 33, 35,
55) and decreasingApEn with ad-
vancing age (18 and 48) suggest
that network developmentearly and
conversely network decay later in
life arecalibratedby ApEn. Further-
more, this perspectivesuggeststhat
since cardiovascularnetwork devel-
opmentandmyelinationareongoing
processesduring fetal development
and early life, (quantitative) assess-
mentsof suchdevelopmentmadeat
earlier stagescould provide clini-
cally relevantpredictiveinformation
of subsequentdevelopments.

Cross-ApEn

Cross-ApEnis a measureof asyn-
chronybetweentwo time-series(40,
42); representative applicationsare
given in refs. (40, 47, 56). Similarly
to ApEn, it is a two parameterfami-
ly of statistics,with m and r taking

the samemeaningas in the ApEn
setting, herein fixed for applica-
tion to the paired time-series
{u(i)},{v(i)}. Cross-ApEn measures,
within tolerancer, the (conditional)
regularityor frequencyof v-patterns
similar to a given u-patternof win-
dow lengthm. It is typically applied
to standardizedu and v time-series.
Greaterasynchronyindicatesfewer
instancesof (sub)patternmatches,
quantifiedby larger cross-ApEnval-
ues. Fig. 3, taken from a recent
study of paired ACTH-cortisol en-
docrine hormonal secretory dy-
namicsin Cushing’s disease(47), il-
lustratesthe cross-ApEnquantifica-
tion, with greaterACTH-cortisol se-
cretory asynchronyin the diseased
subject,comparedto the control.

Cross-ApEnis generallyapplied
to comparesequencesfrom two dis-
tinct yet intertwined variablesin a
network. Thus we can directly as-
sess network, and not just nodal,
evolution, underdifferent settings–
e.g., to evaluateuncoupling, and/or
changes in feedback and control.
Hence, cross-ApEn facilitates ana-
lysesof output from myriad compli-
cated networks, avoiding the re-
quirementto model the underlying
system.This is especiallyimportant,
sinceaccuratemodelingof (physio-
logical) networksis often nearlyim-
possible– even full descriptionof
all system nodes and pathways is
typically unknown in most biologic
systems,to say nothing of subse-
quent good mathematicalapproxi-
mations of the resultant inter-net-
work dynamics.The key point, sim-
ilarly for ApEn, is that full model
specificationis not requiredto real-
ize an effective discriminationstrat-
egy. Furthermore,of course,thereis
a paucity of general multivariate
time-series statistical tools, dis-
cussedfurtherbelow.

In addition to the evidentmeans
to potentially discriminatenetwork
aspectsof systems,cross-ApEnal-
lows us to now addressthe follow-
ing critical, yet generic,network is-
sue: are system changesprimarily
nodal (one-variable), or rather, path-
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way or central control alterations
(multivariate)? An answer to this
questionis not only essentialto ba-
sic systemunderstanding,but alsoa
prime determinantin choosing,e.g.,
therapy/intervention strategiesto at-
tempt to restorepathobiologicmili-
eus to more normative settings.
Also, given multiple nodenetworks,
we can successivelyprobepairwise,
via cross-ApEn, to determine the
weakestor altered(paired) links in
the system.The precisedefinition,
introduced in ref. ((42), Definition
5) is thematicallysimilar to that for
ApEn. Cross-ApEnhas good statis-
tical replicability for wide rangesof
mathematical modelsand processes,
similar to that for ApEn (40).

A representative exampleof the
applicationof cross-ApEnto biolog-
ical datais as follows. A study was
performedto determinepossiblese-
cretory irregularity shifts with aging
within the LH-T hormonesecretory

axis (40). Serum concentrations
were derived for LH and T in 14
young (21–34yr) and11 older (62–
74 yr) healthy men. For each sub-
ject, blood sampleswereobtainedat
frequent(2.5min) intervalsduring a
sleep period. Although mean (and
SD) of LH and T concentrations
were indistinguishable in the 2 age
groups,cross-ApEnwas applied to
the paired LH-T time-series. Older
subjects exhibited greater cross-
ApEn values (1.961±0.121) com-
pared to younger subjects
(1.574± 0.249),P<10–4, with nearly
100% sensitivity and specificity, in-
dicatinggreaterLH-T asynchronyin
the oldergroup.Moreoverandnota-
bly, no significant LH-T linear cor-
relation (Pearson “R”) differences
were found between the younger
and older cohorts,P>0.6. Mechan-
istically, the results implicate (LH-
T) network uncoupling as marking
malereproductive aging,andquanti-

fiable establishesthe existenceof a
“partial malemenopause.”

Relationschip to other approaches

Statisticsrelatedto chaos

The historical development of
mathematicsto quantify regularity
hascenteredaroundvarioustypesof
entropymeasures. Entropy is a con-
cept addressingsystemrandomness
and predictability, with greateren-
tropy often associatedwith more
randomnessand less systemorder.
However, thereare numerousentro-
py formulations, and many entropy
definitionscannot be relatedto one
other (29). K-S entropy, developed
by Kolmogorovand expandedupon
by Sinai, allows one to classify de-
terministic dynamical systems by
ratesof informationgeneration(20).
It is this form of entropythat algo-
rithms such as those given by
Grassberger and Procaccia(17) and
by Eckmann and Ruelle (9) esti-
mate. There has been keen interest
in the developmentof theseand re-
lated algorithms over the last 15
years,sinceentropyhasbeenshown
to be a parameterthat characterizes
chaoticbehavior(52).

Unfortunately, the K-S entropy
was not developedfor statisticalap-
plications, and has major debits in
this regard. The original and pri-
marymotivationfor theK-S entropy
was to handle a highly theoretical
mathematicsproblem, determining
when 2 Bernoulli shifts are iso-
morphic. In its proper context, this
form of entropyis primarily applied
by ergodic theoriststo well-defined
theoretical transformations, for
which no noise and an infinite
amountof “data” arestandardmath-
ematical assumptions. Attempts to
utilize K-S entropyfor practicaldata
analysisrepresentout-of-contextap-
plication, which often generatesser-
ious difficulties,as it doeshere.K-S
entropy is badly compromisedby
steady, (even very) small amounts
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Fig. 3 Plasmaconcentrationsof ACTH (dotted line) and cortisol (continuousline) in a
femalepatientwith Cushing’s disease(upperpanel)and a control subject(lower panel),each
sampledat 10-min intervalsfor 24 h



of noise, generally requiresa vast
amount of input data to achieve
convergence(25, 59), and is usually
infinite for stochastic(random)pro-
cesses.Hencea “blind” application
of the K-S entropyto practicaltime-
series will only evaluate system
noise,not underlyingsystemproper-
ties. All thesedebitsare key in the
presentcontext, since most physio-
logical time-serieslikely are com-
prised of both stochasticand deter-
ministic components.

ApEn was constructedalong the-
matically similar lines to the K-S
entropy, though with a different fo-
cus: to provide a widely applicable,
statistically valid formula that will
distinguish data sets by a measure
of regularity (29, 35). The technical
observationmotivatingApEn is that
if joint probability measuresfor re-
constructeddynamics that describe
each of two systemsare different,
then their marginal probability dis-
tributionson a fixed partition,given
by conditional probabilities, are
likely different. We typically need
ordersof magnitudefewer points to
accurately estimate these marginal
probabilities than to accuratelyre-
construct the attractor measurede-
fining the process.ApEn hasseveral
technicaladvantagesin comparison
to K-S entropy for statisticalusage.
ApEn is nearly unaffectedby noise
of magnitudebelow r, the filter lev-
el, gives meaningful information
with a reasonablenumber of data
points, and is finite for both sto-
chasticand deterministicprocesses.
This lastpoint allowsApEn thecap-
ability to distinguish versions of
compositeand stochasticprocesses
from eachother, while K-S entropy
would be unableto do so.

There exists an extensivelitera-
ture about understanding(chaotic)
deterministic dynamical systems
throughreconstructeddynamics.Pa-
rameterssuch as correlationdimen-
sion (16), K-S entropy, andthe Lya-
punov spectrum have been much
studied,ashavetechniquesto utilize
relatedalgorithmsin the presenceof
noise and limited data (3, 15, 22).

Even more recently, prediction
(forecasting)techniqueshave been
developedfor chaotic systems(5,
11, 54). Most of thesemethodssuc-
cessfullyemploy embeddingdimen-
sionslarger thanm=2, as is typical-
ly employed with ApEn. Thus in
the purely deterministic dynamical
system setting, for which these
methods were developed,they re-
constructthe probability structureof
the space with greater detail than
doesApEn. However, in the general
(stochastic,especiallycorrelatedsto-
chasticprocess)setting, the statisti-
cal accuracyof the aforementioned
parametersand methodsis typically
poor – they suffer what is denoted
by statisticiansasa ‘curseof dimen-
sionality’, akin to a statisticalmodel
overfit. Seerefs. (29, 42), and espe-
cially SectionVII and Fig. 4 of ref.
(32) for further elucidation, both
analyticallyand visually, of this op-
erationallycentralpoint.

Furthermore,the predictiontech-
niques(5, 11, 54) areno longersen-
sibly definedin the generalcontext.
Complex, correlatedstochasticand
composite processesare typically
not evaluated,as they are not truly
chaotic systems.The relevantpoint
hereis that sincedynamicalmecha-
nismsof most biological signalsre-
main undefined,a suitable statistic
of regularity for thesesignalsmust
be more “cautious”, to accommo-
date general classes of processes
and their much more diffuse recon-
structeddynamics.

Generally, changes in ApEn
agree with changes in dimension
and entropy algorithms for low-di-
mensional, deterministic systems.
The essentialpoints here, assuring
broad utility, are that (i) ApEn can
potentially distinguish a wide vari-
ety of systems:low-dimensionalde-
terministic systems, periodic and
multiply periodic systems,high-di-
mensionalchaoticsystems,stochas-
tic and mixed (stochasticand deter-
ministic) systems(29, 39), and (ii)
ApEn is applicableto noisy, medi-
um-sized data sets, such as those
typically encounteredin biological

time-seriesanalysis.ThusApEn can
be appliedto settingsfor which the
K-S entropyand correlationdimen-
sion areeitherundefinedor infinite,
with good replicability propertiesas
indicatedabove.

Complementarity to correlation
andspectralanalyses

Mathematically, the needfor ApEn,
and particularly for cross-ApEn,is
clarified by consideringalternative
parametersthat might addresssimi-
lar concepts.In comparingtwo dis-
tinct signalsor variables(e.g.,to as-
sess a degree of synchrony), pri-
mary parametersthat onemight em-
ploy include the cross-correlation
function,andthe cross-spectrum(7),
with singlevariablecounterparts the
auto-correlation function and the
powerspectrum.

Most importantly, the autocorre-
lation function and power spectrum,
and their bivariatecounterparts,are
most illuminating in linear systems,
e.g., SARIMA (seasonalautoregres-
sive integrated moving average)
models,for which a rich theoretical
developmentexists (2). For many
other classesof processes,thesepa-
rametersoften are much less effec-
tive at highlighting certain model
characteristics, even apart from sta-
tistical considerations. This point is
clearly illustrated in ref. ((40), Ap-
pendix), via study of a simple, yet
representativemodel, which we de-
note as a “variable lag” pulsatile
process.Similar limitations of the
spectraand autocorrelation function
are inherentto wide classesof pro-
cesses.Notably, for many two-di-
mensional analogs of variable lag
processes,and indeed for many
two-dimensionalsystemsin which
no small set of dominant frequen-
cies encapsulatesmost of the total
power (i.e., for broad-bandedspec-
tra with few sharppeaks),the cross-
spectrum and the cross-correlation
function often will similarly fail to
highlight episodicities in the under-
lying model and data,and thus fail
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to highlight concomitantchangesto
suchepisodiccomponents.

As a consequenceof this, both
for manyempiricaldatasetsand for
complicated, composite models,
ApEn and cross-ApEn frequently
quantify more clearly time-series
distinctions than do spectral and
correlation assessments(both uni-
variate and bivariate). This is illu-
stratedin ref. (40), as noted above,
in which older subjectshad highly
significantly greater cross-ApEn
(LH-T) values than did younger
subjects,while no significant LH-T
linear correlation (Pearson“R”) dif-
ferences were found between the
younger and older cohorts, either
laggedor unlagged.

Conclusions and future direction

The principal focus of this article
hasbeenthe descriptionof ApEn, a
quantification of serial irregularity,
and its application to cardiologic
time-seriesdata. Several properties
of ApEn facilitate its utility for such
analysis:(i) ApEn canbe appliedto
time series of 50 or more points,
with good reproducibility; (ii) ApEn
is nearly unaffected by noise of
magnitudebelow a de facto speci-
fied filter level; (iii) ApEn is robust
to outliers; (iv) ApEn is finite for
stochastic,noisy deterministic and
composite(mixed) processes,these
last of which are likely models for

complicatedbiological systems;(v)
increasingApEn correspondsto in-
tuitively increasing process com-
plexity in the settingsof (iv); (vi)
changesin ApEn have beenshown
mathematically to correspondto me-
chanisticinferencesconcerningsub-
system autonomy, feedback, and
coupling, in diversemodel settings.
The applicability to medium-sized
datasetsand generalstochasticpro-
cessesis in markedcontrastto cap-
abilities of “chaos” algorithmssuch
as the correlationdimension,which
are properly applied to low-dimen-
sional iterateddeterministicdynami-
cal systems.The potential uses of
ApEn to providenew insightswhen
applied to cardiologicdata are thus
considerable, from a complementary
perspectiveto thatgiven by classical
statisticalmethods.

Moreover, we also proposed
cross-ApEn, a related measureof
two-variable asynchrony, as a mea-
sureof potential interest,especially,
e.g., to pairedheart rate–respiratory
dynamics.Applying cross-ApEn,we
can directly assessnetwork,and not
just nodal,evolution,underdifferent
settings– e.g., to directly evaluate
uncoupling,and/orchangesin feed-
backandcontrol.

Applications to multiple heart
rate studies confirmed that ApEn
consistentlydetectedsubtleshifts in
heart rate rhythmicity, with greater
regularity (lower ApEn) clinically
corresponding to compromised

physiology in all settings. A me-
chanistic interpretation, mathemati-
cally establishedelsewhereandcon-
sistentwith the heartratestudies,is
that suchgreaterregularity typically
manifestscompromised network de-
velopmentor performance.

In most of the studiesdiscussed
above, R-R intervals (‘heart rate’)
were the derivedmeasureof choice
from the ECG on which subsequent
time-seriesanalysis(ApEn or other-
wise) was performed.It would be
interesting, and potentially worth-
while, to performApEn on otherin-
terval sequences,such as Q-T seg-
ments,to determineif shifts in their
patternsover time correspondedto
andpredictedphysiologically impor-
tant correlates. Similarly, ApEn
could be appliedto sequencesof in-
terbeattimes betweenectopicbeats,
to determinewhetherthe timing of
such,andnot just the frequency, has
clinical significance.

Finally, an inadequately explored
areaof importantresearchwould be
that of drug effectson the complex-
ity or irregularity of cardiovascular
dynamics.ApEn could be used to
discernthe effects of, e.g., cocaine,
opiates,methadone,alcohol and to-
bacco, on cardio-respiratory data;
and it could be employedto assess
response to anesthetics,including
‘depth of anesthesia’,via either or
both of ECG/heartrateor EEG ana-
lyses.
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