
Schwerpunkt

Herzschr Elektrophys 2018 · 29:48–56
https://doi.org/10.1007/s00399-017-0539-6
Received: 24 October 2017
Accepted: 26 October 2017
Published online: 5 January 2018
© Springer Medizin Verlag GmbH, ein Teil von
Springer Nature 2018

Axel Loewe1 · Eike Moritz Wülfers2,3 · Gunnar Seemann1,2,3

1 Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen,
Medical Center, Computational Modeling Group, Albert-Ludwigs University of Freiburg, Freiburg,
Germany

3 Faculty of Medicine, University of Freiburg, Freiburg, Germany

Cardiac ischemia—insights from
computational models

Introduction

Over the past decades, computational
modeling has emerged as a research
method in the field of cardiac electro-
physiology, complementary to classical
experimental approaches including an-
imal experiments and clinical studies.
Modeling can span multiple spatiotem-
poral scales and bridge levels of in-
tegration. Moreover, hypotheses can
be tested quantitatively under perfectly
controlled conditions. In this review
article, we acquaint the reader with the
basic concepts of multiscale modeling
of cardiac electrophysiology and present
its application through the example of
acute cardiac ischemia.

Multiscale modeling of cardiac
electrophysiology

Mathematical representations of the
heart spanning multiple spatiotemporal
scales and levels of integration provide
means to gain mechanistic insight into
clinically relevant phenomena. Such
in silico models have the advantage of
providing a controlled environment al-
lowing one to study how changes of
certain parameters affect the overall
system quantitatively, while causing no
harm to patients or animals. In this way,
computational models can help to iden-
tify and characterize basic physiological
mechanisms, to improve diagnosis and
therapy, and to design and refine in vitro
and in vivo experiments. While mod-
els build on basic and well-established
principles of physics like conservation

of energy or the propagation of fields,
there are always a number of parameters
that need to be defined before using
a model. On the one hand, this gives
the opportunity to tailor computational
models to specific phenotypes (e. g.,
diseases like atrial fibrillation or acute
ischemia). On the other hand, compu-
tational models need to be appropriately
constrained using adequate data from
other experimental platforms.

In the case of cardiac electrophysi-
ology, the smallest physiological struc-
ture being considered are often single ion
channels of the cell membrane. Their ki-
netics, i. e., the opening and closing of
the gates controlling ionic current flow
through the channels, are mostly de-
scribed using so-called ordinary differ-
ential equations (ODEs, . Fig. 1a). An
ODE is a type of equation that describes
a variable (e. g., the open probability of
a gate) in terms of its derivatives (i. e.,
the rate of change, in this case, the rate
of opening or closing). The derivative
(rate) can depend on other parameters,
such as ion concentrations or transmem-
brane voltage (Vm). Solving an ODE de-
scribing the rate of change of a variable
yields a description of the behavior of
that variable itself over time, i. e., the
time course of this variable. Ion channel
models can take into account modifi-
cations by genetic mutations, drugs, or
altered experimental conditions such as
acute ischemia.

Electrophysiological models consider
the various ion channels present in the
membrane of cardiac myocytes. All ion
channels are coupled via Vm and the dy-

namically changing ion concentrations
in different spatial domains (i. e., extra-
cellular, intracellular, and several subcel-
lular compartments like the sarcoplasmic
reticulum). Theyarerepresentedbyasys-
tem of coupled ODEs (. Fig. 1b). Such
single-cell models yield action potentials
(AP) upon stimulation and can be ad-
justed to represent different cell states,
e. g., disease-induced remodeling.

As cardiac myocytes form a func-
tional syncytium, excitation propagates
through cardiac tissue, causing spa-
tiotemporal changes in Vm. The cou-
pling between neighboring cells can
mathematically be represented in a so-
called reaction-diffusion systemby using
tissue level simulations. Such a system
is described with so-called partial dif-
ferential equations (PDEs, . Fig. 1c).
While the (channel-level) ODEs include
time dependency, the PDEs additionally
incorporate a spatial component. The
reaction part describes how a cell expe-
riencing an influence by its neighbors
responds with an AP. The diffusion part
describes how the excitation of one cell
spreads to neighboring cells, which in
turn react themselves. Such a reaction-
diffusion system allows calculating, for
instance, the propagationof anactivation
wavefront. By representing conduction
barriers and specific anatomy in such
tissue models, it is possible to include
for example various levels of fibrosis
and thereby enable personalization of
computational models.

Finally, the local differences of Vm

throughout the heart cause currents that
represent the source of an electric field
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Fig. 19 Hierarchy ofmul-
tiscalecardiacelectrophysi-
ologymodels ranging from
ion channels (a) via inte-
grated cell models (b) and
tissue levelmodels (c) to
the body surface and elec-
trocardiogram (d)

extending into the torso and up to the
body surface. The field distribution is de-
scribed by Poisson’s equation and depicts
the body surface potentials and, thus, al-
lows recording virtual ECGs from these
models (. Fig. 1d).

Cellular level

The AP of a cardiac myocyte is trig-
gered by a stimulus causing the open-
ing of sodium channels. The inflow of
sodium ions depolarizes the cell to posi-
tive voltages of around +40mV. The fol-
lowing plateau phase of the AP is due to
abalancedflowofpotassiumandcalcium
currents. Eventually, potassium currents
dominate and repolarize the cardiac my-
ocyte back to the resting Vm of around
–80mV. The human ventricular AP lasts
about 300–400ms.

During cardiac ischemia, this behav-
ior changes depending on the time after
initiation of the insult. The different
experimentally identified phases of is-
chemia which are considered here are:
phase 1a (after 5min) and phase 1b (be-
tween 20 and 30min) [2]. In phase 1a,
mainly three effects can be observed:
hyperkalemia, acidosis, and hypoxia.
These, in turn, cause a reduction of the
AP amplitude and AP duration while the
resting Vm is increased (less negative)

[25]. Phase 1a is often subclassified as
stage 1 (5 to 7min) and stage 2 (10 to
12min). Phase 1b is characterized by
additional cellular uncoupling causing
a decrease in intercellular conductance.
Also, the extracellular potassium con-
centration ([K+]o) and the intracellular
calcium concentration ([Ca2+]i) increase,
favoring initiation of arrhythmias [2].

Single-cell modeling

The seminal work by Hodgkin and Hux-
ley provided the first mathematical re-
construction of the electrophysiological
behavior of cells by modelling the AP of
a neuron [10]. In principle, they de-
scribe the cell as an electric network
(. Fig. 1b). Charges are separated by
the cellular membrane, which is thus
modelled as a capacitor. Currents can
flow through ion channels, which are de-
scribed as conductances (or conversely
as resistors). The different reversal po-
tentials for different channels are taken
into account by connecting batteries in
series with the conductances. The con-
ductances and reversal potentials are not
constant over time but dependon the ion
concentrations and ODEs describing the
channel gating.

Based on the neuronal work of
HodgkinandHuxley andonearly cardiac

models of Purkinje cells by Noble, more
specific models have been developed
for cardiac myocytes of several species
[6]. These include additional coupled
ODEs describing various channels, ex-
changers, pumps, and other processes
that influence intracellular ion concen-
trations. For the different ion channels,
the current Ix (where X can stand for
any given channel type, e. g., INa, IK1) de-
pends on the respectivemaximal channel
conductance gx, the reversal potential,
Vm, and on so-called gating variables
po (. Fig. 1a). Gating variables are for-
mulated as ODEs defining their rate of
change, for instance of the form

dpo
dt
= αpo (1 − po) − βpo po . (1)

Here, αpo and βpoare rate constants
describing the transition from a closed
to an open state and vice versa [6]. These
gates describe the biophysical processes
ofactivationandinactivationof ionchan-
nels. The rate constants may depend on
Vm or ion concentrations. The mem-
brane is still modelled as a capacitance
that separates charges between the intra-
and extracellular space. Mathematically,
that results in the equation

dVm

dt
= −

(Iion + Istim)
Cm

, (2)
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Abstract
Background. Complementary to clinical and
experimental studies, computational cardiac
modeling serves to obtain a comprehensive
understanding of the cardiovascular system
in order to analyze dysfunction, evaluate
existing, and develop novel treatment
strategies.
Objectives. We describe the basics of
multiscale computational modeling of
cardiac electrophysiology from the molecular
ion channel to the whole body scale. By
modeling cardiac ischemia, we illustrate how
in silico experiments can contribute to our
understanding of how the pathophysiolo-
gical mechanisms translate into changes
observed in diagnostic tools such as the
electrocardiogram (ECG).

Materials andmethods. Quantitative in silico
modeling spans a wide range of scales from
ion channel biophysics to ECG signals. For each
of the scales, a set of mathematical equations
describes electrophysiology in relation to the
other scales. Integration of ischemia-induced
changes is performed on the ion channel,
single-cell, and tissue level. This approach
allows us to study how effects simulated at
molecular scales translate to changes in the
ECG.
Results. Ischemia induces action potential
shortening and conduction slowing. Hence,
ischemic myocardium has distinct and
significant effects on propagation and
repolarization of excitation, depending
on the intramural extent of the ischemic
region. For transmural and subendocardial

ischemic regions, ST segment elevation and
depression, respectively, were observed,
whereas intermediate ischemic regions were
found to be electrically silent (NSTEMI).
Conclusions. In silico modeling contributes
quantitative and mechanistic insight into
fundamental ischemia-relatedarrhythmoge-
nic mechanisms. In addition, computational
modeling can help to translate experimental
findings at the (sub-)cellular level to the
organ and body context (e. g., ECG), thereby
providing a thorough understanding of this
routinely used diagnostic tool that may
translate into optimized applications.

Keywords
Electrocardiography · Electrophysiology ·
Review · Mathematicalmodels · Cardiology

Kardiale Ischämie – Erkenntnisse aus Computermodellen

Zusammenfassung
Hintergrund. Das mechanistische Verständnis
des Herz-Kreislauf-Systems ist von grundle-
gender Bedeutung, wennman Fehlfunktionen
verstehen, Behandlungsmöglichkeiten
bewerten und neue Therapien entwickeln
will. Die quantitative In-silico-Modellierung
kann klinische und experimentelle Studien
ergänzen.
Fragestellung. Wir beschreiben die
Grundlagen einer computergestützten
Multiskalenmodellierung der kardialen Elek-
trophysiologie und des Elektrokardiogramms
(EKG) – von Ionenkanälen auf molekularer
Ebene bis hin zur Ebene des Gesamtorga-
nismus. Am Beispiel der Modellierung der
kardialen Ischämie veranschaulichenwir, wie
In-silico-Experimente zum Verständnis der
Zusammenhänge zwischen fundamentalen
pathophysiologischenMechanismen und
Diagnosewerkzeugenwie dem EKG beitragen
können.

Material und Methoden. Die numerische
Herzmodellierung integriert viele zeitlich-
räumliche Skalen: Von der Ionenkanalbiophy-
sik bis hin zu EKG-Signalen. Für jede der Skalen
beschreibenmathematischeGleichungen die
elektrophysiologische Funktion in Beziehung
zu den anderen Skalen. Die Integration
von ischämieinduzierten Veränderungen
erfolgt auf Ionenkanal-, Einzelzell- und
Gewebeebene. Mit diesem Ansatz lässt sich
untersuchen, wie sich aus simulierten Effekten
auf molekularer Ebene Änderungen im
simulierten EKG ergeben.
Ergebnisse. Aufgrund der Verkürzung des
Aktionspotenzials und der Leitungsver-
langsamung haben ischämische Bereiche
unterschiedlicher transmuraler Ausdehnung
einen deutlichen Effekt auf die Erregungs-
ausbreitung und die Repolarisation. Eine
ST-Segment-Hebung bzw. -Senkung zeigte
sich für transmurale bzw. subendokardiale

ischämische Regionen. Ischämische Regionen
mittlerer Ausdehnung waren elektrisch
unauffällig (NSTEMI).
Schlussfolgerung. Die In-silico-Modellierung
kann quantitative und mechanistische
Erkenntnisse zu fundamentalen ischämie-
bezogenen arrhythmogenen Mechanismen
liefern. Darüber hinaus erlaubt die compu-
tergestützte Modellierung, experimentelle
Ergebnisse von der (sub-)zellulären Ebene auf
die Organ- und EKG-Ebene zu übertragen.
Somit trägt sie zu einem tieferen Verständnis
des routinemäßig eingesetzten EKGs und zu
einer Optimierung dieses Werkzeugs bei.

Schlüsselwörter
Elektrokardiographie · Elektrophysiologie ·
Übersicht · Mathematische Modelle ·
Kardiologie

describing the change of Vm over time,
dependent on the membrane capaci-
tance Cm, a stimulus current Istim, and
the currents through all transmembrane
ion channels, pumps and exchangers
that are summed up in Iion. Thus, Iion is
the sum of several currents Ix, includ-
ing any given channel/exchanger/pump
type (e. g., INa, IK1, INa/K). Repetitively
solving (2) and thus, mathematically

speaking, integrating Vm over time,
yields an AP which presents the time
course of Vm.

Specific human ventricular in silico
AP models have been developed. One
prominent example is the model by ten
Tusscher and Panfilov [24]. This model
includes a refined representation of in-
tracellular calcium handling and elec-
trophysiological heterogeneity across the

ventricular wall (subepicardial, mid-my-
ocardial, and subendocardial variants of
the cell model).

Example: ischemia

ThetenTusscher andPanfilovmodel [24]
can serve as a basis to numerically rep-
resent the effects of ischemia on human
ventricularelectrophysiology[25, 27]. At
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Fig. 28 Temporally and regionally resolvedeffects of ischemia.Actionpotentials (AP) of subepicardialmyocytes atdifferent
temporal stages of ischemia (a). Examples of ischemic regionswith varying transmural extent due to occlusion of the left an-
terior descending coronary artery and the related levels of hyperkalemia, acidosis, and hypoxia (b). (Images reproducedwith
permission from [27] (a) and [28] (b))

the different phases of ischemia, hyper-
kalemia, acidosis, and hypoxia influence
different parameters in the model [27].
ThemodelalsocontainsanATP-sensitive
channel (IK,ATP) [25, 27] to incorporate
further hypoxia effects.

In addition to the temporal phases,
spatial differences in ion channel activ-
ity are considered. For example, IK,ATP
varies from subendo- to subepicardium
[25]. The occlusion of a vessel has a re-
gional effect on the cells. Oxygen-de-
prived cells, located in the central is-
chemic zone (CIZ), are affected by the
complete set of ischemic changes. Other
cells which are still sufficiently perfused
by normal or collateral vessels are not
affected at all (normal zone, NZ). In-
between lies the border zone (BZ) with
distinct transitions of hyperkalemia, aci-
dosis, and hypoxia (illustrated in inset
of . Fig. 2b). As an example, the APs of
subepicardial cells in the CIZ at different
temporal ischemia phases are illustrated
in . Fig. 2a. The AP duration (APD)
at 90% repolarization is shortened from
309ms (control), to 116ms (phase 1a,
stage 1), 72ms (phase 1a, stage 2), and
56ms (phase 1b). Similarly, the rest-
ing Vm becomes less negative: –85mV
(control), –74mV (phase 1a, stage 1),
–64mV (phase 1a, stage 2), and –58mV
(phase 1b).

Tissue level

The cardiomyocytes in the ventricular
wall are surroundedbyextracellularcom-
ponents and are electrically coupled by
gap junctions. The Vm difference be-
tween neighboring cells induces a cur-
rent through the gap junctions and the
extracellular space, allowing excitation to
spread. Gap junction density is highest at
the short ends of myocytes. That makes
cell-to-cell conduction about 10 times
stronger along the long axis of myocytes
than perpendicular to them. The ratio
of longitudinal to transversal conductiv-
ity is called anisotropy ratio. Extracel-
lular conduction is also stronger along
myocytes than perpendicular to them,
although less pronounced than for intra-
cellular conduction. Therefore, conduc-
tion velocity (CV) is faster along the long
axis of cells than perpendicular to them.

The ventricular myocardium is elec-
trically activated by the Purkinje system
causingexcitationpropagation fromapex
to base and from endo- to epicardium.
Due to intrinsic electrical heterogeneities
(apico-basal, transmural, and interven-
tricular), the APD distribution is not ho-
mogeneous in the ventricles and the re-
polarization follows a specific sequence
generating the concordant T-wave in the
ECG [12].

Both depolarization and repolariza-
tion are affected by ischemia. As stated
above, temporal and regional effects are
seen depending on the time after occlu-

sion and the occlusion site. The longer
ischemia lasts, the more severe are the
effects (. Fig. 2a). Moreover, a distal oc-
clusion will influence mostly the endo-
cardial side of the ventricular wall, while
a proximal occlusionwould lead to a fully
transmural ischemia. Therefore, the cen-
tral ischemic zone and the border zone
will vary in size and position, leading
to spatial differences in APD during is-
chemia. In addition, the higherATP sen-
sitivity of IK,ATP towards the epicardium
further contributes to APD gradients.

Tissue modeling

The basic idea of tissue modelling is to
assemble the electric network represen-
tations of several cells by intra- and ex-
tracellularly coupling of the individual
cells. However, doing so for every cell
in the heart (or just a region of inter-
est) would result in a huge electrical net-
work. Commonly, excitation spread is
therefore modeled with macroscopic ap-
proachesdescribingthe tissueasacontin-
uum. Thereby, one computational node
(one instance of an electric network rep-
resentation of a cell) represents multiple
myocytes. We create virtual geometries
of a heart (or a piece of tissue) and can
place the nodes in distances in the or-
der of 0.1 to 0.5mm. At every node, the
electricalpropertiesrepresentativeforthe
myocytes in the vicinity can be recorded,
i. e., an AP as well as the ion channel dy-
namics.
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Fig. 38 Vmdistribution of different ischemia setups at t =200ms. The transmural extent of the is-
chemic region and the stage of ischemiawere varied. (Image reproducedwith permission from [27])

Tissue models also have to consider
the currents between neighboring nodes
that are caused by locally differing Vm.
The so-called bidomain model does that
by electrically connecting the intra- and
extracellular ends of each node to the
respective ends of every neighboring
node. These electrical connections in-
clude a conductance that considers the
myocyte orientation (i. e., an intracellu-
lar conductance along myocyte direction
could be 10 times that of a perpendicu-
lar conductance). The bidomain model
can be described by two PDEs. A very
common simplification, known as the
monodomain model, is to assume equal
anisotropy ratios for the intra- and ex-
tracellular space. In that case, the model
reduces to just one PDE [3]:

∇ ⋅ (σ∇Vm) = β (Cm
dVm

dt
+ Iion) (3)

where ∇ is a spatial derivative opera-
tor (producing larger values where the
difference between neighboring nodes is
larger), σ is the so-called anisotropic con-
ductivity tensor (a mathematical object
describing the tissue conductivity in lon-
gitudinal and transversal direction), and
β is the cell surface-to-volume ratio. Like
in the single-cell models, dVm

dt describes

the temporal rate of change of Vm. This
PDE represents a reaction-diffusion sys-
tem and thereby enables the calculation
of the propagation of excitation. Numer-
ical aspects of this equation and appro-
priate schemes to solve it can be found
elsewhere [3].

To simulate a realistic propagation,
a cardiac geometry, e. g., derived from
medical imaging systems, and a descrip-
tion of myocyte orientation in combina-
tion with the conductivity of the tissue
is needed. Most tissue models do not in-
clude the Purkinje network, but instead
emulate it by using a stimulation pro-
tocol, where Purkinje-muscle junctions
are electrically stimulated at fixed time
points [11].

Example: ischemia

In the in silico ischemia cases presented
here, the anatomical model of the ven-
tricles was derived from magnetic reso-
nance(MR)imagesofahealthyvolunteer.
Themyocyteorientationwasmodeledus-
ing a rule-based method [12]. Both ac-
tivation sequence and physiological het-
erogeneity were set based on [12]. In
most of the work, an occlusion of the
left anterior descending coronary artery

was modeled using ellipsoidal regions of
varying transmural extent (subendocar-
dial region as smallest to transmural re-
gion as largest ischemic region).

Overall excitation outside the central
ischemic zone and the border zone was
not significantly influenced by the is-
chemia. Depending on the transmural
extent and the time after occlusion, the
CV in the ischemic region was reduced.
Due to the shorter APD in the ischemic
region, the cells in it start to repolar-
ize first, leading to a Vm gradient across
the wall (being responsible for the so-
called injury current). This is shown for
different phases and transmural extent
in . Fig. 3 for a time point 200ms after
initiation of excitation.

Electrocardiogram

Depolarization and repolarization of car-
diac tissue are reflected in electric body
surface potentials as described by the
bidomain theory. By recording the time
course of these body surface potentials at
defined electrode positions, an electro-
cardiogram (ECG) is obtained. Activa-
tionof the ventricles, i. e., depolarization,
leads to the QRS complex of the ECG.
During the AP plateau, all myocytes in
healthy ventricles are at almost the same
Vm, i. e., the spatial gradient is very small,
yielding an almost isoelectrical ST-seg-
ment. After the ST-segment, the T-wave
reflects repolarization of the ventricular
myocytes.

To diagnose acute myocardial is-
chemia, depression or elevation of the
ST-segment of the ECG are important
indications depending on the location of
the ischemic region within the heart and
its transmural extent. In the physiologi-
cal case, almost no spatial differences of
Vm exist shortly after the activation of the
ventricles due to the plateau phase of the
AP (isoelectric ST segment). However,
the ischemia-induced changes of the
AP discussed above give rise to injury
currents flowing between healthy and
ischemic tissue during the plateau phase
of the AP [7]. These currents are the
source of the electrical field reflected in
the non-isopotential ST-segment. How-
ever, not all cases of ischemia cause
changes in the ECG, which is reflected
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Fig. 48 ElectrocardiogramleadV4 for ischemiaofvaryingtransmuralextent instage2 (a)andvaryingdurationofa transmu-
ral ischemia (b). Ventricular Vmandbody surfaceΦedistributionduring the actionpotential plateau (t =200ms) for ischemia
of varying transmural extent in stage 2 (c). (Images reproducedwith permission from [26] (a, b), and [27] (c))

by the categorization into ST-elevation
(STEMI) and non-ST-elevation myocar-
dial infarction (NSTEMI), the latter also
being known as electrically silent. Com-
putationalmodeling canhelp to elucidate
the fundamental principles causing ST
elevation and depression, to identify the
reasons for electrically silent ischemia,
and to optimize the diagnostic potential
of the ECG as detailed below.

Electrocardiogrammodeling

The challenge to derive a body surface
ECG from a given spatiotemporal dis-
tribution of Vm is known as the forward
problemofelectrocardiography. Thespa-
tial gradient of Vm at each time point im-
presses a current density on the tissue as
described by the bidomain theory ([12];
. Fig. 1d). The result is a PDE similar to
the tissue model presented above:

∇⋅((σi + σe)∇Φe) = −∇⋅(σi∇Vm) (4)

Thus, the extracellular potentials
Φe in the whole torso including the body
surface can be computed based on the
macroscopic intra- and extracellular
conductivities σi and σe , and the Vm

distribution in the heart. By tracing the
potential difference between electrodes
on the virtual body surface over time,
a virtual ECG is obtained.

Example: ischemia

The ischemia-induced changes of the AP
and the excitation propagation alter the
spatial distribution of Vm during the car-
diac cycle and therefore also affect the
ECG. Based on experimental findings
and the in silico results described above,
we investigatedwhere these changes stem
from and how different locations and
transmural extents affect them. When

ischemia is restricted to the subendocar-
dial layer of the ventricular wall, a small
transmural Vm gradient causes ST-seg-
ment depression in leads close to the is-
chemic region [26]. If ischemia persists
and the region extends transmurally, this
gradient turns in opposite direction lead-
ing to ST segment elevation [26]. With
intermediate transmural ischemic exten-
sion, these effects balance and cause elec-
trically silent ischemia (. Fig. 4a, c; [28]).
In a case study of such an electrically
silent ischemia, Potyagaylo et al. [19]
demonstrated that the simulated mag-
netocardiogram (MCG) did not show
any changes of the ST-segment either
(like in the non-ischemic control case
either), suggesting that electrically silent
ischemia is also magnetically silent.

In computational models, it was
shown that duration of ischemia not
only influences the transmural extent of
ischemia but also affects the resulting

Herzschrittmachertherapie + Elektrophysiologie 1 · 2018 53



Schwerpunkt

ECG. Wilhelms et al. [26] investigated
the three temporal phases within the
first 30min after the occlusion described
above and observed distinct characteris-
tics in the ECG (. Fig. 4b). After 30min,
almost no excitation was initiated in
the CIZ. In transmural ischemia, the
difference between subendocardial and
subepicardial ischemic tissue decreases
during phase 1b compared to earlier
stages. Consequently, ST segment eleva-
tion attenuates after 20–30min showing
that besides the transmural extent of
the ischemic region, also the temporal
stage of ischemia affects the ECG and
the direction of the ST segment shift.

In a large computational study com-
prising 765 stage 2 ischemia scenarios of
different location, size, and width of the
BZ, and using different anatomical mod-
els, weshowedthatthe largerthe ischemic
region and the smaller the BZ, the easier
is its detection by ECG changes. Assum-
ingrealisticnoise conditions, a sensitivity
of 57% was observed considering all is-
chemic setups, in contrast to 71 and 86%
when only considering ischemic regions
with a radius greater than 5 and 10mm,
respectively [14]. Moreover, the sensitiv-
ity showed considerable interindividual
variability ranging from 41–71% for the
three anatomical models included [14].

As the ECG-based diagnosis of is-
chemia is mostly based on the standard
12-lead ECG, it could potentially be
improved by considering additional
electrode locations. In [15], different
lead systems were analyzed and opti-
mized. The 12-lead ECG performed
better (64.2 ± 24.9% detection rate)
than a 3-lead system (41.4 ± 11.8%).
In contrast, adding right-sided Wilson
leads had negligible effect. Considering
optimally placed additional electrodes
increased the detection rate by only
2–3% depending on the desired speci-
ficity suggesting that the added value
of additional ECG electrode locations is
limited. However, an alternative feature
of ST-segment deviation was proposed
based on the in silico results, i. e., the
K-point which is defined as the base-
line deviation at the minimum of the
ST-segment envelope signal. Using the
K-point as a parameter for ischemia

detection increased specificity by 7–10%
compared to standard features.

Further aspects of modeling
acute ischemia

Beyond the methods used in the ex-
amples presented above, computational
modelling has further applications in in-
vestigating cardiac ischemia, from its un-
derlying mechanisms to its effects on the
heart. On the microscopic level, for in-
stance, it can be used to investigate the
effects of ischemia on tissue conductivity.
To do this, three-dimensional models of
blocks of tissue containing several con-
nectedcardiacmyocytes are created (e. g.,
based on image data). In simulations, the
blocks are subjected to an electric field
as if each block were between two elec-
trodes. The tissue block models can be
altered according to the effects of acute
ischemia, including collapse of the inter-
stitial space, cell swelling, closure of gap
junctions, and fibrosis. Subjecting these
altered blocks to the same electric field
results in changes of the overall tissue
conductivity that can be used to adapt
the conductivity tensors σ from Eq. 3 for
tissue-level simulations of ischemia [21,
23].

Other computational works focus on
the secondary effects of ischemia, such
as arrhythmogeneity. Here, computa-
tional models can be used to investigate
hypotheses on how ventricular arrhyth-
mias are facilitated by ischemic regions
[5]. Computational tissue simulations
also allow easy recording of arrhythmia-
associated parameters such as APDs, re-
fractoriness, and CV [4]. Tissue models
canevenbeused inpatient-specific simu-
lations, where the computational model
is derived from image data (e. g., MR)
and can include ischemic regions. That
allows to conduct patient-specific sim-
ulations of ventricular tachycardia (VT)
for risk stratification [9].

Computational modeling can also
help to link experimental animal studies
(e. g., in rabbits) to the human scenario
by comparing computational models
of the animal and the human heart
[20]. Animal computational models
are also used to study initiation and
maintenance of VT, and the mecha-

nisms of defibrillation [1]. An emerging
technique employs so-called model pop-
ulations, a number of models where
parameters vary slightly within (patho-
)physiological ranges. Model popula-
tions allow considering interindividual
and physiological variability, but can also
be adapted to pathological conditions.
Not all combinations of parameters lead
to a physiological AP. However, it was
found that under ischemic conditions,
more of the slightly varied models pro-
duce an AP that can be considered valid.
That may be implying that physiological
variability plays a role in the alterations
of electrophysiological properties that
are seen during acute ischemia [8].

Naturally, mechanical effects play an
important role in many aspects of car-
diac physiology. Accordingly, compu-
tational models can include mechanical
components, such as mechanosensitive
channels. This way, computer simula-
tions were, for instance, used to mecha-
nistically study the precordial thump and
its efficacy in terminating VT [13].

In lightofstudies showingelectrotonic
coupling between cardiac myocytes and
nonmyocytes (e. g., fibroblasts), compu-
tational modeling has been used to in-
vestigate the effects of these heterocellu-
lar interactions. For this purpose, cellu-
lar models of cardiac myocytes can be
coupled electrically to similar models of
fibroblasts or other cells. This way, it
was, for instance, suggested that fibrob-
last–myocyte coupling can alter repo-
larization behavior and [Ca]i alternans,
which are linked to arrhythmogenesis
in ischemic hearts [29, 30]. Similarly,
a model of human mesenchymal stem
cells (hMSCs) was developed to inves-
tigate their therapeutic potential for is-
chemic hearts. Coupling between hMSC
and cardiac myocytes was suggested to
have an impact on contractility and ar-
rhythmogenic potential [16, 17].

Computational modeling of ischemia
also has applications beyond electro-
physiology and electromechanics: for
instance, computational models were
used tocharacterizemetabolite responses
to ischemia in order to investigate inter-
vention strategies to change the outcome
of reperfusion [18]. Blood flow can
also be simulated based on mathemat-
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ical equations. Such models have been
demonstrated to be able to identify cases
of ischemia from cardiac computed to-
mography angiography derived images
[22].

Conclusion

In this focus article, we presented multi-
scale computational modeling as a valu-
able researchapproach in cardiac electro-
physiology complementary to classical
experiments. We illustrated the method
by applying it to acute myocardial is-
chemia and showed how it has suc-
cessfully been applied to bridge the gap
between different levels of integration
by translating experimental findings on
the cell membrane level to the organ and
body (ECG) context. This was done to
elucidate fundamental ischemia-related
arrhythmogenic mechanisms, to foster
our understanding of routinely used
diagnostic tools, and to suggest opti-
mizations of these tools. We highlighted
the advantages (perfectly controlled con-
ditions, single parameter manipulations,
ethical and financial cost, feasibility of
experiments, comprehensive sensitivity
analyses) and limitations (input data to
constrain models, validation) and be-
lieve that a tight interplay between in
silico, in vitro, and in vivo experiments
brings about great opportunities. We
hope that we have convinced the reader
to view computational modeling of car-
diac electrophysiology as an extension
to conceptual modelling that is involved
in all data interpretation and hypothesis
formation. Computational modeling is
complementary to classical experimental
settings and we encourage the reader
to consider this approach in their own
research for providing quantitative and
mechanistic insight.
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