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Dynamics and rheology of the morphology
of immiscible polymer blends — on modeling

and simulation

Abstract The material properties of
heterogeneous polymer blends are
crucially influenced by their mor-
phology, i.e., by the spatial structure
of the blend components and by the
specific configuration of the inter-
faces separating the phases. Hence,
in order to understand the behavior
of experimentally obtained morpho-
logies, one is interested in modeling
the relevant dynamics of the mor-
phology subject to external flow.
Thus one can study, e.g., through
the interfacial stress tensor the rhe-
ological properties due to the inter-
faces. The balance equations used
for that purpose are based on a
Cahn-Hilliard equation for the local
concentration, the continuity equa-
tion, and a modified Navier-Stokes
equation for the local velocity. The
essential material and processing
parameters such as surface tension,
viscosity and volume fraction of

both polymers, and imposed shear
rate are taken into consideration as
model coefficients. By regarding hy-
drodynamic interaction, which is
proved to be important in case of
immiscible blends, the interfacial
relaxation is described properly.
Simulations in both three and two
dimensions agree at least qualita-
tively with experimental results con-
cerning droplet deformation, droplet
coalescence, and interfacial rheolog-
ical properties of the blend.
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Introduction

Blending of different polymers is a common method of
creating new materials with certain desired material
properties. In particular, if the blend components are
standard polymers blending is much more economic
than designing and synthesizing new homopolymers.

If the polymer components are not miscible but
segregated into distinct spatial regions called phases the
polymer blend is denoted as immiscible or heterogeneous,
reflecting the fact that the blend shows a mesoscale
structure denoted as (phase) morphology. Thus, the
morphology reveals the spatially varying local concen-

trations, i.e., local volume fractions of the polymer
components. It is a special feature of heterogeneous
blends that their material properties — specifically their
rheological behavior — not only depend on the properties
of the blend components but also on the blend
morphology (see, e.g., Paul and Newman 1978; Han
1980; Utracki 1989; Vinckier et al. 1996).

In the case of dispersion morphology, spherical parti-
cles of one component are dispersed in the continuous
phase of the other polymer which is macroscopically
extended and hence denoted as matrix. Accordingly, the
blend properties are dominated by the matrix polymer.
With increasing volume fraction the dispersed phase
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finally percolates and becomes continuous, too. The
phases of both polymer components interpenetrate each
other and constitute a so-called three-dimensional inter-
penetrating phase network. Thus, this bi- or cocontinuous
morphology is suitable for combining the properties of
the two polymers properly.

However, it is not only the topology of the phases
which has a great impact on the rheological behavior but
also the configuration of the interfaces separating the
phases. The macroscopic stress tensor contains a
contribution, denoted as interfacial stress tensor, which
is proportional to the anisotropy of the interfaces (cf.
Bachelor 1970). For morphologies with complex inter-
faces, Doi and Ohta (1991) have derived semiphenom-
enological kinetic equations describing the time
evolution of the interfacial area and its anisotropy in a
given flow field. Accordingly, these equations could be
suitable for describing the dynamics of the interfacial
stress tensor and thus the rheological properties due to
the interfaces. For that, however, one has to make
explicit assumptions on the interfacial relaxation. In
particular, one has to specify empirical relaxation times
which depend in unknown manner on the configuration
of the interfaces (i.e., on the morphology).

Hence, in this paper the dynamics of the morphology
itself, i.e., of the local concentrations of the blend
components, are considered instead. Thus, the elemen-
tary processes of morphology formation such as defor-
mation due to external flow and interfacial relaxation,
which is mainly driven by hydrodynamic interaction in
case of immiscible blends (see, e.g., Bray 1994), are
implicitly specified through known material and pro-
cessing parameters.

The model equations discussed in the section Model
equations are based on the Cahn-Hilliard balance
equation for the local concentration of the polymer
components (Cahn and Hilliard 1958) enhanced by an
external velocity term, the continuity equation, and a
modified Navier-Stokes equation. The latter equation
takes into account the hydrodynamic fluctuations of the
velocity field due to the interfaces, which have been
neglected by Ohta et al. (1990). The resulting system of
partial differential equations which complies with model
H of the classification introduced by Hohenberg and
Halperin (1977) includes the essential material and
processing parameters like surface tension, viscosity
and volume fraction of both polymers, and imposed
shear rate. In contrast to interface tracking methods as
boundary element methods (for BEM see, e.g., Rallison
1980; Khayat et al. 1997) the interfaces are not modeled
explicitly but given implicitly by the concentration field,
i.e., by the morphology. Hence, changes in the topology
of complex interfaces such as the reconnections that
appear during coalescence will not cause any difficulties.

Alternative approaches of modeling blends may be
Molecular Dynamics (for a comparison to numerical

integration of the corresponding balance equations,
corresponding to above ansatz, see Furukawa 1997) or
Immiscible Lattice Gas or Lattice Boltzmann methods
(for an overview refer to Rothman and Zaleski 1997).
However, in the case of immiscible blends, where one is
not interested in the microscopic fluctuations, and with
simple geometries of the integration range, the ansatz
discussed in this paper may be favorable since then
numerical integration is more efficient.

In the section Numerical implementation, fast algo-
rithms are outlined for the numerical integration in both
three and two spatial dimensions. With that it is possible
to investigate the evolution of the morphology in
consideration of hydrodynamic interaction and in case
of externally applied shear.

Finally, the section Simulation results indicates that
simulations can contribute to the understanding of both
morphology formation and interfacial rheological prop-
erties of immiscible blends. By simulating the deforma-
tion of a single droplet and comparing it with
theoretical results (Taylor 1934) it is demonstrated that
interfacial relaxation is described properly. Further-
more, shear-induced coalescence is simulated in the case
of dispersion morphology and compared with observa-
tions of Borschig et al. (2000a, b). Finally, the depen-
dence of the interfacial rheological behavior on the
specific morphology is investigated by means of the
interfacial stress tensor, thus supporting the findings of
Steinmann et al. (2000) that blend elasticity increases
significantly at the transition from dispersion to cocon-
tinuous morphology.

Model equations

In order to describe the relevant dynamics of morphol-
ogy the following section discusses the balance equations
for the local concentration and the local velocity of the
polymer components. On a mesoscopic scale of order of
the interfacial width but much larger than the polymer
molecules these quantities are treated as continuous
variables, i.e., they will change continuously over the
interfaces. On this scale the polymer characteristics, and
hence the model coefficients, will be determined by
kinematic quantities as the viscosity or the diffusion
coefficient.

Continuity equation for the local concentrations

As pointed out above, the morphology reflects the local
concentrations, i.e., the local volume fractions
casg (ca +cp =1) of the polymer components A, B.
Accordingly the dynamics of either of these quantities
has to be modeled. In this paper the difference
¢ =ca_cg =2ca_1 1s considered instead, which is
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consistent with other publications in the field of phase
separation.

In order to comply with mass-conservation law for
both polymer components A and B, i.e., in order to
conserve  the  global  concentrations  (®p/p =
fd3r ca/ = const.), the following balance equation for
¢ = ¢(r,¢) is necessary and sufficient:

(1)

Here, v=v(r,?) denotes the local velocity of the element
of fluid at position r and time 7 and j, stands for the
diffusion flow due to dissipation. The term V - [¢V]
models the convection of the morphology by the
underlying flow field which gives rise to an influence of
v on ¢.

For the diffusion flow the common constitutive
equation is used, i.e., j, is assumed to be proportional
to the gradient of the local chemical potential u:

j¢ = —Mvﬂ(,s )

0 .
&¢+v-[¢v]+v4¢:0.

(2)

with the proportionality factor M denoted as mobility or
Onsager coeflicient. In this equation M is assumed to be
constant and independent of ¢, i.e., M[¢p] = M, which is
an appropriate approximation for both the first and the
very late stages of phase separation. In the first case the
local concentrations are still quite homogeneous, i.e.,
¢ = 0, and thus indeed M[¢$] = M,. In the latter case the
phases are already well separate according to immiscible
blends. Here, the diffusion just keeps the phases
separated but the dynamics of the morphology, and in
particular interfacial relaxation, is mainly driven by
convection flow due to hydrodynamic interaction (cf.,
e.g., Bray 1994). Hence, the dependence of M on ¢,
generally the explicit form of Eq. (2) is not very crucial,
provided that it keeps the phases separated. To complete
the picture it should be mentioned that in the interme-
diate stages of phase separation, when the phases are
partly separated, coarsening is still driven by diffusion
and the above approximation probably will be oversim-
plifying (see, e.g., Sappelt and Jackle 1998).

Using the phenomenological Cahn-Hilliard free ener-
gy (Cahn and Hilliard 1958) the chemical potential, which
is given by the variational derivative py(r,t) = 6F/o¢ (r,1)
of the free energy of the system F with respect to ¢, reads

Hy = —ap +bp’ —KV:¢ | (3)

with positive model coefficients a, b, and K the meaning
of which is discussed in the following.

The equilibrium concentrations are given by the
minima of F, i.e., by u,=0. The polynomial part of p,
yields two stable uniform concentrations ¢, = ++/a/b.
Accordingly, in order to obtain the immiscible case, i.¢.,
¢+ = %1 corresponding to co=1 and ¢4 =0 respec-
tively far from the interfaces, it has to be a=b.

The Laplacian V?¢ in Eq. (3) penalizes the occur-
rence of interfaces where ¢ changes rapidly and thus
models the influence of the interfacial energy on
diffusion. Hence, the nonuniform equilibrium concen-
tration with a planar interface normal to the x direction
(satisfying the boundary conditions ¢ (x = £e0)= £ 1) is
given by ¢.(x) = tanh(y/2K/a). Thus, according to the
experimental reality, the interfaces (implicitly given by ¢
=0) have a small but finite width

d=2K/a . 4)

Furthermore, in the case of a planar interface the
interfacial energy o, which is equal to the excess energy
due to the interfaces, is given by

-k ]wdx{%qse]z_ 2K )

Accordingly, by solving these equations it is possible to
express the model coefficients a=»b and K by the
measurable material parameters d and o.

In order to substitute the remaining coefficient M (cf.
Eq. 2) by an experimentally accessible quantity, too, one
may linearize Eqgs. (1), (2), and (3) around the equilib-
rium concentration ¢ .. Thus, one obtains the common
diffusion equation of component B in A with the
corresponding diffusion coefficient being Dag=2Mya.
Accordingly, M can be inferred from Dap which is
accessible by experiment.

Finally, in order to get dimensionless quantities of
order one, length, velocity, and time are scaled by the
characteristic length chosen as the interfacial width d
(typically of order 5 nm), the characteristic velocity v,
(specified by the shear velocity of order jd), and the
resulting characteristic time ¢y = d/vy. Thus, the charac-
teristic quantities are chosen with regard to the interfa-
cial width d, which constitutes the smallest characteristic
length scale of the physical system. Other characteristic
length scales are the characteristic domain size D of the
morphology, i.e., the mean sphere size in case of
spherical morphologies, and the flow domain L for
which the following relations hold: d <« D < L (the first
inequality holds at least in case of separated phases, i.e.,
of immiscible blends, which is addressed in this paper).
In order to capture the real physics of polymer blends,
all characteristic length scales should be resolved by the
numerical simulation (as much as possible). According-
ly, the above scaling is suitable for the numerical
implementation since the spacing of the numerical grid
is related to the interfacial width d (cf. section Numerical
implementation). However, the above inequalities give
rise to some serious problems concerning the numerical
simulation. In order to resolve D and L one has to use
very large grid sizes and/or restrict oneself to the
investigation of effects where these quantities may be
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assumed as not too large (cf. also section Numerical
implementation).

Rescaling Egs. (1), (2), and (3) in this way one
obtains the final equation for ¢:

%d) + V- [¢v] = Pe’lvz,u’(/) with
1 (©

Hy=—p+ ¢~ V%
vod.

and the Péclet number which reads Pe = 2 7> using the

. . . . . AB . .
above scaling. This partial differential equation is
supplemented with two balance equations for the local
velocity v resulting from the laws of mass and momen-
tum conservation.

Continuity equation for the total density

Without being too restrictive the blend components are
assumed to have equal densities and the blend is taken as
incompressible. Thus, the blend density p is considered
as spatially and temporally constant and the general
continuity equation %p + V- [pv] =0 resulting from
mass-conservation reduces to

V-v=0, (7)

i.e., the velocity field v is required to be source-free.

Balance equation for the total momentum

In order to obtain momentum conservation a general-
ized Navier-Stokes equation is assumed for v:

ot

Here, p is the local pressure and # stands for the shear
viscosity which may depend on ¢, though we restrict
ourselves to the isoviscous case #p=#p=#n in the
following. The stress tensor depends linearly on the
local shear rate ¥ = Vv + Vv!. Accordingly, the blend is
considered as a mixture of Newtonian fluids, i.e.,
the elastic properties are not taken into account for
the components. However, for small (smaller than the
smallest inverse relaxation time of the bulk phases) and
stationary shear rates as considered below this simpli-
fication is not too restrictive. Furthermore, below we
focus on the elastic properties due to the interfaces,
which are dominant especially if the blend components
are rather inelastic.

The additional capillary term u,V¢ which contains
the interfacial tension ¢ through the chemical potential
(cf. Egs. 3 and 5) models the capillary forces at the
interfaces: In the limit of vanishing interface width d and
limited curvature of the interface ¢ (dc — 0) it renders a
force proportional to ¢ and to ¢ (see, e.g., Kawasaki

p{gv—i- (V-V)V:| =-Vp+ V- [y +up,Vo .

1977). These modifications of the Navier-Stokes equa-
tion take into account the hydrodynamic interaction, the
influence of ¢ respectively the morphology on v, and
thus describe the spatial variations of the velocity field
due to the interfaces.

Using the scaling introduced in the preceding section
(cf. Eq. 6) in order to obtain dimensionless variables of
order one, above equation finally reads

0 .
0~ Re[—v+ (V-V)V:| =-Vp+ V- [+ CuyV¢ ,

ot
(8)

with the Reynolds number Re = vodp/n and C=60a/nv,
being two dimensionless coefficients which again can be
inferred from measurable material parameters. For
high-viscous matter such as polymers and moderate
velocities the Reynolds number and thus the left-hand
side of Eq. (8) are several orders of magnitude smaller
than the right-hand side (which is of the order of one).
Accordingly, the inertial force (given by the left-hand
side) can be neglected so that the velocity v is instan-
taneously inferable from ¢. For this purpose it may be
favorable to decompose the velocity into two contribu-
tions V=Vuom T Viphom: he€re, vpom stands for the
externally imposed macroscopic flow field. This part
which is independent of ¢ would be the resulting flow
field if the blend was homogeneous. Accordingly, since
this contribution is known in advance it just remains to
calculate vi,hom denoting the internal spatial variations
of the velocity field due to hydrodynamic interaction,
which is adjusted independent of the externally imposed
flow field. From the mathematical point of view this
corresponds to the fact that every solution (v) of a linear
inhomogeneous partial differential equation (PDE) such
as Eq. (8) (with the capillary term representing the
inhomogeneity and the pressure p being determined by
the incompressibility condition at Eq. 7) can be reduced
to one particular solution (vyom) of the corresponding
homogeneous PDE (i.e., without the capillary term) and
another solution (Vihhom) Of the whole, inhomogeneous
PDE.

Scope of the model equations

The discussed system of partial differential equations
(PDE) (Egs. 6, 7, and 8) is capable of describing the
dynamics of polymer blends in the case of separated
phases, i.e., of immiscible blends, as well as phase
separation of an initially homogeneous blend that starts
demixing by spinodal decomposition due to thermody-
namic instability (Gunton et al. 1983). These dynamics
can be investigated subject to an externally imposed
macroscopic flow field which has to be specified by the
boundary conditions (e.g., simple shear) and in consid-
eration of hydrodynamic interaction.
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Hydrodynamic interaction may only be neglected in
the special cases of constant viscosity # and C =0
(corresponding to vanishing interfacial tension or ex-
tremely large viscosities) or ¢ = 0 (i.e., at the beginning
of phase separation when the blend is still quite
homogeneous). Then, the fluctuations due to hydrody-
namic interaction vanish (Vj;hom = 0). Equations (7) and
(8) decouple from Eq. (6) so that the velocity is entirely
determined by the macroscopic flow field (v =vpom), €.8.,
in case of shear by a linear velocity profile according to
the applied shear rate j,,,. Hence, given this velocity
field which is temporally constant and independent of ¢
only the diffusion equation (Eq. 6) has to be integrated
as done by Ohta et al. (1990).

Generally, however, the hydrodynamic interaction is
expected to be of great importance and must not be
neglected (see, e.g., Bray 1994). This is especially the case
for immiscible blends where the phases are well sepa-
rated. In this instance, which is addressed in this paper,
the velocity strongly depends on ¢ so that the entire
system of differential equations has to be integrated
simultaneously, greatly increasing the numerical effort
required.

Numerical implementation

In the following section a solver is outlined for the
system of PDE (Egs. 6, 7, and 8). In particular,
integration range and grid, boundary conditions, and
numerical implementation are specified for the case of
shear flow. However, the numerics is easily modifiable in
order to simulate other relevant flow such as elonga-
tional flow.

Numerical integration is performed on a cubic
integration range with the integration grid chosen as
static and square with N,, N,, and N. equidistantly
distributed grid points in the x, y, and z direction. A
static, equidistant grid is given preference to adaptive
grids which are fine-meshed at the interfaces where ¢
changes rapidly but large-meshed elsewhere and are
often used with finite element methods (FEM). In case
of complex morphologies subject to external flow field
(as investigated below) one cannot really take advantage
of these grids since they had to be adopted continuously
to the convected morphology which increases the
numerical expenditure. The grid spacing Ax is equated
to the interfacial width 4 (being 1 after the scaling
introduced above) which is proved to be fine enough in
order to prevent numerical artifacts due to the discrete-
ness such as “pinning” of the morphology to the
underlying grid.

Boundary conditions are specified assuming shear
flow with the flow direction defining the x-axis and the
shear gradient plane being the x-y plane: In the x and z
directions periodic boundary conditions are employed

for the variables ¢ and viynom but sheared periodic
boundary condition in the y direction as used by Ohta
et al. (1990). That is to say a gridpoint (x,y,z) is
identified with the points (x + N,,y,z) and (x,y,z +
N,), but also with (x + yNy,y + Ny,z) where (1) =
Jo Fappi(£')d?’ is the applied shear strain at time .

In order to investigate immiscible blends with rather
coarse morphologies and domain sizes up to 1 um the
grid size has to be at least 10 grid points per spatial
dimension. With the interfacial width respectively the
grid spacing being typically Ax = 5 nm this corresponds
to physical dimensions of the integration range of about
5 um which allows one to simulate complex morpho-
logies with domain sizes up to 0.5-1 um without
boundary effects (which, however, are still rather small
values). With these grid sizes, however, numerical
integration is only feasible in two spatial dimensions
(2D) for which reason the major part of below
simulations is restricted to the x—yp or shear gradient
plane. Accordingly, besides a 3D solver a very efficient
2D solver is proposed in the following.

Numerical integration breaks down into two tasks: to
infer vinom from ¢ by solving Eq. (8) subject to the
incompressibility condition (Eq. 7) at given time ¢ and,
given vV=Vuom 1 Vinhom, tO Integrate the convection—
diffusion equation (Eq. 6) in time.

Calculation of the velocity from ¢

Differential equation Eq. (8) can be solved in Fourier
space. Assuming the viscosity # as independent of ¢
one gets (the pressure p is eliminated by the condition

Eq. (7)
Vinhom(k) = T(k) : [Cﬂ;quﬁ](k) ) (9)

where the argument k indicates the Fourier transform of
the corresponding quantity. In particular

Ok
nk? k2

denotes the Fourier transform of the Oseen tensor T(r)
(Kawasaki 1977). Transferred into real space the matrix
operation in Eq. (9) becomes a convolution integral for
Vinhom(rat):

Vishom (. 1) = / dr'T(x — ) [Cu, V) (¥, 1)

1 r
—(1+7) 11
8m1r< +r2 (11)
the calculation of which is numerically not feasible.
Accordingly, the calculation is performed in Fourier
space using fast Fourier transform (FFT) for the

transformations (for the FFT algorithm refer to, e.g.,
Press et al. 1992).

T(k) = (10)

with T(r) =
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However, this procedure implies periodic boundary
conditions in all directions. Accordingly, in case of
differing boundary conditions (as in the case of shear)
the calculated velocity field will be distorted at the
boundaries of the integration range. These distortions,
however, will diminish with increasing distance from the
boundaries and finally vanish.

Accordingly, this shortcoming can be overcome by
extending the integration range and continuing the
dynamic variable ¢ according to the real boundary
conditions. In order to meet the above boundary
conditions introduced for shear flow, a cubic range is
added at both the lower and the upper boundary in the y
direction and ¢ is continued sheared periodically into
this range. Then, the calculated velocity will still be
distorted at the upper and lower boundary of the thus
extended integration range. If the extension is large
enough, however, these distortions will be restricted to
the extension, but within the original integration range
Vinhom Will be calculated correctly, i.e., will comply with
sheared periodical boundary conditions in the y direc-
tion.

For the 2D simulations in the x—y (shear gradient)
plane the following, more efficient solver for Eq. (8) may
be favorable. In order to fulfill the incompressibility
condition (Eq. 7) it is convenient to introduce a stream

function ¥ = Y(r,?) as
o O CPA
Vinhom = V X (lﬁl) - a_y - &lﬁy ’ (12)

where X and y stand for the unit vectors in x respectively
y direction, whereas z is the unit vector normal to the 2D
integration plane. Accordingly, the components of the
velocity Vinnom are specified by v, = > <y, v, = — —np and
above (sheared) periodic boundary conditions hold for s
as well (as for viypom)-

Taking the curl of Eq. (8) and inserting Eq. (12)
yields an inhomogeneous biharmonic partial differential
equation (Chella and Vinals 1996),

Vi =C(Vy x ¢) 2

where the inhomogeneity on the right-hand side is
determined by ¢. From this equation one can infer
and thus v by means of a fast biharmonic solver as
proposed by Bjerstad (1980). This solver requires a
cubic integration range and explicit boundary condi-
tions, i.e., the values of ¥ and of its normal derivative
a‘—ltp have to be specified explicitly at the boundaries of
the integration range. However, if one assumes the
above (sheared) periodic boundary conditions for i,
these values are not known explicitly in advance. This
difficulty can be overcome as in the 3D case. The
integration range is extended in the y as well as in the x
direction and  is continued consistently into this range.
Furthermore, the boundary values for the extended

(13)

integration range may be approximated by the corre-
sponding values inferred from the solution ¥ of the
preceding integration time step. Then, the distortions
due to this approximation will be restricted to the
narrow vicinity of the boundary of the extended
integration range, i.e., to the extension. Accordingly,
within the original range the calculated y and thus Vi pom
will comply again with (sheared) periodic boundary
conditions (if the extension is chosen sufficiently large).

Integration of ¢

In order to integrate the convection—diffusion equation
(Eq. 6) in time an explicit finite difference scheme is used
that fits in the cell dynamic approach introduced by
Oono and Puri (1988). In order to stabilize numerics,
convection term and diffusion term are integrated
separately in two steps:

(51 = ¢z + At[_v ' [¢tvt]] ) (14)

Prine = q—’;z + At [Pelvz <¢t + d’? - %Vzd)t)] (15)

according to Shinozaki and Oono (1993). Thus, given ¢,
and V¢ =Vhomt T Vinhom.r» Which in turn is inferable from
¢, as pointed out in the preceding section, one can
calculate ¢+ o, at the next time step ¢+ + Ar.

For the calculation of the right-hand sides of above
equations, strictly speaking for the calculation of V and
V2, the above (sheared) periodic boundary conditions
are applied. In order to reduce anisotropy effects caused
by the discrete integration grid the center difference
scheme is applied for the convection term V:[¢v].
Furthermore, the Cartesian Laplacian V* of the diffu-
sion term is discretized as isotropic as possible.

Alternative approaches

Instead of using finite difference schemes for the
integration of Egs. (6, 7, and 8), finite element methods
(FEM) may also be employed. These methods (used by,
e.g., Anderson et al. 1999) differ in the way the original
continuous equations are transferred into discrete ap-
proximations.

A conceptually different approach is to establish and
simulate microscopic dynamics which obey on a coarse-
grained, mesoscopic scale the relevant balance equations
(such as Egs. 6, 7, and 8). These microscopic dynamics
may be borrowed from reality as in case of Molecular
Dynamics (for a comparison between molecular dynam-
ics and numerical integration of the corresponding
balance equation in case of spinodal decomposition see
Furukawa 1997) or be rather artificial as in case of
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Immiscible Lattice Gas or Lattice Boltzmann methods
(for an overview concerning these methods refer to
Rothman and Zaleski 1997).

These methods are very flexible and especially
advantageous if complex geometries have to be consid-
ered or if one focuses on the microscopic fluctuations
which may be interesting in the first stages of phase
separation. Otherwise, integrating directly the corre-
sponding balance equation may be favorable since then
the numerical algorithm is more efficient.

Simulation results

The following simulations of isoviscous immiscible
blends were performed using typical values of the
material parameters listed in Table 1 (these quantities
are used through the model coefficients Pe, Re and C as
discussed in section Model equations). According to Wu
(1982) the chosen values are characteristic of the model
system PS/PMMA (investigated, e.g., by Borschig et al.
2000a, b; Steinmann et al. 2000). In the following figures
white and black corresponds to local concentrations
¢ =1 (pure component A) and ¢ =—1 (pure component
B) respectively.

Interfacial relaxation

At first, it will be proved that the above balance
equations (Egs. 6, 7, and 8) describe correctly the
relaxation of the interfaces. For this purpose the
deformation of a droplet is simulated and compared
with the well-established predictions due to Taylor
(1934). In shear flow a droplet becomes an ellipsoid.
For isoviscous blends at steady state, i.e., when defor-
mation due to the externally imposed shear flow and
interfacial relaxation balance one another, the deforma-
tion parameter D=(/ — s)/(/ + s) is related to the
capillary number Ca = yjRy/o according to (Taylor
1934)

35

) Ca .
Here, /, s denote, respectively, the longest and shortest
axes of the ellipsoid in the shear gradient plane and Ry is
the radius of the undeformed droplet. The relation at
Eq. (16) is exact in the limit of vanishing deformations
and holds in good approximation for D < 0.3.

D= (16)

Table 1 Material parameters used for the simulations

p o d(=Ax)

1 x10°kg/m® 2% 107 N/m

na = s

1% 10* Pa s

5% 107 m

The simulations are performed in 3D with a grid size
of 1283. The droplet radius is chosen as 30 grid points
(corresponding to Ry = 150 nm) which is large enough in
order to neglect effects due to the finite interfacial width
as well as sufficiently small in order to avoid wall effects
due to the finite integration range. As can be seen in
Fig. 1 the deformation parameters obtained from sim-
ulations with different shear rates (error bars) corre-
spond well with the theoretical prediction at Eq. (16)
which proves the usefulness of the balance equations
discussed in section Model equations. The error bars in
Fig. 1 result from the errors in estimating / and s
respectively.

Regarding this, it should be mentioned that interface
tracking methods as boundary element methods (for
BEM see, e.g., Rallison 1980; Khayat et al. 1997) may
be more appropriate for the above investigations.
However, due to an explicit parameterization of the
interfaces, these methods will fail when there are changes
of the interfacial topology such as breakup or coales-
cence. Integrating the balance equations (Egs. 6, 7, and
8) circumvents these problems. The interfaces are not
modeled explicitly but considered just implicitly which
makes this method very robust and therefore more
favorable in case of complex morphologies (i.e., in case
of complex geometries of the interfaces) as they are
discussed below (see Figs. 4, 5, 6, 7, and 8).

As pointed out in section Numerical implementation,
simulations of complex morphologies are only feasible
in two dimensions. Accordingly, it is investigated
whether interfacial relaxation behaves appreciably dif-
ferent in 2D or not. In order to do this, the behavior of a
2D droplet with a diameter of 150 grid points corre-
sponding to 750 nm is considered. For two different
shear rates y = 0.01s~',7 = 0.1s~!, Fig. 2a, b shows the
steady-state deformation taken at shear strain y=3.
Again, the deformation parameters obtained from the
simulations (listed in Table 2) correspond at least

qualitatively with the theoretical predictions of
0.3
D ]
0.2
0.1
(050 o o o s e ey S S A M S B B S S S S B S S S S |
0.0 0.05 0.1 Ca 0.15 0.2 0.25

Fig. 1 Deformation of a droplet subject to shear flow. The error bars
mark the steady-state deformation parameter D obtained from the 3D
simulations in dependence on the capillary number Ca. The solid line
stands for the theoretical prediction at Eq. (16) due to Taylor (1934)
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Fig. 2a—¢ Deformation of a 2D droplet with diameter 750 nm subject
to shear flow with a shear rate of: a ) =0.01s"!; b 7 =0.1s7! at
shear strain p=3 (corresponding to steady state). Neglecting
hydrodynamic interaction (¢) the droplet is highly deformed even
with small shear rate y = 0.01s~! (deformation has still not reached
its steady state at strain y =3 which is shown in ¢)

Eq. (16). This may be interpreted as a hint that even 2D
simulations of the morphology dynamics will contribute
to the understanding of morphology formation, i.e., it
warrants transferring the results of the below simula-
tions to 3D.

Finally, Fig. 2 demonstrates the dominant influence
of hydrodynamic interaction on interfacial relaxation. If
hydrodynamic interaction is neglected, corresponding to
C=0in Eq. (8), the remaining relaxation mechanism is
due to diffusion (modeled by the diffusion term V - j, in
Eq. 1). However, in the case of separate phases this
mechanism is substantially weaker as demonstrated in
Fig. 2c. Even with small shear rates (7 =0.01s71)
interfacial relaxation due to diffusion is not able to
counteract the deformation caused by shear flow so that
the droplet is stretched excessively (and deformation has
still not reached its steady state at strain y =3 which is
displayed in Fig. 2c¢). Accordingly, this proves that the
real relaxation process of the interfaces is essentially
governed by convection flow due to hydrodynamic
interaction. That is to say with hydrodynamic interac-
tion the underlying velocity field is influenced charac-
teristically by the morphology. Hence, if the sphere is
deformed the velocity field is adjusted in such a manner
that it neutralizes the external flow field in the vicinity of
the sphere and thus prevents further deformation.

Shear-induced coalescence

In order to investigate shear-induced coalescence, i.c.,
domain growth under shear flow, dispersion morpho-
logies have been generated on a 1000® grid with
concentrations of the disperse component of ®5 =5%.
The initial size distribution of the dispersed particles has
been chosen quite narrow with an average diameter of

Table 2 Deformation of a droplet subject to shear flow: de-
formation parameter obtained from 2D simulations (Fig. 2) com-
pared with the theoretical predictions due to Taylor (Eq. 16)

5 =10.01s" 7=0.1s"
D (simulation) 0.044 0.30
D (due to Taylor 1934) 0.041 0.41

20 grid points (corresponding to 100 nm with a grid
spacing of 5 nm as listed in Table 1). This value has been
proven to be sufficiently large in order to avoid
distortions due to the discrete integration grid.

Figure 3 shows the evolution of the mean sphere size
(diameter d(y)) for different shear rates j = 0.02s7!,
0.1s7',0.2s7!, and 1.0s~! in dependence on total strain
y. For each shear rate the mean sphere size has been
inferred from the first zero of the correlation function
averaged over five independent simulations starting
from different initial morphologies. The simulations
have been terminated at a shear strain of y =80 in order
to prevent distortions due to boundary effects which
may occur when the particle size becomes larger than =1/
10 of the integration size.

For all shear rates one can observe coalescence
caused by shear-induced collision and subsequent merg-
ing of dispersed particles. Furthermore, one can take
from Figs. 4, 5, and 6 that coalescence broadens the size
distribution, i.e., increases the variance of the particle
sizes as reported by, e.g., Borschig et al. (2000b). If one
disregards the smallest shear rate 7 =0.02s7! the
domain size increases approximately in a linear manner.
This would be in agreement with the results of Borschig
et al. (2000a) reported for “hard” spheres, where the
viscosity of the disperse phase has been more than one
order of magnitude larger than the matrix viscosity
(““hard” means, that the spheres are not deformed by the
shear flow itself, neither do they get deformed on
collision). In this instance the averaged domain size
actually scales with p, with the constant growth rate
being independent of the shear rate. That is to say, the
kinetics of coalescence is the same if the time is rescaled
with the characteristic time of the system which is given
by the inverse shear rate .

However, in contrast to the latter finding the final
growth rates of the simulations shown in Fig. 3 rather
decrease with increasing shear rate (cf. also Figs. 4, 5,
and 6). On the other hand, this result agrees with
observations of, e.g., Borschig et al. (2000b) who found

LS e o I
0 10 20 30 40750 60 70 80

Fig. 3 Shear-induced coalescence: Average particle size in dependence
on shear strain for different shear rates 7 = 0.02s~" ( ), 0.1 57!
(-==-),02s " (=), and 1.0 57" (--- - )




219

Fig. 4 Coalescence of simulat-
ed morphologies (®p =5%): I
evolution of the mean sphere . . .
size (diameter d(y)) for shear #g ." Ehal ..

rate 7 = 1.0s7! in dependence Sleran “e -

on total strain y. The initial

sphere size distribution is nar- S e

row with an average sphere size Al
of about 100 nm * - S .

Fig. 5 Coalescence of simulat-
ed morphologies (®p =5%):

evolution of the mean sphere

size (diameter d(y)) for shear .. ST 3
rate 7 = 0.1s7! in dependence s . .
on total strain y. The initial ’
morphology (at y=0) is the B
same as in Fig. 4

Fig. 6 Coalescence of simulat-
ed morphologies (®p =5%): )
Evolution of the mean sphere R + .

size (diameter d(y)) for shear 0 e

rate ) = 0.02s' in dependence ® g ' i)

on total strain 7. The initial W e .

morphology (at y=0) is the e s . ' ®
same as in Fig. 4

that coalescence can be tremendously suppressed in case
of “soft” particles (in this case the viscosity of the
disperse phase has been approximately one order of
magnitude smaller than the matrix viscosity).

These findings can be explained as follows. With
increasing shear rate the spheres finally get deformed as
can be observed in Figs. 4, 5, and 6. And even if the
spheres are not deformed significantly by the shear flow
itself, they nevertheless can get deformed during
collision, and the curve the higher the shear rate and
the larger the sphere size (due to the larger influence of
interfacial relaxation small drops do not deform that
easily, as can be inferred from, e.g., Eq. 16). Then,
however, the separating matrix film is larger and
accordingly drains very slowly. Thus, rather than
draining away the separating matrix film, colliding
particles may pass each other without merging. Hence,
the probability for shear induced collisions and thus
coalescence (in dependence on shear strain y) are
reduced with increasing shear rate.

Despite these quantitative differences the curves in
Fig. 3 are quite similar for y =0.1s7',j7 = 0.2s7!, and

d} y= 80

7=1.0s"!. In the case of the smallest shear rate
9 =0.02s7!, however, coalescence seems to behave
different: For small shear strains (y < 40) coalescence
is significantly enhanced whereas for y > 40 the
corresponding curve in Fig. 3 shows the same growth
rate as the curve of the larger shear rate j =0.1s7".
This can be explained as follows. First, as has been
discussed above, coalescence is known to be the more
reduced the larger the particles are. Accordingly, this
effect will result in decreasing growth rates as the shear
strain y and accordingly the particle size increase.
Furthermore, one can derive from the simulations that
for very small shear rates and small particle sizes (and
sufficiently large concentration of the disperse phase)
the internal fluctuations of the velocity field due to
hydrodynamic interaction v;,nom become larger than (or
at least of the order of) the shear gradient of the
external shear flow wuo,. Accordingly, self-induced
coalescence, which is driven by these internal fluctua-
tions, enhances further shear-induced coalescence
caused by the external shear field. However, the
influence of self-induced coalescence seems to vanish
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Fig. 7a, b Interfacial elasticity: a AN,/Ay (Ay=0.1); b interfacial area
in dependence on the concentration ®, (scaled with respect to the
corresponding value for ®,=50%). For every concentration the
results are averaged over 16 independent simulations. Due to the
symmetry with respect to an exchange of component A and B it is
sufficient to consider the range ®5 < 50%

(at least in 2D) with increasing particle size as the shear
gradients induced by the internal fluctuations Viynom
decrease and finally become smaller than the shear
gradient of the external shear flow vyop,.

Finally it should be mentioned that the simulated
growth rates are about twice as large as the ones
observed by Borschig et al. (2000a). Most likely this
discrepancy is due to the different dimensionality of real
experiment and simulation. In three dimensions two
colliding particles have more topological possibilities of
evading each other, i.e., of avoiding coalescence.

Fig. 8a—d Simulated morphol-
ogy with concentration

DA =50%: Cocontinuous mor-
phology for shear rate
7=0.1s"attay=2;by=3;
¢ y=4;dy=5. On the right of
(b) and (c) one can observe the
occurrence of breakup

Accordingly, it is not astonishing that the simulations
do not correspond exactly with the experimental results.
However, at least qualitatively the simulations reveal the
same effects as discussed above.

Rheological properties due to the interfaces

Finally, the rheological properties due to the interfaces
are addressed. In particular, the relation between
elasticity and blend morphology is investigated. The
simulation results are compared with experimental
findings of Steinmann et al. (2000). Especially for
isoviscous blends elasticity is found to increase signifi-
cantly at the phase inversion point (i.e., at the transition
from dispersion to cocontinuous morphology) and
therefore can serve as rheological classifier for phase
inversion.

Generally, the rheological properties can be inferred
from the kinetics of the macroscopic stress tensor
which for isoviscous blends is given by (Bachelor
1970):

Oup = POup + Niup + 0Gup -

Here, # is the shear viscosity disregarding the influence
of the interfaces, and p and ¢ denote the pressure
respectively the interfacial tension. Furthermore it is
Vop = Oply + 0,0p Where Opv, are the components of the
of the macroscopic velocity gradient tensor (cf. Eq. 8).
Additionally

1 1
qop = V/ ds (l’lxl’l/; - géa/j)

stands for the anisotropy of the interfaces. In this
surface integral which runs over all the interfaces, V'
denotes the total system volume and 7, stands for the
unit vector normal to the interfaces. When the interfacial
thickness is sufficiently small the following relation
(Eq. 19)

o / & (0,0)(0pb)

(17)

(18)

(19)

can be used to infer the anisotropy from simulated
morphologies ¢.
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Accordingly, in case of heterogeneous blends the
spatial anisotropy tensor at Eq. (18) gives rise to an
excess shear stress due to the interfaces and thus
describes the interfacial rheological properties in depen-
dence on ¢. In particular, the interfacial elasticity is
characterized by the increase of the first normal stress
difference Ny=0 (g,, — ¢+») With respect to a small
applied shear strain Ay, ie., by AN;/Ay (where
Ay(f) =7 - At, with ) — 0 and thus Ay — 0) which is
displayed in Fig. 7a.

This quantity is investigated in dependence on the
blend morphology. Therefore, on a 1000 grid both
dispersion and cocontinuous morphologies have been
generated by varying the concentration ®, (due to the
symmetry of the problem ®g=1-®, it is sufficient to
consider concentrations ®, < 50% ). For @, < 40%
dispersion morphologies are obtained, above ®5 = 40%
the domains tend to percolate, i.e., they form intercon-
nected structures of ‘‘macroscopic” extent (strictly
speaking they extend over the whole integration range
as can be seen in Fig. 8) so that the morphology
becomes gradually cocontinuous. Independent of the
concentration ®,, the characteristic length of the
simulated morphology inferred from the first zero of
the correlation function (and identical with the mean
sphere size in case of spherical morphologies) has been
chosen as 20 grid points. This choice is large enough to
be able to neglect effects due to the discrete integration
grid as well as sufficiently small in order to avoid wall
effects due to the finite integration range.

The interfacial area (shown in Fig. 7b) corresponds
well with experimental findings of Luciani (2000) who
observed a distinct minimum of the interfacial area at
@D =50%. Accordingly, the enhancement of elasticity in
the case of cocontinuous morphology (®5 > 40% in
Fig. 7a) does not correlate with an increased amount of
interfacial area as one might suppose. That is to say it is
not the absolute value of interfacial excess energy
corresponding to the total amount of interfacial area
which gives rise to elasticity.

Interfacial elasticity, which is quantified by AN;/Ay
(Ay — 0) as pointed out above, rather corresponds to a
change of interfacial stress, i.e., to a deformation of
interfacial geometry caused by external strain. Due to
the interconnected structures, however, a cocontinuous
morphology is far more deformed by shear flow than a
dispersion morphology as illustrated in Fig. 8 (in order
to demonstrate more clearly the deformation, the strain
applied on the morphology in Fig. 8 is very much larger
than the small shear strain Ay in Fig. 7). In particular the
deformation cannot be balanced by interfacial relax-
ation since the corresponding relaxation times diverge as
the domains get macroscopically extended. Accordingly,
though the droplets of a dispersion morphology give rise
to an elastic behavior, too, interfacial elasticity is

significantly enhanced in case of cocontinuous morphol-
ogy (cf. Fig. 7).

Finally, apart from deformation, Fig. 8 reveals
another effect influencing the formation of morphology:
For instance in Fig. 8b, c (right part) one can observe
the occurrence of breakup of coherent domains caused
by shear which results in dissipation of energy. In the
case of spherical morphology when the domains are not
interconnected breakup occurs just for larger shear rates
3> 1s~! when the deformation of the spheres is
sufficiently large. However, also in the case of cocontin-
uous morphology breakup is reduced due to hydrody-
namic interaction. In particular the fibrillary structures
depicted in Fig. 8 will be less stable if hydrodynamic
interaction is neglected.

Concluding, the findings of Steinmann et al. (2000)
that blend elasticity increases significantly at the phase
inversion point are confirmed by the simulations and can
be explained by the interfacial properties.

Conclusions

The material properties of immiscible polymer blends
are decisively influenced by the morphology and in
particular by the configuration of the interfaces. Ac-
cordingly, one is interested in modeling and simulating
the relevant dynamics of morphology. The aim is to
simulate the evolution of morphology subject to external
flow. This in turn allows one to study the kinetics of the
interfacial stress tensor (through the anisotropy tensor
of the interfaces) and thus to infer the rheological
properties due to the interfaces.

The model discussed in this paper consists of a system
of balance equations for the local concentration differ-
ence and the local velocity. The model equations are
capable of describing the dynamics in the case of separate
phases, i.e., of immiscible blends, but also phase separa-
tion (spinodal decomposition) in consideration of exter-
nal flow and hydrodynamic interaction. In the case of
immiscible blends it has been proved by simulations that
the equations describe properly both deformation of the
morphology (due to the externally imposed flow field)
and interfacial relaxation which is mainly driven by
convection flow due to hydrodynamic interaction.

Concluding, it has been shown that the simulations
can contribute to the understanding of both morphology
formation and interfacial rheological properties of
immiscible blends. For example, though restricted to
two dimensions the simulations of droplet coalescence
correspond at least qualitatively with experimental
results. Furthermore, the simulations have been able to
confirm experimental results concerning the relationship
between blend morphology and blend elasticity. In
particular the observed enhancement of blend elasticity
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at the phase inversion point can be explained by a
slowed interfacial relaxation in case of cocontinuous

morphology.
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