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Abstract We propose a family of
new models making a direct link
between flow and structure for
immiscible mixtures of viscoelastic
fluids undergoing high deformation
flows. The morphology is treated
both at local (Doi-Ohta-type) and
more macroscopic (droplet-like)
scales. The governing equations,
that include expressions for the extra
stress tensor, agree with the conser-
vation laws and with the observed
compatibility with thermodynamics.
In the particular case in which only
one of the two characterizations of
the morphology is used, extended

versions of the Doi-Ohta and the
Maffettone and Minale models are
obtained. The extension consists of
involving explicitly the free energy in
the governing equations and com-
pleting the expressions for the extra
stress tensor.
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Introduction

Experimental observations of interfaces separating im-
miscible components of polymeric mixtures subjected to
imposed hydrodynamic flows reveal an astounding
complexity. Viewing the interface with the aid of our
instinctive ability to recognize patterns we can, in many
cases, identify several scales with several different
patterns. For example, on a small scale we may see a
pattern in the space and orientation distribution of small
pieces of the interface, on a larger scale we may see a
droplet-like patterns, and on a still larger scale a pattern
of various clusters of the droplets. We shall use the term
morphology to denote the structure of the interface.

Modeling of immiscible blends presents the following
two challenges: first, one has to choose appropriate
quantities characterizing the morphology and, second,
one has to formulate equations governing their time
evolution in the context of the time evolution of the
blend as a whole. Our aim in this paper is to contribute
to the understanding of these two problems.

In the following sections we derive a new family of
models with a two-level characterization of the mor-
phology. The one level is the one used in the Doi-Ohta
theory (Doi and Ohta 1991) and the other is the one
used in the Maffettone and Minale theory (Maffettone
and Minale 1998). We are thus introducing a setting in
which the physics that is behind both of these theories is
combined into one intrinsically consistent unit. Howev-
er, even if we select from the family only those models in
which the one-level characterization of the morphology
is used, we obtain models that extend the Doi-Ohta and
the Maffettone-Minale models. The extension consists of
involving explicitly the free energy in the formulation of
both models, providing a more complete formula for the
extra stress tensor in the setting of the Doi-Ohta model,
and providing a formula for the extra stress tensor in the
Maffettone-Minale model (in its original derivation the
extra stress tensor is absent).

As for the comparison with experimental observa-
tions, we limit ourselves in this paper to the fundamental
experimental observations of the conservation of mass
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and momentum and the compatibility with thermody-
namics (i.e., the observation according to which exter-
nally unforced systems are seen to reach eventually
states at which their behavior is seen to be well described
by equilibrium thermodynamics). All models in the
family are proven to agree with these fundamental
experimental observations. We would like to emphasize
that this type of verification of rheological models is
rarely done (for example such verification is missing in the
original papers in which the Doi-Ohta and the Maffet-
tone-Minale models were introduced). A comparison of
predictions of the models with experimental observations
of the rheological properties and the morphology
requires one first of all to select specific fluids and the
quantities that represent them in the family. They are: the
free energy and kinetic coefficients. The correspondence
between these quantities and the fluids will be the subject
of the next stage of the investigation. At this stage, only a
small subfamily of the models introduced in this paper
has been investigated in this detail. They are the family of
the Doi-Ohta-like models (see Bousmina et al. 2001), the
Maffettone-Minale model (in this model it was only the
morphology that could be compared with experimental
observations), and the “volume preserving” models of
Ait-Kadi et al. (1999) (the Maffettone-Minale model is
one of these models) whose predictions have been
however investigated and compared with results of
experiments only in the context of polymer solutions.

Two-stage modeling

The modeling developed in classical hydrodynamics
proceeds in two stages. In the first stage one chooses a
family of experimental observations and looks for a
structure of the governing equations that guarantees
agreement between the model predictions and the
chosen observations. The selected family of experimental
observations is composed by the conservation laws of
the total mass, momentum, and energy, and by the
compatibility with thermodynamics. In the second stage,
a particular realization of the structure identified in the
first stage is found. The realization (also called a
constitutive relation) reflects the particular nature of
the fluid under consideration.

Classical hydrodynamics considers only simple fluids
whose states are completely and universally described
by classical hydrodynamic fields. The structure identi-
fied in the first stage is the structure of local conserva-
tion laws (derivative with respect to time equals
divergence of a flux). Immiscible mixtures are not
however simple fluids. The time evolution of the
morphology cannot be separated from the time evolu-
tion of the hydrodynamic fields. The classical hydrody-
namic fields do not suffice to describe states of
immiscible mixtures. If we want to follow the two-stage

modeling developed in classical hydrodynamics in the
context of immiscible mixtures, we have first to find a new
structure that can also be applied for general state
variables. Such a structure has been suggested and is
called GENERIC (General Equation for the Non-
Equilibrium Reversible-Irreversible Coupling) (Grmela
and Ottinger 1997; Ottinger and Grmela 1997). The
structure is based on the observation (Grmela 1984, 1988)
that while the structure of local conservation laws does
not extend beyond the realm of classical hydrodynamics
the other structure of classical hydrodynamic equations,
namely the Hamiltonian structure discovered by Clebsch
(1895), does. In the rest of this section we shall recall its
mathematical formulation. The second stage, consisting
of a search for its realization expressing immiscible
mixtures is presented later.

We assume in this paper that the system under
consideration is kept under isothermal conditions. The
constant temperature is denoted by T. Let x be the set of
state variables. The time evolution of x, that is
guaranteed to agree with the observed conservation
laws of total mass, momentum, and energy, and with
thermodynamics, is governed by

a_x— 52_—5T (1)
o ox 5(3D/5x)

where t denotes the time, ® is the Helmholtz free energy,
O=E—-TS+uN, E, S, and N are respectively the
global energy, the global entropy, and the global number
of moles of the system, u the chemical potential; 5®/ox
is the conjugate variable of x (0/0x denotes the
functional derivative). By the symbol L we denote the
Poisson bivector and W(d®/0x) is a dissipation poten-
tial. The GENERIC equation introduced in previous
works (Grmela and Ottinger 1997; Ottinger and Grmela
1997) reduces to Eq. (1) since the temperature is
assumed to be kept constant during the whole process
of the evolution.

An operator L is a Poisson bivector if the following is
satisfied. Let A and B be real valued functions of x. We

construct a bracket {A, B} = <%,L%> where (,) is
the inner product. This bracket is called a Poisson
bracket if (i) {A,B} = —{B,A} (this means that L is a skew
symmetric matrix, i.e., Lij=—Lj), (ii) the Jacobi identity
{{B,C}, A}+{{A,B}, C}+{{C,A}, B}=0 holds. We
require moreover that the Poisson bivector is degener-

ated so that L9 =0 and L%—lf =0 . From the physical
viewpoint, the Poisson bivector L expresses the Poisson
kinematics of the state variables x.

The dissipation potential W is a real valued function
of 6@ /dx satisfying the following properties: (i) ¥(0) =0,
(i1) ¥ reaches its minimum at 0, (iii) ¥ is a convex in a
neighborhood of 0, and (iv) ¥ is degenerate so that

OE __ 0¥ _ /6N $¥ B o
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example of the dissipation potential that is often used in
1 /6A _ JA
lications is the following: W(98) =2 (5>, M<>
applications is the following Sx 7V o0 Mok
where M is a nonnegative symmetric matrix satisfying
Mg—gz 0, M%_IE: 0. It is easy to verify that Eq. (1)
implies the conservation of energy (C(li—];: = 0), conserva-

tion of number of moles (4N = 0 , and the dissipation

do _ /oo | o0 00 __ 0¥
(=Grrde) - B o) <O
Equation (1) can also be written as dA/dt = {A, ®}—
0A oY
0x '0(0 @0 x)
sufficiently regular real valued functions A.

A particular realization of Eq. (1) consists of the
following four steps: (i) specification of the state
variables x, (ii) specification of their Poisson kinematics
(i.e., specification of L), (iii) specification of the dissipa-
tive structure (i.e., specification of the dissipation
potential W), (iv) specification of the Helmholtz free
energy ®. The first step is discussed in the next section,
the remaining three steps in the section following that.

inequality

that is required to hold for all

State variables

In this paper we consider an isothermal immiscible
mixture of two viscoelastic fluids: a fluid (A) that plays
the role of the matrix in which the other fluid (B) is
dispersed. The interface between the fluids (A) and (B),
denoted here by the symbol (Int), is seen as a third
component with its own rheological properties.

In this section we discuss the state variables that are
suitable for describing the states of such a mixture. Since
our desire is always to keep the model as simple as
possible, we look for the smallest possible number of
state variables that are able to describe the phenomena
of interest. There is no universal set of state variables
and no universal rule that can be used to select them.
The process of selection is a trial-and-error process
guided by experience and physical insight.

We begin with the state variables describing the
overall behavior of the mixture. We naturally choose
the classical hydrodynamic fields. Since we consider the
mixture under consideration to be incompressible and
kept under isothermal conditions, the only state variable
that describes the overall behavior is thus the momen-
tum field u(r), r being the position vector.

Interface

The interface separating the fluids (A) and (B) is a two-
dimensional surface imbedded in the three dimensional
space of position vectors, i.e., the image of a mapping 3:
R?> — R®. Ideally, it is this mapping that we should

choose to describe here the interface (Int). This is what is
done in equilibrium statistical mechanics, where the
equilibrium interface is found by minimizing the free
energy. We may recall, for example, the Laplace relation
between the curvature of the interface and the pressure
difference between fluids A and B obtained in this way.
At equilibrium, this detailed consideration of the
interface is often feasible due to its relative simplicity.
If we would however try to use the mapping 3 as the
state variable in dynamical theories, it would be
essentially the same as if we were to insist on using
position vectors and momenta of all atoms composing
the fluids A and B to characterize their states. Due to the
complexity of the interface and also in view of our
interests (we do not need and do not want to know all
the details of the interface), we have to replace 3 by
some incomplete (but pertinent to our purpose) charac-
terization of the interface. Again, making analogy with
the characterization of fluids, we look for appropriate
distribution functions that will replace the complete
microscopic characterization.

Batchelor (1970), Onuki (1987), and Doi and Ohta
(1991) have suggested to describe states of the interface
by one scalar field, denoted by Q(r), expressing the total
interface area per unit volume, and one field of traceless
symmetric tensor, q(r), having the physical meaning of a
tensor expressing the orientation of a unit vector
perpendicular to the interface. It has been shown in
Grmela and Ait-Kadi (1994, 1998) and Grmela et al.
(1998) that both these quantities can be conveniently
combined into one symmetric positive definite tensor, c.
Here we call it an interfacial conformation tensor, or
Batchelor-Onuki-Doi-Ohta tensor, in abbreviated form
a BODO tensor. The tensor ¢ is related to q and Q by the
following one-to-one transformation:

(2)

where o and f denote the coordinates, o, f=1, 2, 3, and
the summation convention over repeated indices is used,
and o is the Kronecker delta. The tensor c¢ is the second
moment of the distribution function of the vectors
perpendicular to elements of the interface with the
length measuring the surface area of the elements. The
rheological models that use BODO tensor (Onuki 1987;
Doi and Ohta 1991; Lee and Park 1994; Grmela and Ait-
Kadi 1994, 1998; Grmela et al. 1998; Wagner et al. 1999;
Wetzel and Tucker 1999; Tucker et al. 2000; Almusalam
et al. 2000; Bousmina et al. 2001) have proved to be, in
general, faithful to the reality (Lee and Park 1994;
Takahashi et al. 1994a, b; Takahashi and Noda 1995;
Okamoto et al. 1999; Yamane et al. 1998; Guenter and
Baird 1996; Vinckier et al. 1996, 1997a, b, 1999; Minale
et al. 1997; Kitade et al. 1997, Lacroix et al. 1997,
1998a, b, 1999; Riise et al. 1999; Iza and Bousmina 2000,
Iza et al. 2001; Almusalam et al. 2000; Bousmina et al.

1
C“ﬂ = §Q25“/; + qu,[;, tre = Q2



563

2001). At the same time, however, the experience with
them shows their limitations. From the physical point of
view, the limitation is clearly a consequence of the
incompleteness of the characterization of the interface
with BODO tensors. What BODO tensors express is an
information about the local structure of the interface.
What is completely missing is information about the
larger scale morphology (a larger zoom on the structure)
concerning macroscopic objects like droplets and clus-
ters of droplets. We call here the large-scale morphology
a global morphology and the morphology expressed by
the BODO tensor a local morphology. It seems to be
very likely that the local as well as the global morpho-
logies influence the rheological properties of the mixture.
We therefore look now for an appropriate state variable
characterizing the global morphology.

To illustrate our approach, we limit ourselves in this
paper to the global morphology corresponding to the
droplet-like structure. A droplet is modeled as an
ellipsoid. Its shape is thus described by a symmetric
positive definite tensor denoted here by the symbol b.
The new state variables are thus a scalar field n(r),
denoting the number of droplets per unit volume and a
field of conformation tensors b(r).

The local and global morphologies are clearly not
completely independent; consequently the fields e(r) and
(n(r), b(r)) characterizing them are also not completely
independent. To illustrate their interdependence, let us
assume that the fluid (B) is immersed in the fluid (A) in n
identical and uniformly distributed droplets whose shape
is described by the tensor b. If this is the case, then clearly
the tensor ¢ can be calculated from (n, b). In other words,
the local morphology is in this case completely deter-
mined by the global morphology (see Tucker et al. 2000
and Almusallam et al. 2000). If, however, the tensor b
expresses an average of the droplet-like features of the
global morphology then the tensor ¢ cannot be calculated
from (n,b). Nevertheless, even in this case (n,b) and c are
not completely independent. There are three constraints
that they have to satisfy:

(1) The total volume Vg of the fluid (B) equals nV det b,
where V is the total volume and det denotes determi-
nant. Consequently

\%
¢:7B:ndetb

(3)
where ¢ denotes the volume fraction of the fluid (B).

(i) The total interface per unit volume expressed in
terms of the local morphology is Q. The total interface
per unit volume expressed in terms of the global
morphology equals n g (b), where g(b) is the surface
area of the ellipsoid whose shape is characterized by b.

Q = np(b) (4)
The general expression for the surface area of the ellip-
soid represented by x*>/a +1?/b 42> /b = 1 is given by

N _%(p l_i_larcsin/l —é(]ﬁ 14_ 1 o 1+v
P72 2 ) 2% T BTy

(3a)

(iii) Finally, the principal eigenvectors of ¢ and b are
required to be approximately perpendicular. This we can
see as follows. The principal eigenvector of b is essentially
the vector corresponding to the long semiaxis of the
droplet. This follows from the physical interpretation
assigned to b. The physical interpretation assigned to the
BODO tensor ¢ implies that its principal eigenvector is the
vector perpendicular to the surface of the droplet. Since
the dominant part of the surface of a droplet is parallel to
the long semiaxis, the principal eigenvector of ¢ is, in
average, perpendicular to the principal eigenvector of b.
This constraint will be taken into account in the
kinematics of the tensors b and c¢ (see later). We shall
also see that this constraint arises naturally by requiring
that in the special cases when b (resp. ¢ ) is omitted from
the set of state variables, the Doi-Ohta-type (resp.
Maffettone-Minale) models have to be recovered.

Fluid (A)

The fluid (A) in which the fluid (B) is dispersed is a
polymeric fluid composed of macromolecules. Following
Grmela (1986, 1988, 1993a, 1993b), we choose a sym-
metric and positive definite conformation tensor, denoted
here by the symbol a, to describe the internal structure of
the macromolecules. The tensor a is the second moment
of the distribution function of the end-to-end vectors of
the macromolecules composing the fluid (A).

Fluid (B)

The fluid (B) is also a polymeric fluid. The description of
its internal structure will not be in this paper character-
ized by an independent state variable. The individual
nature of the fluid (B) will be expressed in the quantities
entering the time evolution of the droplet conformation
tensor b (see next section).

The total set of state variables x that are chosen to
describe states of the immiscible mixture of two
polymeric fluids (A) and (B) is thus

x = (u(r), n(r),a(r), b(r), e(r))

together with the constraints (i)—(iii).

(5)

The time evolution

Having specified the state variables, we proceed to
discuss their time evolution. We already know the basic
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architecture (Eq. 1) of the equations generating it. What
remains thus is to fill out the framework (Eq. 1) by
specifying: (i) the Poisson bivector L in which the
kinematics of the state variables (Eq. 5) is expressed, (ii)
the dissipation potential ¥ expressing the dissipation
mechanisms, and (iii) the free energy ®. In this section
we shall focus our attention on (i) and (ii). This section
will thus end with a family of the time evolution
equations parameterized by the free energy ® and the
kinetic coefficients introduced in ¥. In the next section
we then discuss properties of solutions of these equa-
tions that are independent of the choice of ®. The choice
of the free energy will be discussed systematically in the
accompanying paper.

The equations governing the time evolution of the
fields included in the set of the state variables (Eq. 5)
will, of course, be coupled. Their kinematics as well as
dissipation can be however discussed separately (see
below). The coupling among the resulting governing
equations will be expressed in the constraints of Egs. (3)
and (4), in letting the kinetic coefficients (that arise in the
dissipation potential) to depend on all fields included in
Eq. (5), in the free energy, and in the expression for the
extra stress tensor that arises as a result of the
kinematics.

Fluid (A)

Since the fluid (A) is assumed to be a polymeric fluid, its
internal structure is the structure of the polymer
macromolecules composing it. Their internal deforma-
tions are characterized by the conformation tensor a. As
is well known (Grmela 1986, 1988, 1993a, b; Beris and
Edwards 1994; Grmela and Ottinger 1997; Ottinger and
Grmela 1997), the kinematics of the state variables (u, a)
is expressed by the Poisson bracket

(A,B)) = [ dru, (@.(A, B, ~ 0.(B)A)
+ ayﬁ(aa(Aa?ﬁ)Bu, - 6 (Ba /;)Auy)
+ a45(Aq,,04(By,) — By ,0,(Ay))
T (A, O(By) — B, Op(A))] (6)

where A, B are real valued and sufﬁciently regular
functions of the fields (u,a), 90, := a%’ Ay 5u (r is the

Volterra functional derivative, a,f,.... =1, 2, 3, and the
summation convention over the repeated indices is used
in Eq. (6) and throughout the paper.

Following again the well-established rheological
modeling of polymeric fluids, we choose the dissipation
potential to be

1
PO (D, D,) = 3 / drd, a5 AV, | (7)

By inserting Egs. (6) and (7) into Eq. (1) we obtain

Ouy
Gut = =0, (u,®y,) — ,p — 0,(0w)) ®)
0a, ‘
gtﬁ = =0, (aup®y, ) + 2,50, (1) + 2,50, (up) — AWy, @y,
©)

where p is the scalar hydrodynamic pressure and

Gup = 225, Dy, (10)

is the extra stress tensor.

Interface : local morphology
It has been shown in (Grmela 1986, 1988, 1993a, b)
that the kinematics of the state variables (u, c¢) is
expressed in the Poisson bracket (Eq. 6) in which the
last two terms on the right hand side have the sign
minus (this is because in this case we are expressing the
advection of a surface element, ¢ is associated with the
vector that is perpendicular to it). We recall the
following simple observation. Let us pass in Eq. (6)
from the variables (u, a) to the variables (u, a~'), where
! denotes the inverse of the tensor a. We note that
this transformation is one-to-one and the Poisson
bracket (Eq. 6) transforms under it into another
Poisson bracket that is the same as Eq. (6) except that
the signs before the last two terms are inversed. We
have thus arrived in the Poisson bracket expressing the
kinematics of (u, ¢). Consequently, the nondissipative
time evolution of ¢ is governed by Eq. (9) with A® =0,
except that the second and the third terms have the
sign minus (i.e., in other words, the upper convected
time derivative in Eq. (9) is replaced by the lower
convected time derivative). If we then use the one-to-
one transformation (Eq. 2) relating ¢ and (q, Q) we
obtain the following time evolution equations:

@qx/; _
ot

_a“/ (qoc/f)uy + qa/}a“j(Q)u«/ - qyﬁa"y(ua)

2
o q"ma”i (uﬁ) + 3 50{/3q6‘/a“/ (us) - % (a“ (uﬁ) + aﬁ (ua))

1 ay(PO)
+6qaﬂqysay(ue)—aT% (11)
Q _ ap(PO)
—0,(Qu, — q,50,(up) — (12)
il (%) ~ g4

As in Grmela and Ait-Kadi (1998) we choose the
dissipation potential ¥®°P?) as follows:
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1 (Bopo
p(BODO) _ / dr{% 05 A

1, (BoDO)
+ q)ch/;(l‘) EAZ Qup(r)
1 (BoDO)
+ @0 Pq,y0 7 A3 Lo, Py, | (13)
where Ai(BODO), 1=1,2,3, are phenomenological param-

eters (they can be second order tensors and they are
functions of the state variables (Eq. 5)) satisfying

A(1}30D0) > O,AgBODO) > O’AgBODO) >0, and A(IBODO)

=0 if ¢ =0. These first three inequalities are needed to
satisfy the requirements on dissipation potentials listed
in the text following Eq. (1), the physical meaning and
consequences of the fourth requirement will be discussed

later. By direct inspection (note that
a\ggoDO) _ A(BODO)(DM n A(BODO)(D D, D, and

dsp
w = A (BODO) g, @) we can easily see that Eqs. (11)
and (12) reduce to the Doi-Ohta equatlons with the
modified dissipative term suggested in Lee and Park
(1994) if (q,Q) are assumed to be independent of r.

The equation governing the time evolution of the
momentum field u is again Eq. (8) with

2 1

Ogy = qay(DQ + gQ(Dq,‘, +2q~,vﬂq)q,;x - aqquu@qw (14)
This expression involves terms that are absent in the
expression of Onuki (1987) used in the Doi-Ohta model.
We recall that in our analysis the expression at Eq. (14)
appears automatically. We do not need any additional
physical insight to obtain an expression for the extra
stress tensor. The expression at Eq. (14) is dictated by
the intrinsic consistency, expressed in Eq. (1), of the
equations governing the time evolution of (u,c). The
extra stress tensor at Eq. (14) has been derived in
Grmela and Ait-Kadi (1994). Its consequences in
predictions of rheological properties have been investi-
gated in Bousmina et al. (2001).

Interface and fluid (B): global morphology

Now we turn our attention to the time evolution of the
conformation tensor b. From the constraint (iii) (see
the text following Eq. (3a)) we conclude that b is
advected in the same way as the conformation tensor a.
However, since we want to allow the fluids (A) and (B)
to have different viscosities, we should allow for a non-
affine advection (Johnson and Segalman 1977) of b. It
is not difficult to prove that the bracket at Eq. (6) is a
Poisson bracket if either all the signs of all terms are as
in Eq. (6) (the corresponding Poisson bivector repre-
sents then the affine upper convected time derivative)

or if the signs in front of the last two terms are
changed to minus (the corresponding Poisson bivector
represents then the affine lower convected time deriv-
ative). The non-affine convection is not Hamiltonian, it
cannot be generated directly by a Poisson bivector. It
has been shown in Grmela (1986, 1988, 1993a, 1993b)
and Edwards et al. (1991) that the non-affine convec-
tion can remain Hamiltonian only in an extended
setting in which the conformation tensor as well as its
velocity (rate of change) are adopted as independent
state variables. The non-affine convection involving
only the conformation tensor can be then seen as an
approximation of the Hamiltonian time evolution, an
approximation in which the time evolution of the rate
of change of the conformation tensor has been
eliminated by assuming that it evolves faster than the
conformation tensor itself (the usual way of eliminating
inertia). In this paper we shall not introduce the
extended setting involving the rate of change of the
conformation tensor b. We shall be content with seeing
the non-affine convection as an approximation of the
Hamiltonian time evolution taking place in the extended
setting. There is still another important remark that has
to be made in the context of the non-affine convection.
The change from affine to non-affine convection implies
a change in the expression for the extra stress tensor.
This follows from seeing the non-affine convection as an
approximation of the Hamiltonian time evolution. It
follows also from the general expression (Grmela 1985)
relating the type of convection to the extra stress tensor.
The necessity to modify the expression for the stress
tensor in case of non-affine convection has also been
realized, on the basis of different types of arguments, by
Larson (1988).

The constraint (i) (see Eq. (3)) represents clearly a
restriction on the time evolution of b. We introduce

(]5%

T
n3

byg = "7 byg (15)
Equation (3) implies that det b = 1. We thus look for the
time evolution of the conformation tensor in which its
determinant is preserved. Equations governing such time
evolution have been suggested in Leonov (1976, 1987)
and in Maffettone and Minale (1998). The most general
family of this type of the time evolution equations is
given in Ait-Kadi et al. (1999):

agzﬁ — _67 (Bocﬁq)“‘«)

f N R
+ 52 (owvﬁ + bvaﬁ)

B % (Qavaﬁ - 6“"9Vﬁ )

~ BU)(b)

(16)
where Dyp := 0p®y, + 0, Py, Qyp 1= 0@y, — 0, Dy, f5 is
the non-affine parameter (we use here the same notation
as in Maffettone and Minale 1998; note that if f,=
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1 — resp. f, =—1 — then the second and the third term on
the right hand side of Eq. (16) represent the upper —
resp. lower — convected derivative), and BV, i=1, 2, 3, 4
are given by

47 2 4 b

g [IZ‘D + (L1 = 3)0; J (BB)M

—g (I 0 +2L,0; ) (666) aﬂ} (17)
{ % L@, + 210 )by
) (‘DB, + IICD371> (BB) 2%, (BBB) GA
(1)

8 /1 4 b
B(j}) _ A(b){ [_ 3 (51% — 12> oy — §1112(D61] bap

) (), - (i), )

(19)

@ _ A [ [2 3
B, = Al ){ [5 (L1 - 213)®

2
+= (11 ~IL +3 )
3
2
3

~2(1o; + @ )(bb)uﬁJr

o5 b

(211c1> + L )

/N

g%)J where by

= (trf)_l

Iﬂ—;(@@f_u@@)

The free energy @ is assumed to depend on b only
through its dependence on by and b_;. The family of the
time evolution equations is parameterized by the free
energy, by i=1, 2, 3, 4 and by the kinetic coefficient
A® > 0, and by the non-affine parameter f,. Note that
only the case f;=1 is considered in Ait-Kadi et al.
(1999).

The time evolution of the momentum field u is
governed by Eq. (8) with the extra stress tensor given by

)(detﬁ)%, I, := trb,

(20)

1
O'“ﬁ = —2f2|: <b af — —1151ﬁ>
A A A 2
Jr(l)f),l I]b“/; — | bb , - 3125“/;

Finally, the equation governing the time evolution of
n denoting the number of droplets per unit volume is
determined by the constraint (ii) (see Eq. 4):

5Q d (n@((%)%f))) on d (np<(%)%6)) .

ot on ot by ot

(1)

(22)

Q

By inserting into Eq. (22) 5 0b,

given in Eq. (12) and ot

given in Eq. (16), we obtain the equation governing the
time evolution of n.

Governing equations

Summing up, we have obtained the following equations
governing the time evolution of the state variables

(Eq. 5):

(i) The equation governing the time evolution of the
overall momentum field is Eq. (8) with the extra
stress tensor o,z given by Eq. (24)

(i) The equation governing the time evolution of the
conformation tensor a describing the polymeric
structure of the fluid (A) is Eq. (9)

(i1) The equations governing the time evolution of the
local morphology of the interface characterized by
(q, Q) are Egs. (11) and (12)

(iv) The equation governing the time evolution of the
global morphology and the fluid (B) characterized
by b is Eq. (16), (6 is related to b by Eq. 15)

(v) The equation governing the time evolution of n
denoting the number of droplets is governed by
Eq. (22)

(23)

o, = the expression at Eq. (10) + the expression at
Eq. (14) + the expression at Eq. (21) (24)

These equations constitute a family of time evolution
equations parameterized by the free energy @, the
kinetic coefficients A entering the dissipative part of
the time evolution (see Eq. 7 where A® arises, Eq. 13
where A&BODO>, AEBODO), AgBODO) arise, and Egs. 17, 18,
19, and 20) where A® is introduced), the non-affine
parameter f>, and i=1,2,3,4 in the choice of the last term
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on the right hand side of Eq. (16). The parameters (D, A,
f;) are the quantities in which the individual nature of
the mixture under consideration is expressed.

We now proceed to the selection of the free energy .
In this paper we limit ourselves to identifying @ for
which the equations at Eq. (24) become equations that
have already appeared in the literature. A thorough
discussion of the physics involved in the selection of ®
and A and a thorough analysis of solutions of Egs. (23)
and (24) will be reported in a subsequent paper.

First, we write @ as a sum of kinetic energy and
the rest that is independent of the overall momentum

u:
ll2 A A
(D:/dr5+/dr(p(aaanabl7b—l)

where p is the overall mass density. We assume that the
suspensions under consideration are overall incompress-
ible, p=const. With Eq. (25), ®, appearing in the
governing equations at Eq. (23) is the overall suspension
velocity v.

As for ¢, a first approximation could be a sum of
three terms, each representing the contribution of one of
the components:

@(av q, Qa 617 B,1> = (P<d)(a) + (p(BODO)(qv Q)

b (b16.)

This means that we do not consider in the free energy
any interaction among the components. The governing
equations will remain however coupled due to the
constraints at Egs. (3) and (4) and due to the coupling
that we still can introduce in the dissipative parameters
A. Below, we shall further specify the three terms on the
right hand side of Eq. (26) and by doing so recover
governing equations introduced previously on the basis
of other considerations.

If @®BOPY—0 and ¢ =0 (i.e., if the fluid (B) is
absent) then Egs. (23) and (24) represent the standard
setting of rheological modeling with conformation
tensors (Grmela 1988; Beris and Edwards 1994).

If =0, 0™ =0, and

(25)

(26)

0®P%(q,Q) = ¢*(Q, T, $) + %Alqwqaﬂ (27)
where ¢ is the free energy arising in equilibrium
thermodynamics of interfaces, A, a phenomenological
parameter, is a nonnegative function of the temperature
T and the volume fraction ¢, then Eq. (23) reduces to
the time evolution equations arising in the Doi-Ohta
theory (Doi and Ohta 1991) and in the Lee and Park
model (Lee and Park 1994) and Eq. (24) is an expression
for the extra stress tensor that extends the formula
derived by Onuki (1987) and used by Doi and Ohta
(1991). An extension of the free energy (Eq. 27) needed

in the study of inhomogeneous morphologies is dis-

cussed in Grmela and Ait-Kadi (1998).
If (p(a) =0, and qD(BODO) -0,

0" (b1,b_) =Kinb. (28)

where K is a constant, i=2 in Eq. (16) (i.e., we choose

Eq. (18) for B) then Eq. (23) reduces (in the calculations

we use the Cayley-Hamilton theorem) to

ag:ﬁ - 76;’ (BaﬁV*/) - % (QW/BW — Bwa[ﬂ)

fy D 2 L3
= (Dy,byg+by D) — KA (b,s — =0,
+2(‘,,ﬁ+/,ﬁ> 3 b, O

(29)
The extra stress tensor given by Eq. (24) becomes
K/ =« n 2
Oup = —2f2§ (Ilbaﬁ — (bb) dﬁ—glzéa[;> (30)

If the tensor b is independent of the position
coordinate then the first term on the right hand side
of Eq. (29) equals zero and Eq. (29) becomes the
equation derived by Maffettone and Minale (1998)
(note that I;=1 due to Eq. (15)). Unlike Maffettone
and Minale (1998) we give here also the corresponding
extra stress tensor (Eq. 30). This makes a direct link
between the deformation of the droplets and the
involved stress.

Concluding remarks

The main result of this paper is a family of new
rheological models (Egs. (23) and (24)) of isothermal
immiscible blends of viscoelastic fluids in which the
morphology of the interface is characterized simulta-
neously on two levels of description: the microscopic
level used in the Doi-Ohta theory and a more macro-
scopic level on which the dispersed fluid is regarded as a
collection of droplets. The models in the family are
parametrized by (®, A, f,), where @ is the free energy, A
kinetic coefficients, and —1 <f, <1 is the non-affine
parameter. These are the quantities in which the
individual nature of the fluids under consideration is
expressed. Predictions of the models have been com-
pared with the following experimental observations.

By virtue of the derivation of the models, solutions to
the governing equations of all the models in the family
agree with the experimental observation of the conser-
vation of the total mass and momentum, and also with
the experimentally observed compatibility with equilib-
rium thermodynamics. Two subfamilies of the models
(Egs. (23) and (24)) have then been compared with more
detailed observations of the interface morphology and
rheological properties.
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The first such subfamily consists of the models in
which the morphology of the interface is characterized
only by the Batchelor-Onuki-Doi-Ohta tensor. The
family (Eqgs. (23) and (24)) reduces in this case to a
family of extended Doi-Ohta-type models. The models
are extended since they involve explicitly the free energy
and a more complete formula for the extra stress tensor.
The presence of the free energy in the governing
equations makes it possible to express in the models
more realistically the individual nature of the fluids
involved. A detailed investigation of solutions to the
extended Doi-Ohta-type models and their comparison
with experimental measurements of rheology and the
interface morphology has been made recently in Bous-
mina et al. (2001).

The second subfamily consists of the models which
involve only the droplet-like morphology of the inter-
face. In this case the family (Eqgs. (23) and (24)) reduces
to models that can be regarded as a direct extension of
the Maffettone-Minale model. The models are extended

since they involve explicitly the free energy and a
formula for the extra stress tensor. The original
Maffettone-Minale model appears in this context as a
model that corresponds to one specific free energy and
that is not equipped with a formula for the extra stress
tensor. The new expressions for the extra stress tensor
that we derive arise, as always in the type of analysis
followed in this paper, as a consequence of the intrinsic
consistency of the governing equations. The expression
at Eq. (24) has also recently been compared with the
expression derived by Batchelor (1970) in Palierne et al.
(2001). Detailed rheological predictions of other models
in this subfamily, that correspond to various choices of
the free energy, have been investigated, but in the
context of polymer solutions, in Ait-Kadi et al. (1999).

Acknowledgements This work was supported by the NSERC
(Natural Sciences and Engineering Research Council of Canada),
and the FCAR (Fonds pour la Formation de Chercheurs et I’Aide
de la Recherche du Québec) funds.

References

Ait-Kadi A, Ramazani A, Grmela M, Zhou
C (1999) Volume preserving rheologi-
cal models for polymer melts and
solutions using the GENERIC formal-
ism. J Rheol 43:51-72

Almusallam AS, Larson RG, Solomon MJ
(2000) A constitutive model for the
prediction of ellipsoidal droplet shapes
and stresses in immiscible blends.
J Rheol 44(5):1055-1083

Batchelor GK (1970) The stress system in a
suspension of force-free particles.
J Fluid Mech 41:545-570

Beris AN, Edwards BJ (1994) Thermody-
namics of flowing systems. Oxford
University Press, Oxford, New York

Bousmina M, Aouina M, Bushra C, Guen-
ette R, Bretas R (2001) Rheology of
polymer blends: non-linear model for
viscoelastic emulsions undergoing high
deformation flows. Rheol Acta (in
press)

Clebsch A (1895) J Reine Angeur Math
56:1

Doi M, Ohta T (1991) Dynamics and
rheology of complex interfaces. J Chem
Phys 95:1242-1248

Edwards BJ, Beris AN, Grmela M (1991)
The dynamical behavior of liquid crys-
tals: a continuous description through
Poisson brackets molcrystals. Liq Cryst
201:51-86

Grmela M (1984) Particle and bracket
formulations of kinetic equations.
Contemp Math 28:125-132

Grmela M (1985) Stress tensor in general-
ized hydrodynamics. Phys Lett A
111A:41-44

Grmela M (1986) Bracket formulations of
diffusion-convention equation. Physica
D 21:179-212

Grmela M (1988) Hamiltonian dynamics of
incompressible elastic fluids. Phys Lett
A 130:81-86

Grmela M (1993a) Thermodynamics of
driven systems. Phys Rev E 48:919:930

Grmela M (1993b) Coupling between mi-
croscopy and macroscopy dynamics in
NEMD. Phys Lett A 174:59-65

Grmela M, Ait-Kadi A (1994) Comments
on the Doi Ohta theory. J Non-New-
tonian Fluids Mech 55:191-194

Grmela M, Ait-Kadi A (1998) Rheology of
inhomogeneous immiscible blends.
J Non-Newtonian Fluids Mech 77:
191-199

Grmela M, Ottinger HC (1997) Dynamics
and thermodynamics of complex fluids.
1. Development of generic formalism,
Phys Rev E 56:6620-6626

Grmela M, Ait-Kadi A, Utracki LA (1998)
Blends of two immiscible and rheolog-
ically different fluids. J Non-Newtoni-
an Fluids Mech 77:253-259

Guenther GK, Baird DG (1996) An eval-
uation of the Doi-Ohta theory for an
immiscible polymer blend. J Rheol
40:1-20

Iza M, Bousmina M (2000) Nonlinear
rheology of immiscible polymer blends:

step strain J  Rheol
44:1363-1384

Iza M, Jérébme R, Bousmina M (2001)
Rheology of compatibilized immiscible
viscoelastic polymer blends. Rheol
Acta 44:1363-1384

Johnson MW, Segalman DIJ (1977) A
model for viscoelastic fluid behavior
which allows non-affine deformation.
J Non-Newtonian. Fluid Mech 2:
255-270

Kitade S, Ichikawa A, Imura N, Takahashi
Y, Noda I (1997) Rheological proper-
ties and domain structures of immisci-
ble polymer blends under steady and
oscillatory shear flows. J Rheol
41:1039-1060

Lacroix C, Aressy M, Carreau PJ (1997)
Linear viscoelastic behavior of molten
polymer blends: a comparative study of
the Palierne and Lee and Park models.
Rheol Acta 36:416-428

Lacroix C, Grmela M, Carreau PJ (1998a)
Relationships between rheology and
morphology for immiscible molten
blends of polypropylene and ethylene
copolymers under shear flow. J Rheol
42:41-62

Lacroix C, Grmela M, Carreau PJ (1998b)
Response to comment on relationships
between rheology and morphology for
immiscible molten blends of polyprop-
ylene and ethylene copolymers under
shear flow. J Rheol 42:1277-1279

Lacroix C, Grmela M, Carreau PJ (1999)
Morphological evolution of immiscible

experiments.



569

polymer blends in simple shear and
elongational flows. J Non-Newtonian
Fluid Mech 86:37-59

Larson RG (1988) Constitutive equations
for polymer melts and solutions. But-
terworth, MA

Lee HM, Park OO (1994) Rheology and
dynamics of immiscible polymer blends.
J Rheol 38:1405-1425

Leonov Al (1976) Nonequilibrium thermo-
dynamics and rheology of viscoelastic
polymer media. Rheol Acta 15:85-98

Leonov AI (1987) On a class of constitutive
equations for viscoelastic fluids. J Non-
Newtonian Fluid Mech 25:1-59

Maffettone PL, Minale M (1998) Equation
of change for ellipsoid drops in viscous
flow. J Non-Newtonian Fluid Mech
78:227-241

Minale M, Moldenaers P, Mewis J (1997)
Effect of shear history on the morphol-
ogy of immiscible polymer blends.
Macromolecules 30:5470-5475

Okamoto K, Takahashi M, Yamane H,
Kashihara H, Watanabe H, Masuda
T (1999) Shape recovery of a dis-
persed droplet phase and stress re-
laxation after application of step
shear strains in a polystyrene/poly-
carbonate blend melt. J Rheol
43:951-965

Onuki A (1987) Viscosity enhancement by
domains in phase-separating fluids
near the critical point: proposal of

critical  rheology. Rev A

- 35:5149-5155

Ottinger HC, Grmela M (1997) Dynamics
and thermodynamics of complex fluids.
I. Illustrations of generic formalism,
Phys Rev E 56:6620-6626

Palierne JF, Bousmina M, Grmela M
(2001) Viscous and interfacial stress in
emulsions (in preparation)

Riise BL, Mikler N, Denn MM (1999)
Rheology of a liquid crystalline poly-
mer dispersed in a flexible polymer
matrix. J Non-Newtonian Fluid Mech
86:3-14

Takahashi M, Noda I (1995) Domain
structures and viscoelastic properties
of immiscible polymer blends under
shear flow. In: Nakatani AI, Dadmun
MD (eds) Flow-induced structure in
polymers. ACS Symposium Series
597:141-152

Takahashi M, Kurashima N, Noda I, Doi
M (1994a) Experimental tests of the
scaling relation for textured materials
in mixtures of two immiscible fluids.
J Rheol 38:699-712

Takahashi M, Kitade S, Kurashima N,
Noda I (1994b) Viscoelastic properties
of immiscible blends under steady and
transient shear flow. Polymer 26:1206—
1212

Tucker CL III, Wetzel ED, Comas-Codor-
na S (2000) Modeling flow induced
microstructure in polymer blends. Pro-

Phys

ceedings Polymer Processing Society —
16, June 18-23, 2000, Shanghai, China

Vinckier I, Moldenaers P, Mewis J (1996)
Relationship between rheology and
morphology of model blends in steady
shear flow. J Rheol 40:613-631

Vinckier I, Moldenaers P, Mewis J (1997a)
Transient rheological and morphology
evolution of immiscible polymer
blends. J Rheol 41:705-718

Vinckier I, Moldenaers P, Mewis J (1997b)
Stress relaxation as a microstructural
probe for immiscible polymer blends.
Rheol Acta 36:513-523

Vinckier I, Moldenaers P, Mewis J (1999
Elastic recovery of immiscible blends.
Rheol Acta 38:65-72

Wagner N, Ottinger H, Edwards B (1999)
Generalized Doi-Ohta model for mul-
tiphase flow developed via GENERIC.
AIChE J 45:1169-1181

Wetzel ED, Tucker CL (1999) Area tensors
for modeling microstructure during
laminar liquid-liquid mixing. Int
J Multiphase Flow 25:35-61

Yamane H, Takahashi M, Hayashi R,
Okamoto K, Kashihara H, Masuda T
(1998) Observation of defodrmation
and recovery of poly(isobutylene) drop-
let in a poly(isobutylene)/poly(dimethyl
siloxane) blend after application of step
shear strain. J Rheol 42:567-580



