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Abstract At the same solid volume
fraction (®) the relative viscosity (1,)
of a concentrated noncolloidal bi-
disperse suspension of hard spherical
particles is lower than that of a
monodisperse suspension. In this
paper a semi-analytical viscosity
model of noncolloidal bidisperse
suspensions is derived using an in-
tegration method. In this model the
random loose packing density ob-
tained by computer simulation is
taken as the limit of solid volume
fraction @,, which depends upon
both the diameter ratio (1) of large
to small particles and the volume
fraction of large particles (& = ®;/®).
This model shows that at high solid

volume fraction, ® > 0.40, both A
and ¢ significantly influence #,. For
example, at ®=0.5, it predicts that
for monodisperse suspensions

n,= 70, while for bidisperse suspen-
sions (A=2 and £=0.7) 5,=40.
Comparison shows that, at high
solid volume fraction (0.4-0.5), the
relative viscosity predicted by this
model is in good agreement with
that predicted by the work of Shap-
iro and Probstein (1992) and of
Patlazhan (1993), but is higher than
that predicted by the work of others.

Key words Concentrated
suspensions - Bidisperse spherical
particles - Rheology - Viscosity

Introduction

In the study of the rheological properties of concentrat-
ed monodisperse suspensions of hard spherical particles,
one of the principal objectives is to understand the
influences of particle size d and solid volume fraction ®
on the viscosity. The flow of a concentrated suspension
may be dominated by Brownian motion, surface chem-
ical forces or by the hydrodynamic forces between
nearest neighbouring particles. A detailed rheological
classification of concentrated suspensions can be found
in a recent review by Coussot and Ancey (1999). The
hydrodynamic interacting forces between nearest neigh-
bouring particles dominate the flow of a concentrated
non-colloidal suspension. At a given shear rate the
hydrodynamic forces are dependent on the gaps between
the nearest neighbouring particles (Cox 1973), hence on
the solid volume fraction ®. Thus, it is convenient to
use the relative viscosity #,, the ratio of suspension

viscosity to liquid viscosity, which allows the indepen-
dent investigation of the effect of ® on #,.. Many
experimental and theoretical studies on the viscosities of
monodisperse suspensions have been reported in the
literature. It is well understood that in a suspension there
exists a limit of the solid volume fraction ®,, that is
termed viscosity percolation threshold by Bicerano et al.
(1999). When the solid volume fraction @ is lower than
®,,,, n, increases with ®; when ® approaches ®,,,, 1, tends
to infinity; and when @ exceeds ®,,, the suspension
becomes immobile and behaves as a solid.

The particles of many physical systems and industrial
materials have size distributions, such as soil, coal
slurry, paint pigment (Rumpf 1989), metal and ceramic
powders (Shiau et al. 1997). In practise, it has been
found that high solid volume fractions can be attained
without significant increase in viscosity by using suspen-
sions of polydisperse particles rather than monodisperse
particles. This finding is important in many applications
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where high solid loads are demanded but where
reasonably low viscosities are desirable from the pro-
cessing viewpoint, such as in the injection moulding of
metal or ceramic pastes, the transportation of coal slurry
and the use of dental pastes. The above facts underline
the importance of the need to study the influence of
particle size distribution on the viscosity. The viscosities
of bidisperse suspensions of hard spheres have been
studied experimentally by many researchers (Sweeny
and Geckler 1954; Eveson 1959; Chong et al. 1971;
Poslinski et al. 1988; Storms et al. 1990; Hoffman 1992;
Shapiro and Probstein 1992; Logos and Nguyen 1996;
Condred and Petit 1997). The results show that the main
factors which influence the viscosities of bidisperse
suspensions are the diameter ratio of large to small
particles, /=d;/d,, and the volume fraction of large
particles, ¢ =®,/®. Sweeny and Geckler (1954) investi-
gated the effects of 4 and & on 5, by experiment. The
diameter of large particles was fixed at 262 um and A was
varied from 1 to 20.76. They found that, at ® =0.55, the
viscosity of a bidisperse suspension with 4=20.76 and
£=0.75 was less than 25% of that of a monodisperse
suspension. Logos and Nguyen (1996) obtained similar
results on coal slurries. For bidisperse coal slurry with
40% of coarse particles (208-279 um) and 60% of fine
particles (smaller than 45 um) the viscosity was about
20% of that of slurry containing fine particles only.
Eveson (1959) observed that, with A < 8 and ® < 0.2,
the change in 7, was less than 5%. This means that at
low solid volume fraction the influence of particle size
distribution 1is insignificant. Gondret and Petit (1997)
measured the dynamic viscosity of noncolloidal bidis-
perse suspensions. Their results show that, at finite
frequency, the effects of £ and A on the dynamic viscosity
are similar to the effects on the viscosity. Chang and
Powell (1993) and Toivakka and Eklund (1996) con-
firmed the experimental results using Stokesian dynam-
ics simulation. The experimental and simulation findings
can be summarised in two parts. First, as @ and ¢ are
fixed, 5, decreases with the increase in 4. Second, when ®
and / are fixed, there exists a critical value of & at which
1, 1s minimised. Lower or higher than this value leads to
the increase in .. Many investigators agree that 7, is
minimised at ¢ =0.65~ 0.85 (Sweeny and Geckler
1954; Chong et al. 1971; Hoffman 1992) and few agree
that #, is minimised at ¢=0.5 (Shapiro and Probstein
1992) or £=0.4 (Logos and Nguyen 1996).

For bidisperse suspensions, although the effects of
/A and & on 7, have been well known from experimental
observations, only a few empirical models are available
in the literature (see next section). Therefore, more
work is still needed to understand fully these effects. In
this paper we propose a viscosity model of concentrated
non-colloidal bidisperse suspensions. In the next section
we review representative viscosity models of both
monodisperse and bidisperse suspensions; by analysing

these models we derive the new model and discuss the
physical meanings of the parameters involved. Then we
apply this model to examine the effects of A and & on
the viscosity. The final section presents our conclusions.

The new viscosity model
Review of viscosity models

Early this century, Einstein (1956) studied the energy
dissipation due to particle motion in infinitely dilute
suspensions and developed a theoretical relative viscos-
ity model as

n=14250 ®< 1.0 (1)

Following Einstein’s work great efforts have been made
to model the viscosity of concentrated suspensions
theoretically. However, the complicated interactions
between randomly suspended particles made it impossible
to derive a closed theoretical model, since some empirical
parameters had to be determined from measured data.
For monodisperse suspensions, many viscosity models
have been developed. A couple of representative semi-
analytical models are selected from the literature and
listed in Table 1. The Frankel-Acrivos model and the
Sengun-Probstein model were derived under the assump-
tion that the hydrodynamic interactions (the lubrication
forces) between nearest neighbouring particles dominate
the suspension flow. So these two models are only
applicable to suspensions of high concentration (® >
0.2). Taking the limit ®—0.0, we find that the Arrhenius
model, the Mooney model and the Krieger-Dougherty
model all converge to the Einstein equation n,=1 +
2.5®. This implies that these models could originate from
a common analytical technique. Indeed Ball and Rich-
mond (1980) and Sudduth (1993) found that these models
have a common differential form as

dn, = n,[n)(1 — k®)"d® (2)

where k is the crowding factor which is inversely
proportional to the limit of solid volume fraction ®,,,
[#] is the relative intrinsic viscosity and « is a constant.
The physical meaning of Eq. (2) may be explained as
follows. First, the effect of all particles on the viscosity is
the sum of the effects of particles added to the
suspension sequentially. Second, at high solid volume
fraction, when a small portion of particles d® is added
to the suspension, the particles already in the suspension
suffer a crowding effect that can cause an increase in
viscosity dn, which is proportional to (1 — k®)™*. Thus
the higher the solid volume fraction the stronger this
crowding effect. Taking k=1/®,, and [#]=2.5, we see
that the integral of Eq. (2) becomes the Arrhenius model
if =0, the Krieger-Dougherty model if «=1, and the
Mooney model if o =2. The model developed by Kitano
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Table 1 Relative viscosity

models Author(s)

Viscosity models

Arrhenius (1917)

Mooney (1951)

Krieger and Dougherty (1959)
Kitano et al. (1981)

Frankel and Acrivos (1967)

Sengun and Probstein (1989)

0, = 59
7, = el250a/(1-0/®y)]

n=(1- q)/q)m)iz's‘bm

= (1-0/®,)"

) ferryrwe %7@))1

b=

ne= 1430 [H‘f#—%ln(m 1)

et al. can also be derived from Eq. (2) if k=1/D,,,
[n]=2/D,, and a=1.

For a bidisperse suspension with A greater than ten,
Farris (1968) used the following method to predict the
viscosity. The suspension was initially assumed to
contain the fine particles only and a monodisperse
suspension model was employed to calculate its viscos-
ity. Then the fine suspension was treated as a continuous
phase and the coarse particles were added to it. Finally,
the monodisperse suspension model was employed again
to predict the viscosity of the bidisperse suspension.

Chong et al. (1971) correlated their experimental
data, as well as those of Sweeny and Geckler (1954), by
the following equation:

/0, \*
1 — q>/<1>m> (3)

where ®,, depends upon both A and ¢ and was
determined empirically. The effects of 1 and & on 7, of
Chong and Sweeny’s work are shown in Fig. 1. A
similar model was proposed by Storms et al. (1990) as

RD 3.30,
n,. = <1 + m) (4)

where R varies from 0.7 to 1.25 depending upon & and 4,
®,, is also dependent upon & and 4 and was determined
from a series of algebraic expressions.

Shapiro and Probstein (1992) measured the viscos-
ity of bidisperse suspensions of glass beads
(40 ~ 160 um). They found that if A was not too far
from one (41 <4 in their measurements), the viscosity
of bidisperse suspensions could be predicted by the
monodisperse model developed by Sengun and Prob-
stein (1989) (see Table 1). The measurements showed
that, for different A and &, the ratio of the close
random packing density to the limit of solid volume
fraction was a constant that was equal to 1.19. Thus,
they predicted the limits of the solid volume fractions
from the measured random close packing densities of
bidisperse particles. A least-squares error method was
used to estimate the constant C which varied from
1.35 to 1.58 depending upon 4 and ¢&.

n, = <1 +0.75

—
(=]
™

Relative viscosity 1,
=
— &)
1

10 ]
0 02 04 06 038 1.0

Fraction of large particles &
m Sweeny & Geckler (1954) a Chong et al. (1971)
Prediction by Eq. (3)

Fig. 1 Effects of 2 and ¢ on relative viscosity by Chong et al.
(M Sweeny and Geckler 1954; [0 Chong et al. 1971; — Prediction by
Eq. 3)

Since only one parameter ®,, is involved in Eq. (3) it
can be seen that for a given 4, 5, decreases to a minimum
as @, increases to a maximum at the same value of ¢&.
While both Eq. (4) and the Sengun-Probstein model
have two parameters, ®,, and R, or ®,, and C, the
minimal #, and the maximal ®,, may not correspond to
the same ¢. For example, applying the Sengun-Probstein
model with 2=4, ®,, is maximised at £=0.65 but 7, is
minimised at £=0.5 (Shapiro and Probstein 1992).

Another interesting point is that, in the limit ®—0.0,
if ®,,=0.6 in Eq. (3) and ®,,=0.606 and R=1.25 in
Eq. (4), then both models also converge to the Einstein
equation. This implies that Egs. (3) and (4) are also
applicable to monodisperse suspensions if the above
values are employed.

The new model

Although the models developed by Arrhenius, Krieger-
Dougherty, Mooney, and by Kitano et al. were applied
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to monodisperse suspensions, the physical meanings of
Eq. (2) as explained above are tenable to bidisperse
suspensions if 4 is not too far from one. Therefore, it is
expected that if the effects of / and ¢ are fully taken into
account in the crowding factor k=1/®,,, the relation-
ship between 77, and ® of bidisperse suspensions can also
be expressed by Eq. (2). This is evidenced by the fact
that the Sengun-Probstein model of monodisperse
suspensions was successfully applied to bidisperse sus-
pensions (Shapiro and Probstein 1992). Even if C is
taken to be a single value in the Sengun-Probstein
model, 1.45 for example, the maximal relative error is
less than 10% because the effect of C on #, is linear. It is
also evidenced by the fact that, as reviewed above, the
bidisperse suspension models, Egs. (3) and (4), are both
applicable to monodisperse suspensions. Thus, we may
apply Eq. (2) to bidisperse suspensions.

In Eq. (2), « is a very sensitive parameter that can
dramatically influence the viscosity. Taking ®,,=0.6
and ®=0.5 for example, by the Krieger-Dougherty
model (x=1) 5, is lower than 15.0, while by the Mooney
model (z=2) #, is higher than 1800; both are far from
experimental results. If we take o as a decimal parameter
in the range 1.0<a< 2.0, then the integral of Eq. (2)
becomes

7, = el(1-0/%w) " 155 (5)

Taking @,,=0.6, Fig. 2 shows the influence of « on
n,. For comparison, values of 5, predicted by other
models are also plotted. In Eq. (5), there are two
parameters, ®,, and o, whose physical meanings may
be discussed as follows. The maximum solid volume
fraction @,, represents the effect of particle size distri-
bution on #,. For bidisperse suspensions ®,, is depen-
dent upon /4 and ¢&. The constant o represents the effects
of the absolute particle size and the dominating force on
n,. As stated earlier, the hydrodynamic force dominates

3
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Fig. 2 Effect of o on relative viscosity as calculated by Eq. (5)

the flow of concentrated noncolloidal suspensions and
the relative viscosity is independent of the absolute
particle sizes. Therefore, in Eq. (5) « can be taken as a
constant of the same value for any combination of A and
. In contrast, for suspensions of very fine particles, such
as colloidal particles (d < 10 um), the surface chemical
forces and electrostatic forces, which depend upon
absolute particle sizes, may significantly influence the
viscosity. For example, at ®=0.5, Greenwood et al.
(1997) found that the viscosity of a monodisperse
polymer latex with d=84 nm was about seven times
higher than that of latex with d=434 nm.

For monodisperse suspensions, there is considerable
variation in the reported limit of solid volume fraction
@,, depending upon the particle arrangements, from
simple cubic packing ®,,, = 0.524 (Shapiro and Probstein
1992) to near face-centred hexagonal packing ®,,=0.72
(de Kruif et al. 1985). The commonly accepted value of
the random packing density of monodisperse particles
ranges from 0.59 to 0.63. Scott (1960) obtained the
upper limit by shaking the packing beds and extrapo-
lating the data measured in finite soft containers. Such a
high value may not be attainable in a concentrated
suspension because both the viscosity and the mass
density of the liquid medium are much higher than that
of the air. We agree that, for randomly suspended
particles, the random loose packing density, which is
about 0.59 to 0.60, should be the reasonable estimation
of @,, (Chong et al. 1971; Ball and Richmond 1980;
Storms et al. 1990; Sudduth 1993). Taking ®,,=0.595
and applying the least-squares error method to fit the
viscosities of monodisperse suspensions measured by
other investigators to Eq. (5) we obtain o =1.45; then
Eq. (5) becomes
5.56®,, [(1-@/,)""*—1] (6)
Figure 3 shows good agreement of this model with those
developed by Sengun and Probstein and by Kitano
et al., and with the results measured by other investiga-
tors. As discussed earlier, the effects of 4 and & on 7, are
fully taken account into ®,,; hence Eq. (6) can be
applied to bidisperse suspensions.

n=e

Influences of A and & on 7,

To apply Eq. (6) to bidisperse suspensions, the key is to
obtain ®,, as a function of 4 and &. It was suggested
(Sudduth 1993; Greenwood et al. 1997) that the maxi-
mum packing density of bidisperse particles may be
calculated by

(Dm - (Dlm + (l - (I)lm>(l)lm (7)

where @,,, is the random packing density of monodis-
perse particles. Thus ®;,,=0.6 leads to ®,,=0.84 and
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Fig. 3 Comparison of the new model with other models and
measurement results (O Jeffery and Acrivos 1976; O Sengun and
Probstein 1989; V Shapiro and Probstein 1992; B Lewis and Nielsen
1968; A Williams 1953)

¢E=d,,/0,,=0.714. Equation (7) implies that only the
large particles are used to obtain the packing density @,
first; then the interstices between the large particles are
taken as an integral space to pack the small particles that
gives an additional packing density (1 — @,,,)®;,,. Such
an assumption is not acceptable even if the particle size
ratio 4 is large enough to allow the small particles to fill
the interstices created by the large particles. If each
interstice amongst the large particles is filled by one
small particle, then it is expected that in a packing the
number of small particles equals the number of large
particles. Then the packing density is given by

®,, = Dy, + 13Dy, (8)

If ®,,=0.6 and 1=4, then by Eq. (8) ®,, < 0.61 which
is much lower than that given by Eq. (7). Therefore,
Eq. (8) is also unacceptable.

We have developed a computer simulation model for
the random loose packing of bidisperse particles
(He et al. 1999). This model randomly places 10,000
particles within a cubic domain. For given values of 4
and ¢ the particle diameters are decided by sampling. In
the initial positions many particles overlap with each
other. A relaxation iteration is then applied to reduce the
overlap values; meanwhile the packing domain is
gradually expanded. The simulation is completed when
the mean overlap value falls below a pre-set tolerance,
which is 107 times the radius of the small particles.
Further reducing the tolerance has little influence on the
simulation results, e.g. the relative change in the packing
density is smaller than 1%. Figure 4 shows the three-
dimensional view of one simulation result. Figure 5
plots the random loose packing density as a function of
A and ¢. The random packing densities of bidisperse

particles predicted by Ouchiyama and Tanaka (1981)
and by Song et al. (1997) are also plotted. Shapiro and
Probstein (1992) found that for both monodisperse and
bidisperse suspensions the ratio of the random close
packing density to the to the limit of the solid volume
fraction is a constant of 1.19. For monodisperse particles
the ratio of the random loose packing density to the
random close packing density is about 0.95. For
comparison, we scale the random close packing densities
of bidisperse suspensions given by Shapiro and Prob-
stein with this value. One can see that our simulation
results are in good agreement with those of others.
Taking the random loose packing density from Fig. 5
as the limit of solid volume fraction ®,, in Eq. (6), Fig. 6
shows the influences of 4 and £ on 4, at ®=0.5. For the
range of solid volume fraction 0.4 < ® <0.5, Fig. 7
plots 5, against @. It is seen from Figs. 5 and 6 that the
value of &, at which ®,, is maximised and 75, is
minimised, varies with A. For example, with 1=1.5,
®,, is maximised and #, is minimised at ¢ around 0.6,
while with 2=3.0 and 4.0, ¢ is about 0.75. This agrees
with the conclusion of other investigators that ¢ is
greater than 0.5 and in the range of our simulation
(A4 £4) & increases with A. Figures 6 and 7 also show that
our model is in good agreement with that of Shapiro and
Probstein (1992) and of Patlazhan (1993). Comparing
our results with the work of others we can observe
qualitatively the similar effects of A and & on the relative
viscosity. However, the values of y, predicted by our
model, and by the work of Shapiro and Probstein, and
of Patlazhan are higher than the results predicted by
others as shown in Fig. 1. There may be two reasons for
this. The first is the different value of ®,, used by
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Fig. 4 Random loose packing of bidisperse particles, 2=2.0 and
£=0.7



596

o
(=)
&

@
o
o

Packing density @,
= o
N (=)}
(S =

1
0 0.2
Fraction of large particles &

04 06 0.8

B O Scaled results from Shapiro and Probstein (1992)
O Prediction by Song at al (1998)

A A Prediction by Ouchiyama and Tanaka (1981)

— Random loose packing (He et al. 1999)

Fig. 5 Random packing density as function of 4 and ¢ (M, [ scaled
results from Shapiro and Probstein 1992; O prediction by Song et al.
1997, A,A prediction by Ouchiyama and Tanaka 1981; — random
loose packing He et al. 1999)

100 i1
=
2 50
@
o
2
>
2
5 20
2

10 1 I | I
0 0.2 04 0.6 0.8 1.0
Fraction of large particles &

O W Shapiro & Probstein (1992)

O @ Storms et al. (1990)

- -~-- Patlazhan (1993) —— This work

Fig. 6 Relative viscosity as function of /1 and ¢, ®=0.5 (O, W
Shapiro and Probstein 1992; O,@® Storms et al. 1990; —- Patlazhan
1993; — this work)

different investigators, which ranges from 0.524 to 0.72
for monodisperse particles. At the same solid volume
fraction @, the higher the solid limit ®,, the lower the
relative viscosity #,. As discussed in the previous section,
the random close packing density may not be attainable
in concentrated suspensions. Onoda and Liniger (1990)
pointed out that for monodisperse suspensions, glass
transition may happen as the solid volume fraction
exceeds 0.555. We are concerned only with suspensions

50 i | 1 |
— - Shapiro & Probstein (1992)
- - — - Patlazhan (1993)
— ——— This work s

[\
]

10

Relative viscosity 1,

042 044 046 0.48
Solid volume fraction @

Fig. 7 7, as function of ® and comparison of different models (long
dashes Shapiro and Probstein 1992; short dashes Patlazhan 1993;
continuous line this work)

in which the particles are randomly suspended; there-
fore, we take the random loose packing density as the
limit of solid volume fraction. The second reason may be
that in viscosity measurement wall slip occurs at the
solid boundaries which leads the measured viscosity to
be lower than the truth (Cheng 1984; Jana et al. 1995).
The effect of wall slip on the viscosity measurement is
dependent on the geometry of the instrument; the
viscosity of the same sample measured on different
viscometers can be different. At high solid volume
fractions, the effect of wall slip becomes more significant
and difficult to control.

To examine the influences of / and ¢ on 5, at different
solid volume fractions further, with A=2.0 and 4.0
Fig. 8 plots n, against @ at different values of . With
£=0.75, Fig. 9 plots 5, against ® at different values of /.
Figure 8 shows that at high solid volume fraction &
significantly influences the viscosity. Taking ®=0.5 for
example, with 2=2 the relative viscosity at {=0.25 is
about 1.3 times that at £=0.65, and with A=4 the
relative viscosity at £=0.25 is about 1.7 times that at
£=0.75. Figure 9 shows that the use of bidisperse
suspensions can provide two advantages. One is that, at
a given solid volume fraction, the viscosity of a
bidisperse suspension is lower than that of a monodis-
perse suspension and this effect becomes more signifi-
cant as A increases. Taking ®=0.5, for example, the
relative viscosity of a bidisperse suspension with 4 =2.0
and £=0.7 is about 60% of that of a monodisperse
suspension, while when A=4.0 and £=0.75, #, is only
about 30% of that of a monodisperse suspension. The
other advantage is that, for a desirable viscosity value,
the use of a bidisperse suspension can attain a higher
solid volume fraction than the use of a monodisperse
suspension. For example, the viscosity of a bidisperse
suspension with 41=2.0 and ®=0.52, or A=4.0 and
@ =0.55, equals the viscosity of a monodisperse suspen-
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sion with @ =0.50. These advantages can benefit many
industrial applications where suspensions of high solid
volume fractions are demanded but reasonably low
viscosities are desirable from the processing viewpoint.
Our model shows that as the solid volume fraction @ is
lower than 0.3 the influences of 1 and & on 5, become
insignificant, which agrees with experimental results and
other predictions. Although our model is derived using an
integration technique, it coincides with the model derived
using lubrication concept (Shapiro and Probstein 1992)
in predicting the significant influences of A and & on 5, at
high solid volume fraction. In a suspension the mean rel-

ative gap between nearest neighbouring particles is
estimated by d/d, = [(®,,/®)"*~1] (Hoffmann and Keve-
lam 1999), where ¢ is the average gap and d, is the
average diameter of particles. Then at ®=0.5, for
monodisperse particles (®,,=0.595) é/d,=0.060, and
for bidisperse particles with A=4 and ¢&=0.75
(®,,=0.68) 6/d,=0.108. With very narrow gaps, the
lubrication forces between nearest neighbouring particles
significantly decrease as d/d, increases (Cox 1973). There-
fore, the relative viscosity of the bidisperse suspension is
significantly lower than that of the monodisperse sus-
pension.

For high value of A, higher than 5 for example, its
influence on 7, is still an open question. In bidisperse
suspensions if 4 is very high the small particles are likely
to fill the voids among large particles or settle down.
Such a structure may have significant influence on the
viscosity of the suspensions.

Summary

In this paper a relative viscosity model of concentrated
bidisperse suspensions of noncolloidal particles was
derived. The random loose packing density obtained
by a collective rearrangement simulation model was
accepted as the limit of solid volume fraction. The
influences of particle size ratio 4 and the volume ratio of
large particles to total particles ¢ on the relative viscosity
were investigated. At high solid volume fraction, results
showed that both 4 and ¢ significantly influence 7,
which can be summarised in two parts. First, as @ and ¢
are fixed, 7, decreases with the increase in A. Second,
when @ and A are fixed, 5, decreases first as £ increases
from zero, reaches a minimum as & is around 0.60-0.75,
then increases as ¢ approaches unity. The value of & at
which #, is minimised varies with 1. At low solid volume
fraction, the influences of A and ¢ on p, are both
insignificant. Results of this work can be used to obtain
concentrated suspensions of higher solid volume frac-
tion without significant increase in viscosity by control-
ling the particle size ratio and the volume ratio of large
particles to total particles.
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