
Introduction

Non-linear e�ects become increasingly important when
the shear rate exceeds the inverse of the longest
relaxation time of the system under investigation
(Malkin 1995). A measure of non-linear conditions is
given by the product of the relaxation time s and the
shear rate _c, which is referred to as the Deborah number
D � s _c. The description and understanding of non-linear
behavior is important because it is frequently encoun-
tered during the processing of materials in general and of
polymers in particular (Macosko 1994). The application
of an oscillatory shear strain with a single frequency x1

results, for non-Newtonian materials, in the generation
of odd higher harmonic contributions at (2n + 1)x1

within the shear stress response (Giacomin and Dealy
1993; Wilhelm et al. 1998).

Using the Fourier approach, these di�erent harmon-
ics in the shear stress response can be analyzed with high
precision. In the literature, this concept has been applied
to the linear regime (OÈ ttinger and Zylka 1992; Holly
et al. 1988) and also to the non-linear regime (Gamota
et al. 1993; Giacomin and Dealy 1993; Reimers and
Dealy 1996, 1998). In this article we would like to extend

the current state-of-the-art sensitivity for this type of
analysis by several orders of magnitude. Both the
experimental and theoretical aspects of Fourier trans-
formation (FT) are covered.

The basic mathematics that leads to the appearance
of higher harmonics in the stress response has already
been described, for example in Wilhelm et al. (1998).
Therefore only a very brief summarization of the
arguments is recited.

Consider the non-Newtonian case where the viscosity
related shear stress is no longer proportional to the shear
rate. In this case the non-Newtonian viscosity g can
be expanded as a function of the absolute shear rate.
This is done under the assumption that the shear strain,
and consequently the shear rate, are purely sinusoidal
functions. The non-Newtonian behavior leads then to
the generation of higher harmonic contributions in the
resulting shear stress. The result for the time dependent
shear stress s is ®nally given by:

s�t� � A cosx1t � B cos 3x1t � C cos 5x1t � . . . :

or equivalently

s�t� �
X
n;odd

an cos�nx1t � /n� : �1�
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The prefactors A, B and C are in general complex
numbers, whereas the an values refer to the absolute
intensity of each harmonic. An FT can unravel the
frequencies nx1, amplitudes an, and phase angles /n of
all contributions within the shear stress response, as
described in Eq. (1). For details regarding the mathe-
matical aspects of FT see, for example, the textbooks by
Ramirez (1985) or Bracewell (1986).

Fourier-related considerations

To achieve FT-rheology spectra with a high sensitivity, a
half-sided, discreet, complex, magnitude FT was applied
to the shear stress signal. To obtain highly resolved,
artifact-free spectra with a low noise level, the time
signal must be acquired carefully, taking several math-
ematical and experimental aspects of the FT into
account. A speci®c summary of the most important
aspects is given below, although this is textbook
knowledge. A more extended discussion of FT can be
found in the following references: Ramirez (1985),
Bracewell (1986), Ernst and Anderson (1966), Schmidt-
Rohr and Spiess (1994).

The FT of any real or complex time signal s(t) or
frequency-dependent spectrum S(x) is usually de®ned in
the following way:

S�x� �
Z 1
ÿ1

s�t�eÿixt dt

and

s�t� � 1

2p

Z 1
ÿ1

S�x�e�ixt dx : �2�

The prefactors in Eq. (2) may di�er depending on the
conventions used. The FT in general is an invertible,
complex transformation over the in®nite integral from
)1 to +1. The FT arranges the time-dependent signal
s(t) with respect to the di�erent frequencies S(x) present
within the time domain.

An important mathematical property of the FT is
linearity:

s�t� � g�t� ����! ����FT
S�x� � G�x� : �3�

This means that any superposition of di�erent frequen-
cies in the time domain will also be resolved in the
frequency domain. The FT is inherently complex; thus
even for a real time-domain data set s(t), this transfor-
mation results in a complex spectrum S(x) with a real
r(x) and imaginary part i(x). Alternatively, the complex
spectra can be presented as magnitude m(x) and phase
/(x) spectra, respectively, where tan/ = i/r and
m = (r2 + i2)1/2. By applying the Euler relation
(exp(i/) = cos/ + i sin/), the basic de®nition in
Eq. (2) can be separated into a cosine and sine

transformation, simply termed a Fourier cosine and
Fourier sine transformation.

A half-sided FT is obtained when the integration in
Eq. (2) uses only half the integral limits, speci®cally from
t = 0 to t = +1. In this case the FT is similar to a
complex Laplace transformation. A half-sided FT is the
most common one used for experimental data.

In the case of discrete and digitized sampling, the
data is taken point by point with a ®xed increment tdw
(dwell time, or inverse sampling rate) over a total time
taq = tdwN (acquisition time). From N real (or complex)
data points in time, by means of a discrete FT, a discrete
spectrum of N complex points is generated. The spectral
width is the maximum detectable frequency, and is given
by the sampling rate xmax/2p = mmax = 1/(2tdw). The
spectral width is also sometimes called the Nyquist
frequency. The frequency di�erence between two points
of the spectrum is given by Dm = 1/taq, and is termed the
spectral resolution. In any experiment one should ®rst
estimate the maximum possible harmonic contribution
and adjust the sampling rate accordingly. For example, a
shear frequency of 1 Hz and an investigation up to the
25th harmonic at 25 Hz leads to a minimum sampling
rate of 50 1/s (tdw=20 ms) or, to be on the safe side
experimentally, tdw � 10ms. Due to the fact that the
peaks in the FT-rheology spectrum are in principle
extremely narrow, a long acquisition time taq decreases
the observed line width and increases the signal-to-noise
(S/N) ratio. The S/N ratio can be de®ned as the ratio of
the amplitude for the highest peak (``signal'') divided by
the standard deviation of the noise (``noise''). The noise
level should be measured in a spectral window where no
peak is anticipated. Typically, we acquired about 20±50
cycles of the fundamental frequency for each sweep. This
leads to a number of acquired time data points N in the
range 2000±5000. Optimum conditions do not seem to
be met in speci®c cases in the published literature.

Longer acquisition times increase the S/N ratio. To
explain this fundamental statement, we use Eq. (2) and
®rst compare the integral over the spectrum S(x) with
the time data s(t) at t=0:

s�0� � 1

2p

Z1
ÿ1

S�x� e�ix0|�{z�}
1

dx � 1

2p

Z1
ÿ1

S�x�dx : �4�

In Eq. (4) the value for the time-dependent signal s(t)
at t = 0 does not change as a function of the acquisi-
tion time taq and, consequently, the integral over the
spectrum cannot change either. Increasing taq decreases
the observed line width or equivalently increases the
spectral resolution, Dm, as already described. Thus this
leads to an increased S/N ratio. Further increases in the
S/N ratio can be achieved by applying apodization
functions. Spectral resolution can be improved using
zero ®lling. Neither of these two topics is of primary
importance in the case of a forced oscillation under

350



steady state because the forced oscillation itself lasts
ideally forever. Interested readers are referred to the
speci®c literature in Ramirez (1985), Bracewell (1986) or
Schmidt-Rohr and Spiess (1994).

In most experiments the time data s(t) is not
measured continuously but discretely, after ®xed time
steps, and it is digitized subsequently. Analog time data
is digitized every dwell time tdw. This procedure is done
via a k bit analog-to-digital converter (ADC). A k bit
ADC has 2k)1 discrete values to discriminate a single
point in time. Double-precision arithmetic increases this
by a factor of two. In practice we recommend values of
k ³ 8. Higher values of k lower the minimum detectable
intensity for weak signals (Skoog and Leary 1992;
Homans 1989). A low bit ADC can be a limiting factor
for measurements where a very high S/N ratio is desired.

The important concepts of dwell time, acquisition
time, spectral width and spectral resolution are visual-
ized in Fig. 1. In this ®gure 1000 time data points for 25
oscillations have been calculated prior to a Fast Fourier
transformation (FFT). An FFT is a very common and

particularly fast algorithm for discrete FT in which the
calculation time rises only as Nlog2N, instead of
increasing as N2 as in a brute force discrete FT
approach. While the general discrete FT is formulated
for arbitrary numbers of points N, the simplest and most
common FFT (``butter¯y'') algorithms require N = 2n

(Cooley and Tuckey 1965; Higgins 1976). This restric-
tion leads to ®xed values for the acquisition time taq and
thus also for the spectral resolution Dm = 1/taq. As a
result, the fundamental frequency x1/2p and the odd
multiples nx1/2p are often not exactly at speci®c spectral
points. The application of an FFT can therefore
introduce misleading results for the intensities and
phases of the spectral intensities, because they cannot
be read at exactly the expected frequency value. The
experimental data within this article were consequently
not processed using the common butter¯y FFT algo-
rithm.

FT-rheology also allows data averaging of spectra.
Spectral averaging, in general, increases the S/N ratio of
the acquired data proportional to the square root of the
transients n, i.e., S=N / ���

n
p

. This allows, at least in
principle, an unlimited S/N ratio. In contrast to FT-infra
red or FT-nuclear magnetic resonance spectroscopy, the
rheology response does not have the same phase for
di�erent harmonics (/n ¹ /m). Still, the relative phases
for each harmonic are reproducible with respect to the
phase of the applied oscillatory strain.

To overcome the sensitivity problem partially, aver-
aged FT-rheology spectra can be acquired by computing
a magnitude mode spectrum directly after each single
measurement (``sweep'') and afterwards adding the
spectra successively. This method loses the phase angle
information, but measures the relative intensities be-
tween the di�erent harmonic contributions with increas-
ing precision. To avoid the loss of the phase angle
information, the data acquisition should be triggered
with respect to the harmonic excitation. In this case
intensity and phase information are preserved. An
example of data averaging is also presented in the
results section.

Experimental

Data were obtained using a Rheometrics Dynamic Analyzer RDA
II rheometer and a Rheometrics RFS II rheometer. The raw stress
data were analyzed as obtained from the rheometer. The discrete
FT was done using a LeCroy Oscilloscope 9304 C with the
appropriate FT package incorporated. Additionally, FFT analysis
was applied using the programs Origin 4.1 and 5 (Microcal
Software). A cone-plate geometry was used with a diameter of
50 mm and a 0.02 rad cone angle. The sample under investigation
was a 10% solution of polyisobutylene (-C(CH3)2-CH2-)n with
molecular weights of Mv � 1:11 � 106 and 4:6 � 106 g=mol. The bulk
entanglement length of this polymer is 8900 g/mol according to
Ferry (1980). The polymer was dissolved in 90% oligoisobutylene.
The oligoisobutylene had a molecular weight of about 120 g/mol as

Fig. 1 Basic scheme of a discrete Fourier transformation (FT). The
time-dependent signal is analyzed with respect to the di�erent
frequency components. Due to the discrete signal a minimum time
increment, the so-called dwell time (tdw), leads to ambiguities with
respect to di�erent frequencies. This phenomenon results in a speci®c
spectral width (the maximum unambiguous detectable frequency).
The maximum data acquisition time (taq) limits the minimum
resolution of the spectrum
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determined by gel permeation chromatography and mass spec-
trometry. 1H nuclear magnetic resonance spectroscopy on the
solvent determined a small amount (<5%) of ole®nic protons,
while the rest of the molecule was completely aliphatic. The trade
names of the two samples are Oppanol B 100 (1:11 � 106 g=mol) and
Oppanol B 200 (4:6 � 106 g=mol). Both are produced and distrib-
uted via BASF.

To reduce the mechanical noise level, the rheometer was kept in
a rigid and mechanically stable environment. For all electronic
connections, double-shielded BNC-type cables (e.g., RG 223) were
used to minimize the electronic noise level. The raw data from the
force transducer were checked to ensure that they were quantita-
tive. This was veri®ed by comparing the FT results for the phase
angle d of the fundamental response in the linear regime with the
built-in data analysis of the rheometer. The values for the phase
angle were similar to within �0.2°. The possibility of phase shifts
due simply to the rheometer hardware can consequently be
excluded.

Results and discussion

In this section experimental results illustrate di�erent
aspects of the previous discussion. The experimental
results cover the following topics: ®rst, typical rheology
data in both time and frequency domains are presented.
The intensity I(x) and phase of these types of measure-
ments are shown as a function of increasing shear strain.
Furthermore, the reproducibility and precision of these
measurements are established. The parallel plate and the
cone-plate geometry are compared using the non-linear
regime. Also, examples are shown where spectral
averaging leads to a signi®cant enhancement in sensi-
tivity. Finally, the Fourier approach is applied to
determine the linear/non-linear crossover in a poly-
isobutylene sample. Polyisobutylene was used because
of its simplicity as a fully amorphous high molecular
weight homopolymer.

Figure 2 displays a typical stress response for an
oscillatory shear strain experiment at 0.1 Hz using
Oppanol B 200. In this experiment the polymer solution
was sheared with a sinusoidal strain of 2400% ampli-
tude. The time-dependent stress response is displayed in
Fig. 2a. From the time data, it is already clear that in
addition to a single sinusoid, higher harmonic contri-
butions are present in the shear stress response. The FT
of the data in Fig. 2a is displayed in Fig. 2b. In
accordance with Eq. (1), only the odd higher multiples
of the fundamental frequency are detected. The inset of
Fig. 2b is magni®ed by a factor of 100. The inset
visualizes the high S/N ratio reached for a single sweep.
This speci®c measurement achieved an S/N ratio
of 17 008:1 as calculated with respect to the stress
response at 0.1 Hz. The 21st harmonic is the highest
harmonic with a signi®cant contribution above the noise
level.

A simpli®ed model of the time-dependent response
function under extreme shear thinning is given by a
periodic step function for the shear stress (Wilhelm et al.

1998). A periodic step function has only odd Fourier
components at x1, 3x1, 5x1, etc. For this function, the
di�erent intensities I(nx1) along the frequency axis are
proportional to I(nx1) / 1/n, so normalized to the
fundamental frequency we expect: I(x1)=1, I(3x1)=
1/3, I(5x1)=1/5, etc. The experimental Fourier analysis
of the spectrum in Fig. 2b allows the observation of
harmonics up to I(21x1). The crosses in Fig. 2b display
the expected intensity resulting from the simpli®ed
model. Clearly the experimental data decay much faster.
One di�erence between the simple step function model
and the experimental data is the absence of sharp edges
in the time domain of the experimental data. As a
consequence, the intensity of the odd harmonics is not
expected to follow the indicated I(nx1) / 1/n approxi-
mation closely but rather to decay faster. This is also due
to the memory terms involved. The value of the relative
intensities at di�erent frequencies consequently re¯ects
the degree of non-linearity and also the memory-related

Fig. 2 a Experimental time data for the stress response after applying
a sinusoidal strain at 0.1 Hz and 2400% amplitude to a
polyisobutylene sample. For simplicity, only part of the time data is
shown. The sample was Oppanol B 200 (Mv � 4:6 � 106 g=mol)
dissolved in 90% oligoisobutylene solution, measurements were made
at 353 K. b The magnitude FT spectrum resolves the contributions of
the higher harmonics up to the 21st overtone at 2.1 Hz. The inset
displays the spectrum of a single sweep magni®ed 100 times. The S/N
ratio for this spectrum is 17,008:1. The crosses in the spectrum
symbolize the intensity expected for di�erent harmonics as a result of
a simpli®ed step model
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behavior. Any folding of a memory function in the time
domain results in a simpler multiplication in the
frequency domain (Reinheimer et al. 1999).

To evaluate the accuracy and reproducibility of FT-
rheology spectra with respect to the experimental
conditions, we measured di�erent Oppanol B 200
samples, on 5 di�erent days. In these experiments, an
oscillatory strain with 0.1 Hz and 1900% shear strain
was applied. The results of the intensity of the third
harmonic I(3x1) with respect to the fundamental
frequency I(x1), and the related phase shift between
the pure sinusoidal shear strain and the stress response,
are given in Table 1. The reproducibility of the relative
intensities at I(3x1)/I(x1) is within 0.2%. Furthermore,
the relative phase of the third harmonic is accurate to
within �0.7°. One should be aware that the relative
phase of the oscillation for the nth harmonic relative to
the applied phase of the strain oscillation can only be
de®ned within the interval /n Î [)180°/n; +180°/n]. The
relative phase of each harmonic overtone has a time
period Tn=2p/(x1n) for the nth overtone. As a compar-
ison the phase angle d in the linear regime at 0.1 Hz was
22.9°, the phase angle d at 1900% shear strain amplitude
and 0.1 Hz was measured to be 77.6° and the phase
angle d in the linear regime for an excitation with 0.3 Hz
was measured to be 9.8°. To obtain absolute values for
each phase with respect to the shear excitation, the
di�erent period for each harmonic contribution must be
scaled accordingly.

Figure 3 shows ®ve typical spectra at 353 K for
Oppanol B 200, as a function of increasing strain. Values
for the strain amplitude in these spectra are 5, 58.3, 400,
1400 and ®nally 2400%. In each case a 0.1-Hz oscillation
was applied. For the amplitude value of 2400%, the
related spectrum is also already shown in Fig. 2b.
Increasing the strain generates an increasing number of
higher harmonic contributions due to the increasing
non-linearities involved. One way to characterize the
degree of non-linearity is the intensity ratio of the third
harmonic I(3x1) relative to the fundamental frequency

I(x1). Measurements from these spectra can provide a
crucial test regarding analytical or numerical model
predictions with respect to the non-linear response
regime (Rouault and Kremer 1999).

In the following step we evaluated the in¯uence of
di�erent shear geometries. The cone-plate geometry has
the advantage of a constant shear rate across the sample.
In the linear response regime the cone-plate geometry
is often replaced by the parallel plate geometry. The
parallel plate case bene®ts from even simpler geometry
and the possibility of applying very large shear strains at
small gaps between the two plates. In the linear regime
the di�erence between the two geometries can be
compensated for by an appropriate shift factor (Mac-
osko 1994), where the characteristic radius r of the
parallel plate geometry with respect to the total radius R
of the plates is r/R = 0.75. The characteristic radius of
the parallel plate geometry mimics the position where
the shear rate in the linear regime is similar to the shear
rate of the cone-plate geometry. To compare parallel
plate and cone-plate geometry in the non-linear regime,
Oppanol B 100 at 0.1 Hz was measured as a function of
increasing strain. The degree of non-linear behavior was
characterized via the ratio of intensities I(3x1)/I(x1).
The results for these measurements are shown in Fig. 4a.
The application of a shift factor of 0.75, as used in the
linear regime, clearly improves the relative discrepancy
between the two geometries (see Fig. 4b). The two data
sets still do not have exactly the same dependency. The
experimental values di�er at large strains but for lower
strains they display similar values and also a similar
slope. This leads to the conclusion that the application
of a single shift value in the non-linear regime is in
principle di�cult. This is caused by the spatial inhomo-
geneous shear rate and therefore inhomogeneous shear
response along the parallel plate geometry.
Consequently, di�erent geometries cannot be compen-
sated for by a single characteristic radius at di�erent
strain amplitudes within the non-linear regime.

A further option using FT-rheology has been men-
tioned earlier, namely, averaging n shear stress spectra
and therefore increasing the S/N ratio. In theory the
increase should be: S=N / ���

n
p

. Figure 5 displays the
e�ect of signal averaging on an Oppanol B 100 sample
where a 1-Hz oscillation with 400% shear strain was
applied. In Fig. 5a, a section of the normalized
(I(x1)=1) shear stress spectrum is displayed for the
case of a single sweep. Clearly, the 5th harmonic at 5x1

is visible, while the peak at 7x1 is within the noise level.
After averaging 100 independent sweeps, the sensitivity
or the S/N ratio has increased by the predicted factor of
10 (see Fig. 5b). It is possible to detect the intensity for
the harmonic contribution at 7x1 and even the contri-
bution at 9x1 is visible. The calculated values for the the
S/N ratio are 4515:1 in Fig. 5a and 44 889:1 in Fig. 5b.
This is in good agreement with the theoretically expected

Table 1 Average values for I(3x1)/I(x1) as received from 5 in-
dependent measurements of the relative intensity and relative phase
of the contribution at 3x1. A strain of 1900% amplitude and
0.1 Hz frequency was applied a Oppanol B 200 solution at room
temperature. The displayed values show the high reproducibility
for this characterization method

Experiment I(3x1)/I(x1) Phase angle /3

1 0.1677 41.97°
2 0.1660 41.92°
3 0.1694 43.36°
4 0.1674 42.17°
5 0.1711 43.16°
Average 0.16830 42.52°
Standard deviation 0.002 0.69°
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increase by a factor of 10. Averaging magnitude spectra
gives increased sensitivity with respect to the amplitude
of the harmonics. This allows the determination of an in
Eq. (1) with great accuracy. The technique of averaging
magnitude spectra does not allow the detection of the
phase angle /n for each of the harmonics. Although the
measurement of the phase angle /n is in principle also
feasible if the phase of the applied strain is used to
trigger the data acquisition. This way the spectra can
always be added with a similar response phase.

So far we have demonstrated that FT-rheology stress
spectra can be measured with very high sensitivity. This
technique now o�ers a wide range of possibilities and
practical applications. Applications include from the

pure description of non-linear material, including the
reconstruction of the time data. The comparison of
theoretical (Bird and Carreau 1968; De Gennes 1979;
Doi 1996; Ferry 1980; Larson 1988) and computer
models with the experimental data of polymers or other
materials is another possibility. Also, the kinetics of
time-dependent phenomena, for example, shear-induced
phase separation, can be studied.

In Fig. 6, we plot the increasing amplitude for the
third harmonic as a function of shear strain amplitude
where a sinusoidal oscillation with 0.1 Hz was applied
(at 293 K) to Oppanol B 100. The maximum shear rate
during a cycle can be calculated as: _cmax � c0x � c02pm,
where c0 is the strain amplitude. The increase in I(3x1)/

Fig. 3a±e FT-rheology stress
spectra as a function of the
shear strain amplitude. The
applied strain amplitude varied
from 5, 58.3, 400, 1400 to
2400%. Measurements were
performed at 353 K using an
Oppanol B 200 solution and
applying a 0.1-Hz oscillation.
Increasing the shear strain am-
plitude enlarges the degree of
non-linearity. This is directly
re¯ected in the generation of
more and more pronounced
overtones. For each spectrum
only a single sweep was ac-
quired. The measured S/N ratio
is indicated for each spectrum
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I(x1) as a function of strain can be described by an
exponential function (Reinheimer et al. 1998) where the
intercept for I(3x1)/I(x1)=0 de®nes the crossover from
linear to non-linear behavior. In the case of Oppanol B
100, we also determined the parameter for steady shear
according to the Carreau model (Bird and Carreau 1968)
where g=g0 � 1= 1� bj _cj� �a� � is assumed. In this model
the parameter b determines the crossover between linear
and non-linear behavior. The parameters according to
the Carreau model were measured (not shown) as
g0 = 172 Pa s, b = 0.62 s and a = 0.82. The exponen-
tial analysis for the third harmonic as a function of
strain leads to a crossover amplitude So=77%. This is
the amplitude where the onset of non-linear behavior
occurs and the maximum shear rate _cmax within a cycle
exceeds the inverse of the longest relaxation time. For
the value of So=0.77 shear strain amplitude we ®nd a
crossover shear rate of _cmax � 0:77� 2p� 0:1�1=s� �
0:48�1=s�. This value should be the inverse of the longest
relaxation time in the polymer solution.

Fig. 4 a Comparison of the non-linear response using plate-plate and
plate-cone geometry. The ratio I(3x1)/I(x1) was used to characterize
the non-linear response. This ratio was measured as a function of the
shear strain amplitude at 0.1-Hz excitation. b The application of a
shift factor of 0.75 clearly reduces the discrepancies between the two
geometries. The application of the shift factor does not result in
absolutely identical data and therefore the results depend on the
geometry in the strongly non-linear regime

Fig. 5 Application of a 1-Hz sinusoidal excitation with 400% shear
strain amplitude using a Oppanol B 100 solution. In both cases we
show a normalized (I(x1)=1) magnitude spectrum. In a the spectrum
after only a single sweep is displayed. Clearly, the 5th harmonic at
5 Hz is visible while the peak at 7 Hz is not clearly resolved and is
within the noise level of the single measurement. Averaging 100
sweeps as shown in b theoretically increases the signal-to-noise (S/N)
ratio by a factor of 1000.5=10. This enables the peak at 7 Hz to be
resolved and even the peak at 9 Hz is detectable. The averaging
technique allows, in principle, an unlimited S/N ratio. In a we
calculated an S/N ratio of 4515:1, whereas in b we calculated 44,889:1

Fig. 6 Increases in the intensity of I(3x1)/I(x1) as a function of the
applied shear strain amplitude using a cone-plate geometry. The shear
frequency was 0.1 Hz for an Oppanol B 100 solution. The increase in
the third harmonic can be described over a wide range with a single
exponential function. The onset of contributions at I(3x1) determines
the crossover from linear to non-linear behavior. We found the onset
at a shear strain amplitude of S0=0.77. For this strain value the
maximum shear rate reaches up to 0.48 s)1 during a shear cycle
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The experimental analysis (Reinheimer et al. 1998),
the analysis using the Carreau model and also computer
simulations (Rouault and Kremer 1999) with respect to
I(3x1)/I(x1) could in all cases be ®tted by a single
exponential increase as a function of shear strain. In the
case of samples where the linear regime is experimentally
inaccessible, the hypothetical crossover from linear to
non-linear shear behavior might be found by extrapo-
lating back to lower shear rates.

Conclusion

In this article, we describe several fundamental
considerations for measuring higher harmonics in the
shear stress response. Fundamental principles of FT
rheology and the consequences for practical data
acquistion are discussed. We are able to observe up

to the 21st overtone with an overall S/N ratio of
about 15,000:1 for a single sweep. The impact of
parallel plate and cone-plate geometry is analyzed and
also di�erent possibilities for further increasing the
sensitivity of these measurements are stated. Practical
applications are discussed and the crossover from
linear to non-linear behavior is analyzed in a speci®c
case.
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