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Abstract We describe a new meth-
od for characterizing the non-linear
behavior of complex fluids at both
small and large deformations. For
creep measurements, we use the
coupling between the instrumental
inertia and the material’s elasticity
to follow the rheological behavior
of a solution of iota carrageenan
both above and below the yield
stress. It is shown that this coupling
selectively excites one particular fre-
quency of the relaxation spectrum.
An analytical calculation is used to
quantify the non-linear behavior
near the yield stress. The “free“ os-
cillations observed during the first
few seconds allow us to choose the

most appropriate mechanical model.
Comparison with experiment shows
that even above the yield stress, a
linear model can still give indepen-
dently reliable information about the
changes in each element of the me-
chanical model. A comparison of
free and forced oscillations in con-
trolled stress rheometry shows both
experimentally and theoretically the
conditions under which the use of
free oscillations is advantageous.

Key words Inertia effects – free
oscillations – controlled stress
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Introduction

In general, it is extremely difficult to study experimen-
tally the non-linear viscoelastic behavior of thixotropic
materials. When the times characterizing thixotropy and
viscoelasticity are similar, very few methods can sepa-
rate the effects of these two phenomena. However,
when their characteristic times are very different, the
structural modifications associated with these two kinds
of behavior can be studied independently. Nevertheless,
even when thixotropy and viscoelasticity occur on se-
parable times scales, they cannot both be characterized
by the same type of experiment.

Studying viscoelasticity using dynamic measurements
is limited to the linear behavior, as interpretation of the
results is very difficult when non-linear behavior, such
as the sol-gel transition, occurs. In flow experiments, par-
tially irreversible destruction of the material often occurs
making the comparison between different rheological

tests difficult. These problems motivated us to define rhe-
ological measurements giving as much information as
possible. We show here how a careful analysis of creep
measurements made with a controlled stress rheometer
can be very useful for the rheological characterization
of a complex fluid: a physical gel both above and below
its yield stress. Non-linear viscoelasticity was studied
using the “free” oscillations generated in the material
by applying a stress step. The analysis of such oscilla-
tions generated by steps in shear rate has been used for
the calculation of the elastic moduliG
' and G'' in the linear domain (see Hopkins, 1963,

for instance). Many other studies have followed this
first analysis for the calculation of the complex modu-
lus (Struik, 1967; Roscoe, 1969). Ferry (1980) has re-
viewed this work.

A recent study of free oscillations observed in creep
experiments suggested application of the same analysis
as that used for steps in shear rate (Zo¨lzer and Eicke,
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1993), using as usual the frequency and damping of the
oscillations for the calculation of the instantaneous and
delayed elastic moduli.

Viscoelastic materials generally have broad relaxation
spectra. However, in our experiments the coupling of the
instrumental inertia with the sample’s viscoelasticity re-
sults in the selection of one particular frequency. There-
fore, a simple mechanical model with a single relaxation
time can be used to model the shear strain-time curves.

We propose here an analytical calculation which cor-
rectly models the observed behavior in both the linear
and non-linear domains. We use a Kelvin-Voigt me-
chanical model and follow the changes occurring in
the different mechanical elements when approaching the
yield stress. Once the gel had yielded, it was still possi-
ble to study rheological changes in the material with a
Maxwell-Jeffreys model and to characterize its visco-
elasticity and thixotropy independently.

Instrumental inertia and viscoelasticity:
application to the Maxwell-Jeffreys model

We show here how viscoelasticity and instrumental
inertia are coupled.

The equation of motion

The equation of motion for the mobile part of the appa-
ratus is:

I
@Xw

@t
� Ca ÿ Cw �1�

whereCa and Cw are respectively the applied and the
resistant torque at the moving wall,I is the inertia mo-
mentum of the mobile part of the apparatus andXw is
the angular velocity.

In linear viscoelasticity, space and time variables
naturally separate in the constitutive equation, leading
to proportionality between shear rate and angular velo-
city (proportionality factorFċ) and shear stress and tor-
que (proportionality factorFr). Equation (1) can then be
rewritten:

a�cw � ra ÿ rw �2�
where

a � I Fr
F_c

:

The constitutive equation

Equation (2), written for the mobile part of the appara-
tus, is coupled to the constitutive law of the material.
We choose a Maxwell-Jeffreys model:

�g1 � g2� _r� Gr � g2G_c� g1g2�c �3�
Coupling Eqs. (2) and (3) for an applied shear stress
step of amplituder0, the following expression can easi-
ly be found at the moving wall:

�g1 � g2��r�
�
G� g1g2

a

�
_r� Gg2

a
r

� Gg2
a

r0h�t� � g1g2
a

r0 d�t� �4�
where h(t) is the Heaviside distribution function and
d (t) is the Dirac delta impulsion.

Remarks on the significance of oscillations

We want to emphasize that any elastic term coupled to
Eq. (2) can lead to an oscillating solution, whereas
purely viscous materials cannot give rise to oscillations.
This distinction cannot be made using controlled shear
rate rheometers, as a torsion torque is generally present
(see, for instance, Mackay et al., 1992), so that even in-
elastic materials can give rise to oscillations. For a con-
trolled stress rheometer, it can be asserted that if oscilla-
tions occur in creep mode, the material necessarily has
elastic behavior. Analysis of these oscillations is rele-
vant whatever the amplitude of the applied shear stress.

Analytical solution of the Maxwell-Jeffreys model

The solution of Eq. (4) splits into two cases: an os-
cillating solution and a non-oscillating one.

Condition for the existence of oscillations

For the Maxwell-Jeffreys model, the critical case is giv-
en by:

g2G

a�g1 � g2�
ÿ A2 � 0 �5�

with A= aG�g1g2
2a�g1�g2�. The associated critical elasticity is

then:

G � Gcritical � 2g
2
2

a

�
1� g1

2g2
�

�������������
1� g1

g2

r �
�6�
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It is therefore possible to choose the coefficienta
(via the geometry used and its inertia) so that a given
material will give rise to oscillations.

Solution of Eq. (4) gives:
For G≥Gcritical:

rw�t� � r0

�
1ÿ eÿAt

�
cos�xt� � aGÿ g1g2

2ax�g1g2�
sin�xt�

��
�7�

with x=
�������������������������
g2G

a�g1�g2� ÿ A2
q

:

The shear rate is obtained by integration of Eq. (2)
with Eq. (7):

_cw�t� �
r0

g2

�
1ÿ eÿAt

�
cos�xt�

� 1

ax
�aAÿ g2� sin�xt�

��
�8�

The deformation is easily obtained by integration of
Eq. (8):

cw�t� �r0
�
t

g2
ÿ B� eÿAt

�
Bcos�xt�

� A
x

�
Bÿ 1

Ag2

�
sin�xt�

��
�9�

with B � a�g1�g2�
g2G

�
2A
g2
ÿ1

a

�
andc(0)=0.

The solution to the non-oscillating case,G<Gcritical,
can be obtained from these equations by replacing the
sine and cosine functions by the corresponding hyper-
bolic functions.

Solutions for the Maxwell and Kelvin-Voigt models

These can be obtained as simplifications of the Max-
well-Jeffreys solution.

The Maxwell model

In this modelg1 tends to zero, so the expression for the
critical elasticity, Eq. (6), reduces to:

Gcritical � 4g
2
2

a
�10�

Equations (7)–(9) reduce to, respectively:

rw � r0

�
1ÿ eÿ G

2g2
t

�
cos�xt� � G

2g2x
sin�xt�

��
�11�

_cw �
r0

g

�
1ÿ eÿ G

2g2
t

�
cos�xt�

� 1
x

�
2g2
ÿ g2

a

�
sin�xt�

��
�12�

and

cw �
r0

g2

�
tÿ a

G

�
G

g2
ÿ g2

a

��
1ÿ eÿ G

2g2
t

�
cos�xt�

� G

2g2x

G=g2 ÿ 3g2=a
G=g2 ÿ g2=a

sin�xt�
���

�13�

with x �
��������������
G2

4g2
2

ÿ G
a

q
.

The non-oscillating case is again obtained by replacing
the sine and cosine functions by the corresponding
hyperbolic functions.

The Kelvin Voigt model

In this modelg2 tends to infinity, so the expression for
the critical elasticity, Eq. (5), reduces to:

Gcritical � g21
4a

�14�

Equations (7)–(9) reducte to, respectively:

rw � r0

�
1ÿ eÿg1

2at

�
cos�xt� ÿ g1

2ax
sin�xt�

��
�15�

_cw �
r0

ax
eÿ

g1
2at sin�xt� �16�

and

cw�t� �
r0

G

�
1ÿ eÿg1

2at

�
cos�xt� � g1

2ax
sin�xt�

��
�17�

with x �
���������������������
G
a
ÿ
�
g1
2a

�2s
.

The main advantage of this analytical approach is
that no hypothesis is necessary concerning limited de-
formation or dissipation, which is not the case for clas-
sical dynamic experiments. Moreover, as long as the
proportionality between both shear rate and angular ve-
locity and shear stress and torque remain valid, a simi-
lar approach can be adopted for any constitutive equa-
tion.

In the next section, this analysis is applied to a phys-
ical gel above and below its yield stress.

225C. Baravian and D. Quemada
Interpretation of oscillating creep data



Results and experiments

Measurements were performed using a Carrimed CS 100
rheometer fitted with a coaxial cylindrical geometry. The
creep mode allowed acquisition of 10 points per time dec-
ade from 10–4 s. The material studied was iota carragee-
nan, which is a gelling polysaccharide used in the food
industry. The sample was provided by Systems Bio-In-
dustries (Carentan, France) and was used at a concentra-
tion of 5 g/l in 0.2 M NaCl solution. The manufacturer
gave the mass-average molecular weight as 350000, de-
termined using gel permeation chromatography coupled
to refractive index and multiangle light-scattering detec-
tors. As usual, it contained a fraction of kappa carragee-
nan, estimated as about 7% by the method of Parker et
al. (1993). However, under the electrolyte conditions
used here, kappa carrageenan does not gel at 208C (Par-
ker et al., 1993), so it is not expected to influence the re-
sults. The solution was heated at 908C for 30 min to
achieve complete dissolution, before being placed in the
rheometer and cooled to 208±0.18C. Under these condi-
tions, iota carrageenan undergoes a thermally reversible
sol-gel transition close to 608C (Parker et al., 1993). Eva-
poration was prevented by a system specially designed in
the laboratory which saturated the air in contact with the
sample with moisture.

A series of shear stress steps with increasing ampli-
tudes was applied. The first step had an amplitude of
1 Pa and the increment between steps was also 1 Pa.
Creep and recovery curves were each recorded for 20 s.
For this length of experiment, a yield stress was ob-
served between 15 and 16 Pa. The Kelvin-Voigt model
was therefore used for the experiments with stresses
between 1 and 15 Pa. Above this stress, the sample
started to flow. Yield was considered to have occurred
when recovery was incomplete (to within the resolution
of the apparatus, 10–3 radians). At this point we consid-

ered the sample to be a viscoelastic liquid, and mod-
elled its rheological behavior using the Maxwell-Jef-
freys model. Ten successive experiments were then per-
formed at 16 Pa to follow the time-dependent non-linear
behavior of the product above this yield stress.

Measurements below the yield stress (Kelvin-Voigt model)

We will not discuss here whether the yield stress really
exists or not. We just consider that its value is related
to the solicitation time (Cheng, 1986). Our experimental
time was chosen in order to obtain observable thixotro-
pic effects over times short enough to limit the irreversi-
ble behavior induced by breakdown of the material under
shear. This time (typically 10 s) is also comparable with
the characteristic thixotropic times obtained for identical
solutions of iota carrageenan after extensive shear had re-
moved their elasticity (Baravian et al., 1996).

Figure 1 shows a typical result obtained below the
yield stress (i.e., for creep curves from 1 to 15 Pa).

Figures 2 and 3 show the excellent agreement be-
tween the Kelvin-Voigt model and experiment data ob-
tained below the yield stress. Only two parameters are
open in this fit (G andg1). Nevertheless, the model cor-
rectly describes the frequency shift, the period and the
damping of oscillations, the start-up before oscillations
and the final deformation.

The recovery curve (Fig. 3) is modelled indepen-
dently usingra=r0(1–h(t)) in Eq. (2) and the same
method of solution. The initial deformation was taken
as the final point on the creep curve.

In the following experiments, the shear stress was in-
cremented until the recovery was different from zero (to
within the resolution of the apparatus). The model param-
eters found are shown as a function of the applied shear
stress for both creep and recovery curves in Figs. 4 and 5.
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Fig. 1 Typical experimental
creep curve. Applied shear
stress: 2 Pa



In Figs. 4 and 5, the last points (made at 16 Pa) are
measured above the yield stress. The data were there-
fore fitted using the Maxwell-Jeffreys model (Eq. (9)).
Both Figs. 4 and 5 show that even below the yield
stress, the material was very non-linear. The increase of
the elastic modulus under shear was probably due to
strain hardening. Similar effects have recently been re-
ported for another physical gel, gelatin (Groot et al.,
1996). The viscosity associated to the Kelvin-Voigt ele-
ment increased slightly with the initial strain both for
creep and recovery experiments. They remained nearly
equal until a shear stress of 10 Pa was applied. Their
separation at higher initial strains may be interpreted in
two ways: Either i) yield actually occurred but the reso-
lution of the apparatus prevented its observation (so
yield would have been observed if the stress had been
applied for longer) or ii) it corresponds to an increase
in the non-linearity of the network structure close to the
yield stress.

Note that these non-linear effects were reversible be-
low the yield stress. After the 13 Pa experiment, a sec-
ond measurement at 2 Pa was made. The model param-

eters fitted were identical, to within 2%, to those of the
first 2 Pa experiment.

Measurements made close to the transition
(Maxwell-Jeffreys Model)

To follow the modifications in the material once yield had
occurred, ten successive measurements were made using
an applied shear stress of 16 Pa. The results are shown in
Fig. 6.

Only the first second’s data from the creep and recov-
ery curves shown in Fig. 6 were fitted to the model. As
seen on Figs. 10 and 11, for each particular curve, the
frequency of oscillations remains constant in time. This
shows that here again, only one particular frequency is
selected and a linear mechanical model with a single
relaxation time still applies. A Maxwell-Jeffreys model
has been found to be appropriate. The remarkable fact
that the frequency of oscillations is still constant from
one experiment to another is discussed below.

Results of the fit are shown in Figs. 7–9.
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Fig. 2 Creep curve. Applied
shear stress: 2 Pa. Comparison
between experiment and model
(Eq. (17)).a=0.06 Pa·s–2,
G=35.33 Pa andg1=0.033 Pa·s–2

Fig. 3 Recovery curve. Applied
shear stress: 2 Pa. Comparison
between experimental and model.
a=0.06 Pa·s–2, G=35.24 Pa and
g1=0.033 Pa·s–2
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Fig. 4 Elastic modulus from the
Kelvin-Voigt model as a function
of applied shear stress. Measure-
ments made below the yield
stress

Fig. 5 Viscosityg1 obtained
from the Kelvin-Voigt model as
a function of applied shear
stress. Measurements made be-
low the yield stress

Fig. 6 Successive creep and re-
covery curves. Applied shear
stress: 16 Pa



The main observation is that the material does not
lose its elastic properties, even at very high deforma-
tions. Figure 7 shows that the elasticity remained con-
stant, even though the deformation increased (see
Fig. 6). The time dependency seemed to affect the vis-

cosity g1 associated to the solid part of the material un-
der stress (Fig. 8). However, the value on recovery
seems to remain constant and in good agreement with
the values obtained below the yield stress (Fig. 5).
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Fig. 7 Elastic modulus vs. the
number of applied steps in shear
stress of 16 Pa. Measurements
made above the yield stress

Fig. 8 Viscosityg1 vs. the num-
ber of applied steps in shear
stress of 16 Pa. Measurements
made above the yield stress

Fig. 9 Viscosityg2 vs. the num-
ber of applied step in shear stress
of 16 Pa. Creep curve. Model
(initial value) and experiment
(viscosity value at 20 s)



Figure 9 shows the variation of the viscosityg2. As
the elasticity remains constant for all successive experi-
ments, the decrease ofg2 can be interpreted as responsi-
ble for the change of slope of the creep curves (and
especially for the second experiment), that is thixotropy.
The latter was also observed via the difference between
the initial and final values of the viscosity for the creep
curve (Fig. 9). As the number of applied steps in-
creased, the initial and final viscosities reached equilib-
rium values. The initial viscosity was obtained from the
fit of the Maxwell-Jeffreys model to the first second’s
data. The final viscosity was calculated by numerical
differentiation of the deformation-time curve.

An approximate calculation

It seems particularly interesting to try to gain informa-
tion about the viscoelasticity of a material without hav-
ing to fit all the data using a particular model. This can
be very useful if, for instance, thixotropy occurs at such
short times that it affects the period of oscillation. Un-
der these circumstances, the previous analysis is no
longer valid. However, an alternative approach, based
on direct analysis of the period and damping of the os-
cillations can be used. The simplifying hypotheses ne-
cessary for its use are described below.

Hypothesis:g2�g1

When passing the yield stress, it seems reasonable to
assume that the flow viscosity is much greater than that
associated with the solid element, as was observed here
(compare Fig. 8 with Fig. 9). This simplification should
also apply to many other types of systems at low shear
rates.

Using this simplification, the previously given expres-
sions forA andx reduce to:

A � 1
2

�
G

g2
� g1

a

�
�18�

x �
���������������
G

a
ÿ A2

r
�19�

In this case, the elastic modulus can be determined
directly by analysis of the experimental data and deter-
mination of the damping and frequency of oscillations
through Eq. (19). Struick (1967) gives a “plus” sign in
Eq. (19) for generalized viscoelastic models. We consid-
er here that a Maxwell-Jeffreys model is relevant for a
large number of materials and therefore use Eq. (19) in
the form given above, since it is directly deduced from
the exact solution.

Note that the expression for the angular frequency

can sometimes be reduced tox �
���
G
a

q
if G

a
� A2. This

second hypothesis reduces to
4g22
a
� G� g21

4a, so its va-

lidity depends on the factora, which can be varied by
the experimenter to some extent. This remark is of in-
terest if a rheometer whose inertia can be modified is
available. Note that these conditions apply to the carra-
geenan solution studied here. This can be seen in
Figs. 10 and 11, which show the first second of the
creep curves and dimensionless recovery curves shown
in Fig. 6.

These figures show that the frequency remained
nearly constant. This observation demonstrates that the
elasticity was not modified when yield occurred. It also
shows once more that only one particular frequency is
solicited, the corresponding resonance frequency, which
depends mainly on the material elasticity and the inertia
and geometry of the apparatus. The next section shows
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Fig. 10 Representation of the
first second of creep curves from
Fig. 6. Curves from bottom to
top correspond to successive ex-
periments from 1 to 10



how different frequencies can be excited by changing
the instrumental inertia.

Interpretation of the damping is more difficult since
the contributions of viscositiesg1 and g2 cannot be ob-
viously separated in Eq. (18). However, these dependen-
cies can be separated by i) complete modelling of creep
and recovery curves, or ii) by repeating the experiment
using different values of the inertia factora (see Eq. (18)).

The previously cited work of Zo¨lzer and Eicke
(1993) makes the assumption that the deformation re-
sponse follows a logarithmic decrease and a simple os-
cillating sine variation. They note that to obtain a good
fit to their experimental data, two additional arbitrary
variables were required: a frequency shift and a super-
posed linear variation. We think that the method
described here of coupling the Maxwell-Jeffreys model
with instrumential inertia would have given a more
satisfactory alternative approach, since only one extra
parameter (g2) is required to give a complete descrip-
tion of the data, without using any arbitrary variables.
Moreover, the parameters used here have a precise
physical significance, unlike the arbitrary parameters in-
troduced in their model.

It is important to note that the presence of inertia ef-
fects can lead to erroneous extrapolations at short times.
In fact, the use of an “average curve” through the oscilla-
tions can produce a non-existent instantaneous elasticity
at t=0 (see Eq. (9) and Fig. 1). However, if both pre-
vious simplifying hypothesis apply, this extrapolation
can give quite a good estimate of the material elasticity.
Nevertheless, this method should be used with care.

Comparison with forced oscillations

This section compares “free“ and forced oscillations
and demonstrates the possible use of the analysis de-
scribed here to extend the frequency range covered by

forced oscillations. The latter is always very limited in
controlled stress rheometers.

In general, the ability to modify the oscillation fre-
quency (and therefore select a different mode) depends
on the material under test and in particular depends
strongly on its elasticity. The parametera can be modi-
fied by changing the instrumental inertia. This method
is preferable to changing the geometry, as each sample
can be tested at many values ofa. We have designed a
simple system for adding a mass to the mobile part of
the rheometer. An increase in inertia leads to a decrease
in the oscillation frequency, and its maximum value de-
pends on the sample and the rheometer inertia without
any additional mass.

The frequency range of dynamic oscillations is lim-
ited in controlled stress rheometers by inertia effects.
Methods to correct data for these effects are available,
but their use is limited, as can be seen in Fig. 12, which
shows a comparison of dynamic and “free“ oscillations
for an applied shear stress of 1 Pa. The data points
were calculated using both creep and recovery data.
Above a frequency of about 3 Hertz, the dynamic mode
shows a shift in the loss angle, which rapidly increases
to 1808. This shift is a tyical effect of instrumental iner-
tia, giving erroneous results, especially forG'. A rough
estimate of the frequency at which inertia will give
incorrect results in the dynamic mode can be ob-
tained by calculating the resonant frequency using

f
res
� xres

2p �
������
G=a
p
2p . This calculation givesfres&3 Hertz,

in good agreement with the frequency at which the shift
of the loss angle occurs in Fig. 12. The free oscillation
mode gives values in good agreement with the forced
oscillations below this frequency. This shows the valid-
ity of the proposed approach, using a simple mechani-
cal model for the description of “free” oscillations in
creep and recovery curves.

For materials with significant elasticity, higher fre-
quencies can be attained when oscillations are free than
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Fig. 11 Dimensionless represen-
tation (1 for the first data point
to zero for the last one) of the
first second of recovery curves
from Fig. 6. Curves from higher
to lower amplitude correspond to
successive experiments from 1 to
10



when they are forced, as can be seen in Fig. 13 which
shows results for a silicon gel made in situ. In this
case, the dynamic mode remains valid over the whole
frequency range available (up to 40 Hz), since the reso-

nant frequency is aboutfres �
������
G=a
p
2p � 75 Hz. Since the

sample remains solid, a Kelvin-Voigt model was used
for the modeling of oscillations in creep mode.

Conclusions

The method described here, based on a careful analysis
of the coupling between instrumental inertia and materi-
al elasticity, is used to characterize shear-induced modi-
fications of a thixotropic non-linear material both above
and below its yield stress. For creep experiments, this
coupling automatically selects on particular frequency
and simple mechanical models can therefore be used
for the description of experimental curves. This

approach is shown to provide a powerful tool for the
characterization of non-linear viscoelasticity.

Furthermore, it has been shown that the frequency of
the “free” oscillations observed in creep experiments
can be modified at will by altering the rheometer’s iner-
tia. Under suitable conditions, this method extends the
frequency range accessible using controlled stress rhe-
ometers. In dynamic mode, this range is very limited
for these instruments. In addition, measurements are
also extended into non-linear regimes and large defor-
mations. This method could easily be implemented as a
complement to dynamic oscillations in existing stress-
controlled rheometers.

This approach should open new perspectives for the
rheological characterization of complex fluids under
unsteady conditions.
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Fig. 12 Comparison between
forced and free oscillations. Iota-
carrageenan gel. Applies shear
stress: 1 Pa

Fig. 13 Comparison between
forced and free oscillations for a
silicon gel. Maximum frequency
obtained using the creep mode
&75 Hz. Applied shear stress:
100 Pa



233C. Baravian and D. Quemada
Interpretation of oscillating creep data

References

Baravian C, Quemada D, Parker A (1996)
Modelling thixotropy using a novel struc-
tural kinetics approach: Basis and appli-
cation to iota carrageenan. J Texture
Studies 27:371

Cheng DCH (1986) Yield stress: a time de-
pendent property and how to measure it.
Rheol Acta 25:542

Ferry JD (1980) The Viscoelastic Properties
of Polymers. Wiley, New York Chichester
Brisbane

Groot RD, Bot A, Agterof WGM (1996)
Molecular theory of strain hardening of a
polymer gel: application to gelatin. J
Chem Phys 104:9202

Hopkins IL (1963) Iterative calculation of
relaxation spectrum from free vibration
data. J Applied Polym Sci 7:971

Mackay ME, Liang C-H, Valley PS (1992)
Instruments effects on stress jump mea-
surements. Rheol Acta 31:481

Parker A, Brigand G, Miniou C, Trespoey A,
Vallée P (1993) Rheology and fracture of
mixed i andj-carrageenan gels: Two step
gelation. Carbohydr Polym 20:253

Roscoe E (1969) Free damped oscillations in
viscoelastic materials. J Phys D 2:1261

Struick LCE (1967) Free damped vibrations
of linear viscoelastic materials. Rheol
Acta 6:119

Zölzer U, Eicke HF (1993) Free oscillatory
shear measurements – an interesting ap-
plication of constant stress rheometers in
the creep mode. Rheol Acta 32:104


