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54504 Vandoeuvre lsNancy both above and below the yield experimentally and theoretically the
France stress. It is shown that this couplingconditions under which the use of
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75251 Paris cillations observed during the first rheometry — creep test — unsteady
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tests difficult. These problems motivated us to define rhe-
ological measurements giving as much information as
In general, it is extremely difficult to study experimenpossible. We show here how a careful analysis of creep
tally the non-linear viscoelastic behavior of thixotropicmeasurements made with a controlled stress rheometer
materials. When the times characterizing thixotropy améin be very useful for the rheological characterization
viscoelasticity are similar, very few methods can sepaf a complex fluid: a physical gel both above and below
rate the effects of these two phenomena. Howevis yield stress. Non-linear viscoelasticity was studied
when their characteristic times are very different, thesing the “free” oscillations generated in the material
structural modifications associated with these two kindly applying a stress step. The analysis of such oscilla-
of behavior can be studied independently. Neverthelessns generated by steps in shear rate has been used for
even when thixotropy and viscoelasticity occur on s#ie calculation of the elastic modul
parable times scales, they cannot both be characterized and G” in the linear domain (see Hopkins, 1963,
by the same type of experiment. for instance). Many other studies have followed this
Studying viscoelasticity using dynamic measuremerfisst analysis for the calculation of the complex modu-
is limited to the linear behavior, as interpretation of thkis (Struik, 1967; Roscoe, 1969). Ferry (1980) has re-
results is very difficult when non-linear behavior, suckiewed this work.
as the sol-gel transition, occurs. In flow experiments, par- A recent study of free oscillations observed in creep
tially irreversible destruction of the material often occumxperiments suggested application of the same analgsis
making the comparison between different rheologicas that used for steps in shear raté|¢2o and Eicke, 3
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1993), using as usual the frequency and damping of the
oscillations for the calculation of the instantaneous and
delayed elastic moduli. G N
Viscoelastic materials generally have broad relaxation
spectra. However, in our experiments the coupling of the
instrumental inertia with the sample’s viscoelasticity re- 4 M2
sults in the selection of one particular frequency. There- ‘
fore, a simple mechanical model with a single relaxation i . .
time can be used to model the shear strain-time curves.(1 +12)6 + Go = G + 11,7 (3)

We propose here an analytical calculation which cogoupling Egs. (2) and (3) for an applied shear stress

rectly models the observed behavior in both the linegfep of amplitudes,, the following expression can easi-
and non-linear domains. We use a Kelvin-Voigt may pe found at the moving wall:

chanical model and follow the changes occurring in G

the different mechanical elements when approaching the(y, + y,)5 + (G + M>¢ LI,

yield stress. Once the gel had yielded, it was still possi- a a

ble to study rheological changes in the material with a G, M

Maxwell-Jeffreys model and to characterize its visco- ==~ 00h(1) += = 000(1) (4)

elasticity and thixotropy independently. where h(t) is the Heaviside distribution function and

o (t) is the Dirac delta impulsion.

Instrumental inertia and viscoelasticity:

application to the Maxwell-Jeffreys model o o
Remarks on the significance of oscillations

We show here how viscoelasticity and instrumen

I . :
inertia are coupled ta/e want to emphasize that any elastic term coupled to

Eq. (2) can lead to an oscillating solution, whereas
purely viscous materials cannot give rise to oscillations.
The equation of motion This distinction cannot be made using controlled shear
rate rheometers, as a torsion torque is generally present

The equation of motion for the mobile part of the app4dsee, for instance, Mackay et al., 1992), so that even in-

ratus is: elastic materials can give rise to oscillations. For a con-
trolled stress rheometer, it can be asserted that if oscilla-
I@Qw -r,—T, (1 tions occur in creep mode, the material necessarily has
ot elastic behavior. Analysis of these oscillations is rele-

where I', and I, are respectively the applied and th&ant whatever the amplitude of the applied shear stress.
resistant torque at the moving walljs the inertia mo-
mentum of the mobile part of the apparatus &ngl is
the angular velocity. - -
In linear viscoelasticity, space and time variabldalytical solution of the Maxwell-Jeffreys model
naturally separate in the constitutive equation, leading . L ]
to proportionality between shear rate and angular veIoI-IThe SOI?’“Q” of Eq' (4) sphts_,”ln'go two cases: an os-
city (proportionality factorF;) and shear stress and tor®!'ating solution and a non-oscillating one.
gue (proportionality factoF,). Equation (1) can then be
rewritten:

@, = G4 — Gy, (2) Condition for the existence of oscillations

where For the Maxwell-Jeffreys model, the critical case is giv-
F, en by:
a=1—. G
Ey _ T A2> (5)
a(im + 1) B
The constitutive equation v;/]ith A:;ﬁ; 1l The associated critical elasticity is
then:

Equation (2), written for the mobile part of the appara-

2
tus, is coupled to the constitutive law of the material. 5~ 5 ..~ _ 213 141 14 6
We choose a Maxwell-Jeffreys model: = Geriea == 2 1+ 21, LRTAN m (6)
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It is therefore possible to choose the coefficient o G,
(via the geometry used and its inertia) so that a given 7, 2—{1 —e [COS(W)
material will give rise to oscillations. g
Solution of Eqg. (4) gives: 1 1y
For G2 Geica + —<— - —> Sin(wf)} } (12)
G o\2n, a
_ aG — .
a,(t) = gy {1 —e N [cos(a)t) + W]Z;;Ssm(wt)]} and
G _G
R D G ([ (oo
with o= e A2 . M b
The shear rate is obtained by integration of Eq. (2) G G/n,—3n,/a .
with Eq. (7): 3 Gz_ 2 sin(w?) (13)
mw G/n, —n,/a
76 (0) :;—Z {1 —e M {cos(wt) with o = % -£
+L(QA_ nz)sin(wl)]} (8) The non-oscillating case is again obtained by replacing
acw the sine and cosine functions by the corresponding
The deformation is easily obtained by integration Ot}yperbollc functions.
Eq. (8):
; : .
b (1) :00{_ _BieN [B cos(o) The Kelvin Voigt model
Up)
A 1 . In this modely, tends to infinity, so the expression for
+— (B - —> Sm(a’l)] } (9)  the critical elasticity, Eq. (5), reduces to:
2
i
with B = %(%TA_%) andy(0)=0. Geritical = 1a (14)

The solution to the non-oscillating casBs<Geriica,  EQUAtions (7)—(9) reducte to, respectively:
can be obtained from these equations by replacing the

sine and cosine functions by the corresponding hyper-, _ o0 1 — ot cos(ot) _Lsm(w) (15)
bolic functions. " 200

7 =20 e % sin(wr) (16)
Solutions for the Maxwell and Kelvin-Voigt models 9w
and
These can be obtained as simplifications of the Max-
well-Jeffreys solution. p (1) = %{1 e {Cos(wt) +2}(71—1wsin(wt)]}
The Maxwell model 2 (7
with w = 4 /€ (%) )
In this modely, tends to zero, so the expression for the
critical elasticity, Eq. (6), reduces to: The main advantage of this analytical approach is

) that no hypothesis is necessary concerning limited de-
4 (10) formation or dissipation, which is not the case for clas-
sical dynamic experiments. Moreover, as long as the
proportionality between both shear rate and angular ve-
locity and shear stress and torque remain valid, a simi-
lar approach can be adopted for any constitutive equa-

sin(a)t)] }

Gcritical =

Equations (7)—(9) reduce to, respectively:

tion.
In the next section, this analysis is applied to a phys-
(11) ical gel above and below its yield stress.

Oy = 00{1 e [cos(a)l) + 1
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Results and experiments ered the sample to be a viscoelastic liquid, and mod-
elled its rheological behavior using the Maxwell-Jef

Measurements were performed using a Carrimed CS 1ogys model. Ten successive experiments were then per-
rheometer fitted with a coaxial cylindrical geometry. ThEormed at 16 Pa to follow the time-dependent non-linear
creep mode allowed acquisition of 10 points per time deehavior of the product above this yield stress.
ade from 10*s. The material studied was iota carragee-
nan, which is a gelling polysaccharide used in the food
industry. The sample was provided by Systems Bio-IMeasurements helow the yield stress (Kelvin-Voigt model)
dustries (Carentan, France) and was used at a concentra-
tion of 5 g/l in 0.2 M NacCl solution. The manufacturekVe will not discuss here whether the yield stress really
gave the mass-average molecular weight as 350000, el&ists or not. We just consider that its value is related
termined using gel permeation chromatography coupledthe solicitation time (Cheng, 1986). Our experimental
to refractive index and multiangle light-scattering detetime was chosen in order to obtain observable thixotro-
tors. As usual, it contained a fraction of kappa carragqee effects over times short enough to limit the irreversi-
nan, estimated as about 7% by the method of Parkebét behavior induced by breakdown of the material under
al. (1993). However, under the electrolyte conditiorshear. This time (typically 10 s) is also comparable with
used here, kappa carrageenan does not gel @ PRar- the characteristic thixotropic times obtained for identical
ker et al., 1993), so it is not expected to influence the rgelutions of iota carrageenan after extensive shear had re-
sults. The solution was heated at“@for 30 min to moved their elasticity (Baravian et al., 1996).
achieve complete dissolution, before being placed in theFigure 1 shows a typical result obtained below the
rheometer and cooled to 260.1°C. Under these condi-yield stress (i.e., for creep curves from 1 to 15 Pa).
tions, iota carrageenan undergoes a thermally reversibld=igures 2 and 3 show the excellent agreement be-
sol-gel transition close to 6@ (Parker et al., 1993). Eva-tween the Kelvin-Voigt model and experiment data ob-
poration was prevented by a system specially designedaimed below the yield stress. Only two parameters are
the laboratory which saturated the air in contact with thepen in this fit G and#,). Nevertheless, the model cor-
sample with moisture. rectly describes the frequency shift, the period and the
A series of shear stress steps with increasing ampmlamping of oscillations, the start-up before oscillations
tudes was applied. The first step had an amplitude afd the final deformation.
1Pa and the increment between steps was also 1 PaThe recovery curve (Fig.3) is modelled indepen-
Creep and recovery curves were each recorded for 2@ently usingc,=09(1-h(t)) in Eqg. (2) and the same
For this length of experiment, a yield stress was omethod of solution. The initial deformation was taken
served between 15 and 16 Pa. The Kelvin-Voigt modas$ the final point on the creep curve.
was therefore used for the experiments with stressesin the following experiments, the shear stress was in-
between 1 and 15 Pa. Above this stress, the samptemented until the recovery was different from zero (to
started to flow. Yield was considered to have occurredthin the resolution of the apparatus). The model param-
when recovery was incomplete (to within the resolutiosters found are shown as a function of the applied shear
of the apparatus, I8 radians). At this point we consid-stress for both creep and recovery curves in Figs. 4 and 5.

Fig. 1 Typical experimental 0.06
creep curve. Applied shear
stress: 2 Pa 0.05

0.04
0.03
0.02
0.01

Compliance (Pa™)

-0.01

0.03 L
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Fig. 2 Creep curve. Applied 0.06
shear stress: 2 Pa. Comparison
between experiment and model
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Fig. 3 Recovery curve. Applied 0.06 ]
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In Figs. 4 and 5, the last points (made at 16 Pa) agters fitted were identical, to within 2%, to those of the
measured above the yield stress. The data were thdinst 2 Pa experiment.
fore fitted using the Maxwell-Jeffreys model (Eq. (9)).
Both Figs.4 and 5 show that even below the yield
stress, the material was very non-linear. The increaseMéasurements made close to the transition
the elastic modulus under shear was probably due (Maxwell-Jeffreys Model)
strain hardening. Similar effects have recently been re-
ported for another physical gel, gelatin (Groot et alTo follow the modifications in the material once yield had
1996). The viscosity associated to the Kelvin-\oigt el@ccurred, ten successive measurements were made using
ment increased slightly with the initial strain both foan applied shear stress of 16 Pa. The results are shown in
creep and recovery experiments. They remained nedfig. 6.
equal until a shear stress of 10 Pa was applied. TheirOnly the first second’s data from the creep and recov-
separation at higher initial strains may be interpreted @mny curves shown in Fig. 6 were fitted to the model. As
two ways: Either i) yield actually occurred but the resseen on Figs. 10 and 11, for each particular curve, the
lution of the apparatus prevented its observation (fequency of oscillations remains constant in time. This
yield would have been observed if the stress had bedtows that here again, only one particular frequency is
applied for longer) or ii) it corresponds to an increasselected and a linear mechanical model with a single
in the non-linearity of the network structure close to thelaxation time still applies. A Maxwell-Jeffreys model
yield stress. has been found to be appropriate. The remarkable fact
Note that these non-linear effects were reversible kibat the frequency of oscillations is still constant from
low the yield stress. After the 13 Pa experiment, a semre experiment to another is discussed below.
ond measurement at 2 Pa was made. The model paramResults of the fit are shown in Figs. 7-9.
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Fig. 4 Elastic modulus from the
Kelvin-\oigt model as a function
of applied shear stress. Measure-
ments made below the yield
stress

Fig. 5 Viscosity#, obtained
from the Kelvin-Voigt model as
a function of applied shear
stress. Measurements made be-
low the yield stress

Fig. 6 Successive creep and re-
covery curves. Applied shear
stress: 16 Pa

40

0.07
0.06
0.05

7 0.04 |

Z00s |,
0.02

0.01

0.45
0.4
0.35 .

Compliance (Pa™)

. Creep
o Recovery|

. ° o o
. ' ° o °
8 o ° o °
4 6 8 10 12 14
Shear stress (Pa)
|\ Creep
L Recovery
— o
2 .
L] 8 ¢
8 o . ® ® . ¢
| T T | = T
4 6 8 10 12 14
Shear stress (Pa)
9810
i
3
2
1
35

16

%



C. Baravian and D. Quemada 229
Interpretation of oscillating creep data

The main observation is that the material does noosity 7, associated to the solid part of the material un-
lose its elastic properties, even at very high deformder stress (Fig.8). However, the value on recovery
tions. Figure 7 shows that the elasticity remained coseems to remain constant and in good agreement with
stant, even though the deformation increased (e values obtained below the yield stress (Fig. 5).

Fig. 6). The time dependency seemed to affect the vis-

Fig. 7 Elastic modulus vs. the 40 ) B B - ~
number of applied steps in shear i . . . . .
stress of 16 Pa. Measurements 39 . . * .
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Figure 9 shows the variation of the viscosity. As Using this simplification, the previously given expres-
the elasticity remains constant for all successive expesiens forA andw reduce to:
ments, the decrease @ can be interpreted as responsi- G
ble for the change of slope of the creep curves (and A ~ — <_+ﬁ> (18)
especially for the second experiment), that is thixotropy. M a
The latter was also observed via the difference between
the initial and final values of the viscosity for the creep /G A2 19
curve (Fig.9). As the number of applied steps in- @~ 1\~ (19)
creased, the initial and final viscosities reached equilib-
rium values. The initial viscosity was obtained from th
fit of the Maxwell-Jeffreys model to the first second’
data. The final viscosity was calculated by numeric
differentiation of the deformation-time curve.

In this case, the elastic modulus can be determined

irectly by analysis of the experimental data and deter-
ﬁjlination of the damping and frequency of oscillations

rough Eq. (19). Struick (1967) gives a “plus” sign in
Eq. (19) for generalized viscoelastic models. We consid-
er here that a Maxwell-Jeffreys model is relevant for a
large number of materials and therefore use Eq. (19) in
the form given above, since it is directly deduced from
the exact solution.

It seems particularly interesting to try to gain informa- :
tion about the viscoelasticity of a material without hav- Note that the expression for the angular frequency

ing to fit all the data using a particular model. This capan sometimes be reduced do~ \/g if §>> A2, This
be very useful if, for instance, thixotropy occurs at suc : 42 7 .
short times that it affects the period opfyoscillation. Un&t_kcond hypothesis reducesiﬂé > G >3, SO Its va-
der these circumstances, the previous analysis is liity depends on the factar, which can be varied by
longer valid. However, an alternative approach, bastte experimenter to some extent. This remark is of in-
on direct analysis of the period and damping of the oterest if a rheometer whose inertia can be modified is
cillations can be used. The simplifying hypotheses navailable. Note that these conditions apply to the carra-
cessary for its use are described below. geenan solution studied here. This can be seen in
Figs. 10 and 11, which show the first second of the
creep curves and dimensionless recovery curves shown
Hypothesisz>>>#, in Fig. 6.
These figures show that the frequency remained
When passing the yield stress, it seems reasonablengéarly constant. This observation demonstrates that the
assume that the flow viscosity is much greater than thedasticity was not modified when yield occurred. It also
associated with the solid element, as was observed h&news once more that only one particular frequency is
(compare Fig. 8 with Fig. 9). This simplification shouldsolicited, the corresponding resonance frequency, which
also apply to many other types of systems at low shed@pends mainly on the material elasticity and the inertia
rates. and geometry of the apparatus. The next section shows

An approximate calculation

Fig. 10 Representation of the 0.06
first second of creep curves from )
Fig. 6. Curves from bottom to !
top correspond to successive ex- 0.05
periments from 1 to 10
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Time (s)
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Fig. 11 Dimensionless represen- 1
tation (1 for the first data point

to zero for the last one) of the
first second of recovery curves
from Fig. 6. Curves from higher
to lower amplitude correspond to
successive experiments from 1 to
10

e L
o

Dimensionless recovery

Time (s)

how different frequencies can be excited by changirfigrced oscillations. The latter is always very limited in
the instrumental inertia. controlled stress rheometers.

Interpretation of the damping is more difficult since In general, the ability to modify the oscillation fre-
the contributions of viscosities, and#, cannot be ob- quency (and therefore select a different mode) depends
viously separated in Eqg. (18). However, these dependen- the material under test and in particular depends
cies can be separated by i) complete modelling of cregfpongly on its elasticity. The parameteican be modi-
and recovery curves, or ii) by repeating the experimefigd by changing the instrumental inertia. This method
using different values of the inertia facto(see Eq. (18)). is preferable to changing the geometry, as each sample

The previously cited work of Zmer and Eicke can be tested at many valueswfWe have designed a
(1993) makes the assumption that the deformation smple system for adding a mass to the mobile part of
sponse follows a logarithmic decrease and a simple ¢ise rheometer. An increase in inertia leads to a decrease
cillating sine variation. They note that to obtain a gooith the oscillation frequency, and its maximum value de-
fit to their experimental data, two additional arbitrarpends on the sample and the rheometer inertia without
variables were required: a frequency shift and a supanry additional mass.
posed linear variation. We think that the method The frequency range of dynamic oscillations is lim-
described here of coupling the Maxwell-Jeffreys mod#ékd in controlled stress rheometers by inertia effects.
with instrumential inertia would have given a mordlethods to correct data for these effects are available,
satisfactory alternative approach, since only one extrat their use is limited, as can be seen in Fig. 12, which
parameter #,) is required to give a complete descripshows a comparison of dynamic and “free” oscillations
tion of the data, without using any arbitrary variable$or an applied shear stress of 1 Pa. The data points
Moreover, the parameters used here have a precimze calculated using both creep and recovery data.
physical significance, unlike the arbitrary parameters idbove a frequency of about 3 Hertz, the dynamic mode
troduced in their model. shows a shift in the loss angle, which rapidly increases

It is important to note that the presence of inertia efe 180°. This shift is a tyical effect of instrumental iner-
fects can lead to erroneous extrapolations at short tim&s, giving erroneous results, especially 8f. A rough
In fact, the use of an “average curve” through the oscillastimate of the frequency at which inertia will give
tions can produce a non-existent instantaneous elastidgigorrect results in the dynamic mode can be ob-
at t=0 (see Eq. (9) and Fig. 1). However, if both preained by calculating the resonant frequency using
vious simplifying hypothesis apply, this extrapolation ... _ 1/G/a . . . N
can give quite a good estimate of the material elastici?y.s T~ am T \/27!_ This calculation givedies~3 Hertz,

Nevertheless, this method should be used with care. in good agreement with the frequency at which the shift
of the loss angle occurs in Fig. 12. The free oscillation

mode gives values in good agreement with the forced

- - — oscillations below this frequency. This shows the valid-

Comparison with forced oscillations ity of the proposed approach, using a simple mechani-
cal model for the description of “free” oscillations in

This section compares “free” and forced oscillatiorcgeep and recovery curves.

and demonstrates the possible use of the analysis deFor materials with significant elasticity, higher fre-

scribed here to extend the frequency range covered dyencies can be attained when oscillations are free than
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when they are forced, as can be seen in Fig. 13 whighproach is shown to provide a powerful tool for the
shows results for a silicon gel made in situ. In thisharacterization of non-linear viscoelasticity.

case, the dynamic mode remains valid over the whole Furthermore, it has been shown that the frequency of
frequency range available (up to 40 Hz), since the resbe “free” oscillations observed in creep experiments

nant frequency is aboute, ~ sz/" ~ 75 Hz. Since the
sample remains solid, a Kelvin-Voigt model was us

for the modeling of oscillations in creep mode.

Conclusions

can be modified at will by altering the rheometer’s iner-

qt{Ja' Under suitable conditions, this method extends the
€q

uency range accessible using controlled stress rhe-
ometers. In dynamic mode, this range is very limited
for these instruments. In addition, measurements are
also extended into non-linear regimes and large defor-
mations. This method could easily be implemented as a
complement to dynamic oscillations in existing stress-

The method described here, based on a careful analygjgtrolled rheometers.

of the coupling between instrumental inertia and materi- This approach should open new perspectives for the
al elasticity, is used to characterize shear-induced mogleological characterization of complex fluids under
fications of a thixotropic non-linear material both abovgnsteady conditions.

and below its yield stress. For creep experiments, this

coupling automatically selects on particular frequency

and simple mechanical models can therefore be usﬁﬂnowledgements We would like to thank Alan Parker for his

for the description of experimental

Fig. 12 Comparison between
forced and free oscillations. lota-
carrageenan gel. Applies shear
stress: 1 Pa

Fig. 13 Comparison between
forced and free oscillations for a
silicon gel. Maximum frequency
obtained using the creep mode
~75 Hz. Applied shear stress:
100 Pa
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