
Introduction

There has been interest recently in the development of
constitutive models to describe the rheological behavior
of suspensions, which consist of rigid particles dispersed
in a carrier ¯uid. The rheology of suspensions can be
quite complex since it can be a�ected by particle
Brownian motion, shape anisotropy, buoyancy and
sedimentation forces as well as a variety of interaction
forces between the particles (Russel et al. 1991). In this
work, we focus on one of the simplest systems,
consisting of near-spherical particles of identical size in
the micron range, where Brownian motion e�ects can be
neglected and the dominant inter-particle interaction is
the hydrodynamic force transmitted by the surrounding
¯uid.

Up to now, most investigations have been carried out
on particles suspended in a Newtonian liquid, and for
these systems there have been steady advances in our
theoretical understanding (Frankel and Acrivos 1967;
Brenner 1972; Nunan and Keller 1984; Brady 1993;
Phan-Thien 1995), and in computer simulations (Brady

and Bossis 1988; Kim and Karrila 1991). Experimental
studies have been carried out for many years, and
presently quite comprehensive summaries are available
(e.g. Kamal and Mutel 1985; Mewis 1996). Although the
behavior is very rich, one of the general trends observed
is that the presence of the particles will increase the ¯ow
resistance of the material, which would be expected on
simple physical grounds since the adhesion of the ¯uid
at the particle-liquid interface will increase the viscous
dissipation in the liquid.

There has been less attention given to the rheological
behavior of particles suspended in a viscoelastic carrier
¯uid, despite the industrial importance of these materials
(e.g. the processing of particle-®lled plastics). One
reason for this is that the Newtonian case itself contains
many unresolved issues, and the viscoelastic case is even
further complicated by the dependence of the carrier
¯uid's response on the deformation history. However,
if we focus on the response to small strains, a simple
physical model will enable us to understand many
aspects of the behavior of suspensions in viscoelastic
¯uids. An experimental investigation of the small strain

Rheol Acta (2000) 39: 131±137
Ó Springer-Verlag 2000 ORIGINAL CONTRIBUTION

Howard See
Ping Jiang
Nhan Phan-Thien

Concentration dependence
of the linear viscoelastic properties
of particle suspensions

Received: 27 April 1999
Accepted: 15 October 1999

H. See (&) � P. Jiang � N. Phan-Thien
Department of Mechanical
and Mechatronic Engineering
The University of Sydney
NSW 2006, Australia
e-mail: howards@mech.eng.usyd.edu.au

Abstract The response under small
amplitude oscillatory deformations
of a suspension of non-Brownian
spheres dispersed in a viscoelastic
¯uid is investigated. The correspon-
dence principle of linear viscoelas-
ticity is used to derive a simple
constitutive model from a model for
a suspension in a Newtonian liquid.
The theory predicts that for a spe-
ci®c particulate system the concen-
tration dependence of the
viscoelastic properties should col-
lapse to a single master curve when

the values are normalized with those
of the carrier ¯uid alone. Measure-
ments with the micro-Fourier rheo-
meter using oscillatory squeeze ¯ow
are carried out on two suspensions
of 60 and 80 lm sized particles
dispersed in polymeric ¯uid and in
silicon oil, and the master curve is
veri®ed.

Key words Suspensions �Linear
viscoelasticity �Concentration
dependence �Constitutive equation



behavior has been reported by Ek et al. (1987), who
measured the stress relaxation after the application of a
small step shear (0.1%) to an HDPE plastic ®lled with
calcium carbonate particles (size 10 lm, volume fraction
30%). They found that the relaxation curves for the
®lled materials and the plastic alone superposed very
well when normalized by the corresponding initial stress
value. They did not investigate the e�ect of other ®ller
concentrations or matrices. An empirical law for the
creep behavior of a ®lled plastic has been proposed by
Nielsen (1969), which involves dividing the creep
compliance curve of the un®lled plastic by the indepen-
dently measured increment in elastic modulus caused by
the presence of the ®ller. Nielsen con®rmed this rule by
carrying out measurements on polyethylene ®lled with
kaolin. However, to our knowledge there has been no
systematic study of the possible similarity in the
concentration dependence of the viscoelastic response
functions, when carrier ¯uids with di�erent linear
viscoelastic characteristics are used.

In this work, we investigate the response of a
concentrated suspension in a linear viscoelastic ¯uid to
small strain deformations. We develop a simple consti-
tutive model, which predicts that for a certain particulate
system the concentration dependence of the increment
in the rheological properties (which we write as f �/�)
should be similar even when ¯uids with di�erent
viscoelastic properties are used. We have carried out
experiments on two di�erent systems that support this
hypothesis. We note that for suspensions in a Newtonian
¯uid, a collapse of the reduced viscosity versus concen-
tration curves was observed in the data compilation of
Thomas (1969), and Krieger (1972) has suggested a
widely used empirical power-law ®t to the curves.

This paper is organized as follows. In the next
section, we present a theoretical model for the linear
viscoelastic behavior of concentrated suspensions of
monodisperse spheres, which is derived via the corre-
spondence principle of linear viscoelasticity from the
pair lubrication theory developed by Goddard (1977)
and van den Brule and Jongschaap (1991). The follow-
ing section describes the micro-Fourier rheometer and
the materials used in our experimental investigations.
The results and a discussion are then presented, and in
the ®nal section we present our conclusions.

Theory

Constitutive equation

We will proceed in two steps: (1) we brie¯y review a
constitutive equation for a suspension in a Newtonian
liquid (Goddard 1977; van den Brule and Jongschaap
1991); (2) we then use the general correspondence result
between Newtonian and viscoelastic ¯uids (Walters

1974) to obtain the constitutive equation for a suspen-
sion in a viscoelastic liquid under small strain oscilla-
tions, based on the Newtonian liquid result.

Consider a system of particles of radius a dispersed
in a Newtonian liquid of viscosity g0 with a volume
fraction /, under a macroscopically applied ¯ow ®eld
described by the rate of deformation tensor D. In the
present work, we focus on small strain response. For
high / the interparticle gap (e) between a generic pair of
neighboring particles will be small (Fig. 1). We write the
center-center vector as R � Rp ' 2ap, where p is a unit
vector in the same direction. The dominant mechanism
for momentum transfer will be the hydrodynamic
squeezing force Fsq � 3

2 pg0aeÿ1 _Rp which is obtained
from the Stoke's equations (ignoring inertia) with the
assumption of a small gap and no slip boundary
conditions on the particle-liquid interface (see, for
example, Kim and Karrila 1991). Thus for a collection
of N particles occupying a volume V , the particle
contributed stress rp will given by:

rp � N=V hRFsqi �1�
where h. . .i is an average over the volume V containing a
large number of particles. To estimate _R, the rate of
approach of the two generic particles, we assume that
the particle centers move a�nely with the imposed
deformation, giving _R � R�D : pp� ' 2a�D : pp�. We
obtain from Eq. (1):

rp � f1g0hD : ppppi �2�
where f1 is a dimensionless function indicating the
magnitude of the squeezing force contribution. f1 is a

function of some characteristic gap size (hei=a), which
can be calculated from the volume fraction / for a given
packing of the spheres [e.g. for an isotropic packing
hei=a � k/ÿ

1
3 where k is a constant O�1�]. Thus from now

on we will write this function as f1�/�. The fourth order

Fig. 1 Schematic diagram of a generic pair of neighboring spheres
(radius a) in the ¯ow ®eld with a rate of deformation tensor Dij. R is
the vector joining the two centers and p � R=jRj. The gap between
the particle surfaces is ea
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tensor hppppi describes the suspension's microstructure,
and will in general be a function of time. In this work,
we restrict ourselves to the case of small deformations
from a random isotropic state. If we assume that there is
negligible change in the particle con®gurations, then we
can write:

hpipjpkpli � 1
15�dijdkl � dildjk � dikdjl� �3�

giving us the particle-contributed stress

rp � 2
15 f1�/�g0D : �4�

There is also a contribution to the stress from the
carrier liquid r0, which can be added separately to the
particle-contributed stress (Bachelor 1970)

r0 � 2g0D : �5�
Thus the total stress for a concentrated suspension in

a Newtonian liquid under a small strain is given by:

rtot � r0 � rp � f �/�2g0D �6�
where

f �/� � 1� 1
15 f1�/� �7�

is the increment in the stress due to the presence of the
particles. We note that the suspension still behaves as
a Newtonian liquid, but that the viscosity has been
increased by the factor f �/�, where f �/� � 1 in the
absence of the particles. In this present work we leave
f �/� as a function to be determined from experiment,
which may depend on the nature of the particulate
system.

If the deformation is a small amplitude oscillatory
¯ow, so that D�t� � D̂Re�eixt�, the stress will be given by

rtot�t� � f �/�2g0D̂Re�eixt� : �8�
We now generalize the above result to describe the

small strain oscillatory response of a suspension in an
incompressible linear viscoelastic ¯uid, characterized by
the complex viscosity g�0�x�:We use the result of Walters
(1974), which states that, under small strain oscillatory
deformations, the solution to a boundary value problem
(i.e. prescribed forces/displacements on the spatial
boundaries) for a viscoelastic material can be obtained
from the corresponding Newtonian solution (here
Eq. 8). All that needs to be done is to replace the
Newtonian viscosity g0 with the viscoelastic complex
dynamic viscosity g�0�x� in the ®nal equation, and to
recognize that the stresses and displacements may also
be complex quantities (i.e. may possess in-phase and 90�
phase-shifted components). This correspondence arises
from the similarity of the governing equations of the
Newtonian ¯uid and the Fourier-transformed equations
of the viscoelastic ¯uid. To carry out this substitution in
Eq. (8), the boundary conditions in the two problems
must be identical, so that we need to assume:

1. There is continuity of velocity at the particle-¯uid
interface, as in the Newtonian case (no-slip boundary
condition).

2. The spatial distribution of particle positions is
statistically similar to the Newtonian system. We will
again assume in the viscoelastic case that small
deformations are applied to a random isotropic
system which remains in that state.

With these assumptions we obtain directly from Eq. (8):

rtot�t� � f �/�2D̂Re�g�0eixt� �9�
where the concentration dependence f �/� is the same as
for the Newtonian case (Eq. 7). The analogy between
Eqs. (8) and (9) is clear. Note that g�0 is related to the
storage modulus G00�x� and the loss modulus G000�x� of
the carrier ¯uid by g�0 � �G000 ÿ iG00�=x. We see that the
constitutive equation for a suspension in a viscoelastic
¯uid is of the usual form for a linear viscoelastic material
but, as in the Newtonian case, involves the prefactor
f �/� describing the increment due to the particles. We
see that the increment of the viscoelastic properties
described by the function f �/� does not depend on the
nature of the carrier material, provided that we are in
the linear viscoelastic regime.

Governing equations for small amplitude oscillatory
squeeze ¯ow

Using the constitutive relation Eq. (9) we now write the
governing equations for the micro-Fourier rheometer.

In the squeeze ¯ow ®eld (Fig. 2), we assume that a
viscoelastic material is sandwiched between two parallel
plates and that the upper plate is oscillated vertically
about a mean position with a frequency of x and
displacement amplitude of ah0:

h0�t� � ah0Re�eixt� where a� 1 : �10�

Fig. 2 Sketch of the test cell of the micro-Fourier rheometer. The
sample is sandwiched between the two plates (mean gap h0), and the
upper plate is perturbed by a small amount h0�t�. The force p�t� is
detected by the load cell, enabling the viscoelastic properties of the
sample to be determined
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We measure the signal of the force F �t� transmitted
through the ¯uid, spilt into its in-phase and 90� phase-
shifted components:

F �t� � Ref�F 0�x� � iF 00�x��eixtg �11�
Knowledge of the force and displacement signals enable
the storage and loss moduli of the sample G0�x�;G00�x�
to be found via a constant factor related to the
rheometer geometry. The equations are (Field et al.
1996):

F 0�x� � a
3pa4

2h20
G0�x� �12�

F 00�x� � a
3pa4

2h20
G00�x� : �13�

If the sample is a suspension, then we immediately
obtain from the constitutive relation Eq. (9) the follow-
ing equations:

F 0�x� � a
3pa4

2h20
f �/�G00�x� �14�

F 00�x� � a
3pa4

2h20
f �/�G000�x� : �15�

Thus information on the concentration dependence
factor f �/� can be obtained from measurements of the
response under small amplitude oscillatory squeezing.
The case for a Newtonian carrier ¯uid is handled by
letting G000�x� � xg00�x� � xg0 and G00�x� � 0:

Experimental

Random squeeze ¯ow using the micro-Fourier rheometer

The small strain amplitude and quick measurement capability of
the micro-Fourier rheometer make it most suitable for the
experimental investigation of the linear viscoelasticity of suspen-
sions.

This instrument has recently been developed in a collaborative
project between the CSIRO and the Department of Mechanical
and Mechatronic Engineering of the University of Sydney. Details
have already been presented elsewhere (Field et al. 1996) and so
only a brief introduction to the operating principle will be given
here. As shown in Fig. 2, the sample is placed between the two
parallel circular plates and the upper plate is perturbed vertically
about the mean position, the motion being driven by a Terfenol
giant magnetostrictive shaker connected to a signal generator with
feedback. The instantaneous position of the upper plate is detected
by a ®bre optic device, giving the displacement h0�t� � h0 ÿ h�t�.
The piezoelectric load cell beneath the stationary lower plate
measures the instantaneous normal force F �t�. The device is
constructed to have a very large sti�ness, so that the variations of
F �t� during oscillations can be considered as arising from the
sample.

The radii of the upper and lower plates are 12.5 and 15 mm
respectively, and both plates are made of nickel-plated brass.
Parallelism of the plates is routinely checked with feeler gauges.
The mean gap between the plates (h0) was usually set at 1.5 mm. As
indicated in Fig. 2, the sample is allowed to have a small meniscus

at the outer edge, but this edge e�ect is not considered to be large
(Field et al. 1996). The upper plate is forced to undergo small
amplitude oscillations (a� 1) with an angular frequency x as in
Eq. (10). The limit of linear viscoelasticity was determined by
examining the dependence of the viscoelastic moduli G0 and G00 on
the strain a. It was found that the higher concentration samples had
a very low critical strain amplitude, with a value of a � 0:002 for
the / � 0:4 suspensions. Therefore we typically set a to 0:001, since
our aim was to investigate the behavior under small strains.

To measure the storage and loss moduli, a band-limited
pseudorandom noise is used as the input displacement signal,
covering a frequency range of 0.5±100 Hz. The linear nature of the
material response enables the telescoping of tests at di�erent
frequencies into a single excitation sequence (Field et al. 1996).
Fourier decompositions of the force signal F �t� and displacement
signal h0�t� give a complex number transfer function TF �
�F �x�=�h0�x� � �F 0 � iF 00�=ah0, which is directly proportional to the
complex modulus G� � G0 � iG00 as shown in Eqs. (12) and (13).
This enables very quick determination of G0 and G00 for the
suspensions, with a typical measurement averaging over eight
excitation sequences completed in less than 1 min with a high
degree of reproducibility.

The measured transfer function will be a�ected by imperfections
in the instrument response. To correct for this, the micro-Fourier
rheometer uses a procedure known as frequency domain equaliza-
tion, which consists of forming the ratio of the transfer functions
for the sample ¯uid and for a known reference material, enabling
the transfer function representing the instrument response to be
automatically cancelled (Field et al. 1996). The transfer function of
the reference material must be independently determined, and in
the present study a small compression spring of known spring
constant and mass is used.

Materials

Two particulate systems are used: particulate A consisting of
polyethylene particles of average diameter 80 lm, and particulate B
with 60-lm diameter polyethylene particles. The shapes of both
particles are close to spherical, but they are not perfectly round.
For both particulate A and B, two types of carrier ¯uid are used to
make suspensions: 1.0-Pas silicon oil and 3% weight Separan
polymer solution. The particles are easily dispersed in the carrier
¯uids with an electric mixing apparatus and there is no apparent
particle clumping or evidence of air bubbles. The distribution of the
particles appears stable during the short duration of the measure-
ments, with no evidence of sedimentation or buoyancy e�ects.

Results and discussion

For particulate A, the concentration dependence for the
dynamic viscosity g0�� G00=x� at 10 Hz with silicon oil
is shown in Fig. 3 (the value is almost constant up to
100 Hz). As expected, there is a dramatic increase in g0
as / is increased. For the polymeric carrier ¯uid, the
variation with / of the storage and loss moduli at
di�erent frequencies is shown in Figs. 4 and 5. It is clear
that for all frequencies, the values of G0 and G00 increase
as / is raised. The above theory (Eqs. 14 and 15) predicts
that a single master curve corresponding to the function
fA�/� should be obtained if we plot the /-dependence of
the following quantities, which are normalized with
respect to the carrier ¯uid alone: g0=g00 for the silicon oil
system, and G0=G00;G

00=G000 for the Separan system at
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various frequencies. These normalized values are plotted
in Fig. 6 and we see that the data collapse is quite good,
lending credence to the basic theory.

Similarly for particulate B, Fig. 7 shows the concen-
tration dependence of g0 at 10 Hz in the silicon oil, and
Figs. 8 and 9 describe the / dependence of G0 and G00 in
the polymeric solution. As before, if we plot the
normalized quantities g0=g00 (for silicon oil), G0=G00 and
G00=G000 (for Separan at various frequencies) as a function
of /, we ®nd reasonable data collapse to the function
fB�/� (Fig. 10) as predicted by the theory. Note that this
function fB�/� need not be the same as fA�/� since
factors such as particle shape and the broadness of the
size distribution would be expected to produce di�erent
results. Thus we see that there is reasonably good
collapse of the data for particle systems A and B, lending

support to the hypothesis that there is a generality in the
concentration dependence of the linear viscoelastic
properties for a particular suspension.

The present work focusses on the small strain linear
viscoelastic response. As noted previously, linear visco-
elasticity was found only up to a very small strain
(amplitude up to 0:002), agreeing with the observations
of Aral and Kalyon (1997) on concentrated suspensions.
This departure from linear viscoelastic behavior with
increasing strain is thought to be related to the
formation of a non-isotropic microstructure, and this
issue will be explored separately in a forthcoming paper.

Fig. 3 The dependence of g0 at 10 Hz on volume fraction /, for the
suspension of particulate A dispersed in silicon oil

Fig. 4 G0 at various frequencies against volume fraction /, for the
suspension of particulate A dispersed in Separan

Fig. 5 G00 at various frequencies against volume fraction /, for the
suspension of particulate A dispersed in Separan

Fig. 6 Variation with volume fraction / of normalized values g0=g00
(suspension in silicon oil), G0=G00, G00=G000 (suspension in Separan) for
particulate A. Reasonable collapse to the master curve fA�/� is
observed
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While the agreement between the experimental results
and theory is encouraging, it is appropriate to clarify the
limits of the present argument. A key assumption that
has been made is the perfect adhesion at the interface
between the ¯uid and particle surfaces. In particular, if
the carrier material is more solid-like than the liquids
used in the present work, then local detachment at the
material-particle interface (``de-wetting'') may occur
even at small strains, and indeed Nielsen (1969)
attributes the deviations from his empirical law men-
tioned in the Introduction to a lack of adhesion. We also
note that since the shear rate is not uniform in squeezing
¯ow, there is the possibility that the particles will
migrate to regions of lower shear rate, as has been
observed by Gadala-Maria and Acrivos (1980) in
concentric cylinder rotational ¯ow and theoretically
explained by the model of Phillips et al. (1992). This

migration is predicted to occur even in low amplitude
oscillatory ¯ows (see Huilgol and Phan-Thien 1997). In
the present work however, the strains are kept very small
and the measurements are completed in a short time, so
it is thought that migration e�ects would be minimal.

Conclusions

We have investigated the response of a suspension of
particles in a viscoelastic carrier liquid under small
amplitude oscillatory squeeze ¯ow. We derive a simple
constitutive equation for an isotropic suspension of

Fig. 7 The dependence of g0 at 10 Hz on volume fraction /, for the
suspension of particulate B dispersed in silicon oil

Fig. 8 G0 at various frequencies against volume fraction /, for the
suspension of particulate B dispersed in Separan

Fig. 9 G00 at various frequencies against volume fraction /, for the
suspension of particulate B dispersed in Separan

Fig. 10 Variation with volume fraction / of normalized values g0=g00
(suspension in silicon oil), G0=G00, G00=G000 (suspension in Separan) for
particulate B. Reasonable collapse to the master curve fB�/� is
observed
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monodisperse spherical particles, by extending the
lubrication-type model for suspensions in a Newtonian
liquid to those in a viscoelastic ¯uid, through the
correspondence principle of linear viscoelasticity. This
theory predicts that the increment in the viscoelastic
properties due to the presence of the particles will be
given by a universal function f �/�, depending only on
the particulate system itself. We have carried out
experiments with two types of particulate systems using
the micro-Fourier rheometer, and ®nd reasonably good
collapse of the curves when the viscoelastic functions,

normalized by the values for the carrier ¯uid alone, are
plotted against the volume fraction.

In this paper, we have attempted to elucidate some
of the basic mechanisms of the rheology of suspensions
in viscoelastic ¯uids; not only will such an understand-
ing assist in the prediction of the ¯ow behavior of
composite materials in many industrial processes, it
could possibly lead to methods for characterizing in situ
the viscoelasticity of a carrier material, eliminating the
need to physically separate the particles and the carrier
¯uid.
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