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Evaluation of molecular weight distribution

from dynamic moduli

Abstract A method to evaluate
molecular weight distribution
(MWD) from dynamic moduli is
presented here. It relies on the least-
square fitting of the dynamic data to
a model whose parameters depend
on the MWD. In particular, the
analytical solution for the relaxation
modulus previously obtained from
the double reptation model, with the
Tuminello step relaxation function
and the Generalized Exponential
Function (GEX) describing the
MWD (Nobile and Cocchini 2000),
has been used. A Finite Element
Approximation (FEA) has been ap-
plied to calculate dynamic moduli
from the relaxation modulus as a
function of MWD. The sensitiveness
of the GEX-double reptation dy-
namic moduli on the model param-
eters has also been investigated and
the results show that large changes
of the M,/M,, ratio weakly affect the
dynamic moduli, while small chang-
es of the M,/M,, ratio significantly
deform the dynamic moduli curves.
The use of rheological data to obtain

MWD, by the model used in this
paper, will, therefore, be able to give
rather well defined M,/M,, ratios,
while more uncertainty will be pre-
sented in the M,,/M,, results. The so-
called GEX-rheological model for
the dynamic moduli was applied to
fit the experimental data of different
polymers in order to obtain the best-
fit parameters of the MWD of these
polymers, without the need for the
inversion of the double reptation
integral equation. The stability of
the results has been confirmed
through the evaluation of the 90%
confidence intervals for the first
molecular weight averages. Finally,
concerning the M, and M, values,
the predictions obtained from the
dynamic moduli measurements dif-
fer by less than 10% from those
obtained from GPC measurements
while, as expected, more uncertainty
is present in the M, predictions.
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Introduction

In the literature different mixing rules describe the
rheological behavior of polydisperse polymers in terms
of their molecular weight distribution (MWD) combin-
ing the relaxation features of the monodisperse compo-
nents (Graessley and Struglinski 1986; Rubinstein and
Colby 1988; Tsenoglou 1987, 1991; Des Cloiseaux 1988,
1990; Cassagnau et al. 1993). Among these, the concept

of double reptation proposed by Tsenoglou (1987, 1991)
and Des Cloiseaux (1988) has been used by Wasserman
and Graesslay (1992, 1996) to calculate the dynamic
moduli from known MWDs. More recently Nobile and
Cocchini (2000) analytically computed the relaxation
modulus, as well as the two material properties, the zero-
shear rate viscosity and the steady state compliance, of
polydisperse polymers on the basis of the double
reptation model with the choice of the Tuminello step



112

relaxation function (Tuminello 1986) and of the Gener-
alized Exponential Function (GEX) (Gloor 1978, 1983)
describing the MWD.

The inverse problem of obtaining the MWD both
from the linear viscoelastic behavior (Tuminello 1986;
Mead 1994; Anderssen et al. 1997; Anderssen and Mead
1998; Maier et al. 1998; Nobile et al. 1996a; Carrot and
Guillet 1997) as well as from the flow curve of entangled
polymer melts (Malkin and Teishev 1991; Shaw and
Tuminello 1994; Liu et al. 1998; Nobile et al. 1996b) has
been amply discussed in the literature. In all cases it has
been emphasized that the solution of the inverse
problem can be ill-posed; i.e., the solution might be
extremely sensitive to small changes in the input. To
overcome the possible ill-posed situation, in a previous
study (Nobile et al. 1996b) some prior knowledge of the
nature of the solution has been incorporated into the
functional equation correlating the MWD to the visco-
sity. Indeed, among the different constraints that could
be chosen, it was decided to assign an analytical MWD
function directly to the transform, regardless of the
knowledge of the actual MWD. Of course, such a
constraint had to be flexible so as to avoid the loss of
information from rheological data. The generalized
exponential function (GEX) has been chosen among
the different functions that describe MWDs since it is
capable of accurately reproducing the MWD of a wide
class of unimodal polymers (Gloor 1978, 1983), includ-
ing most of the largely used MWD functions; i.e., the
most probable, the Tung-Weibull, and so forth. The
inclusion of the GEX function directly into the Malkin
and Teishev (1991) or Bersted model (Bersted 1975)
enabled us to obtain the analytical solution of the
so-called GEX rheological model for the viscosity,
whose parameters are connected to the MWD. This
was applied to fit the experimental flow curve data in
order to obtain the best-fit parameters, without the need
for the inversion of the viscosity integral equation.

First attempts were also made with dynamic data
(Nobile et al. 1996a). Following that idea, in the present
paper, the analytical solution of the double reptation
GEX model (Nobile and Cocchini 2000) is used to
obtain the MWDs of entangled polydisperse polymers
from their [linear viscoelastic behavior. Indeed, the
analytical results for the relaxation modulus as a
function of the MWD parameters are used here to fit
the experimental dynamic moduli data and to obtain the
best-fit parameters related to the MWD. In this regard it
has been necessary to connect the relaxation modulus to
the dynamic moduli via well known relationships (Ferry
1980). In particular, in order to evaluate the dynamic
moduli in an efficient and accurate numeric way, a Finite
Element Approximation (FEA) technique has been
used, as described in detail in the following sections.
The sensitiveness of the dynamic moduli on the para-
meters of the model has also been discussed. Such an

issue is, in fact, particularly stressful to define the
reliability of the MWD parameters that are obtained
from the rheological measurements. Then, dynamic data
of different polydisperse polymers have been fitted to the
GEX-double reptation model to compute the first
molecular weight averages of the GEX distribution.
Analogous to the case of obtaining the MWD para-
meters from the flow curve (Nobile et al. 1996b), in this
case the stability of the solution has also been investi-
gated through the determination of the y* surface in the
space of the GEX parameters around the minimum. The
confidence region at 90% of probability has been
obtained for all the samples tested. Furthermore, the
molecular weight averages of the distribution have been
compared with the corresponding estimates reported
from Gel Permeation Chromatography (GPC) measure-
ments. In particular, the materials investigated are two
commercial polymers, a copolyacetal Celcon M25
(Hoechst Celanese) (Nobile and Cocchini 1999) and a
polypropylene P3 (Wasserman and Graessley 1996), as
well as the two mixtures, M1 and M2, obtained by
mixing nearly monodisperse polystyrenes (Wasserman
and Graessley 1992).

Methodology
The GEX-double reptation model

The rheological behavior of polydisperse entangled
polymers has been successfully described in terms of
the double reptation model (Tsenoglou 1987, 1991; Des
Cloizeaux 1988, 1990). It reads as

G(t) = Gy UODO w(M) v/F(M,t) dM 2

for a continuous distribution, where G(t) is the stress
relaxation modulus, GY is the plateau modulus of the
species, w(M) is the weight fraction distribution, and
F(M,t) is the reduced relaxation function for monodis-
perse samples at time t of molecular weight M.

The Generalized Exponential Function (GEX) has
been considered to describe the molecular weight

distribution:
_ b (M M
T ML(ED) \M,) TP\ M,

(2)

where T" is the gamma function. The first molecular
weight averages of the GEX distribution are

s (1) /1)

(1)
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(3b)
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and so on.

In a previous paper (Nobile and Cocchini 2000) we
have shown that the predictions of linear viscoelastic
properties mainly depend on the double reptation
mixing rule assumption, in systems with a large number
of components, while the choice of the relaxation
function is not crucial. In particular, the Tuminello step
function (Tuminello 1986) has been chosen for its
mathematical simplicity; it reads as

ey {3 (500 "

where 7,(M) is the mean relaxation time of the compo-
nent of weight M. Within the frame of the model, this
time is connected to the zero shear-rate viscosity, 7o, as

Mo
=0 (5)
Gy
By using the well established power-law dependence of

no on the molecular weight, M, for the monodisperse
polymer above a critical mass:

no =k M*

(3¢)

To

(6)
with o and k depending on the species (but typically « is
around 3.4), the M-dependence of 7,(M) in the relax-
ation model is defined.

Using the GEX function (Eq.2) in the double
reptation model (Eq. 1) according to the Tuminello
relaxation model (Eq.4), and taking into account
Egs. (5) and (6), we have obtained the analytical
solution for the relaxation modulus

O/

(7)

Ggex(a,b, 1, Gy, t) = G, T

where
v =k M3/GY (8)

with k defined in Eq. (6) and M, defined in Eq. (2). The
model has six independent parameters, namely a, b, M,
G?\I, k, and «. Indeed, all the parameters are experimen-
tally obtainable material parameters, that is to say the
model does not include adjustable parameters.

FEA for dynamic moduli

The relaxation modulus G(t) is connected to the dynamic
moduli via the well known relationships (Ferry 1980)

G(w)=w /OOO G(t) Sin(wt) dt (9a)

G'(0) = / G(1) Cos(ot) dt (9b)
0
The above integrals cannot be performed analytically
when the relaxation modulus is expressed including the
GEX form (Eq. 7). Therefore, in order to get the
dynamic moduli in an efficient and accurate numerical
way a Finite Element Approximation (FEA) technique
has been used. According to the FEA, the relaxation
modulus has been approximated with a segmented linear
function among the points of a time grid t;,i=1,2, ... N

= t—tig) t—t
G(t) ~ ;g(tiatﬂrht) Glt t +Gi+l

i = byl tivr — G
(10)
where the function g is defined as
. 1 <t <ty
gt tip1, 1) = {0 otherwise (11)

and G;=G(Y), see Fig. 1.

Using the piecewise linear function, the integrals in
Eqgs. (9a) and (9b) can be done analytically. After some
rearrangements, it turns out

(12a)

(12b)

Fig. 1 FEA approximation for the relaxation modulus. The G(t)
curve has been approximated with a segmented linear function among
the points of a time grid t;, i=1, 2, ... N
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) h(j>('[2,t1,w) i=1
Hf'])(w) = h@(f[prl,ti,a)) — h(J>(ti,1,ti, (1)) l1<i<N
—hU)(thl,tN,uﬁ 1=N
(13)

The functions hY are defined as
Sin(wq) — Sin(wp)
(p—qo

h(p,q, ») = Cos(wq) + (14a)

Cos(wq) — Cos(wp)
(P —-q)o

The accuracy of the FEA technique has been tested on
the single-exponential relaxation function, for which the
exact dynamic moduli are known. Very good results
have been obtained using log grids sufficiently wide and
dense. As a rule of thumb, a grid of ten points per
decade in a range exceeding two decades over and below
the relaxation time has been chosen and it allows errors
on the logarithm of the dynamic moduli less than 0.005.
Some instabilities only arise in G” at frequencies larger
than the peak value. Indeed, this event does not
influence our results that concern the terminal zone.

In the case of a general relaxation function, the “rule
of thumb” applies to the relaxation spectrum, that is to
say the time range should exceed the minimum and
maximum time of the relaxation spectrum (which
generates the relaxation modulus under study) of two
decades.

The FEA technique is particularly suitable when
there is the need to make repetitive calculations at
given frequencies, as in the y*> minimization fitting
procedure. Indeed, in that case it is necessary to
compute only once the Hs at each frequency of interest
(those corresponding to the experimental data set) and
then to perform the summations in Egs. 12a and 12b
for each set of G;s. The FEA technique is also helpful
in analyzing the dependence of dynamic moduli on the
parameters of the model, as it will be investigated in
the following section.

Sensitiveness of the GEX-double reptation
dynamic moduli on the model parameters

Applying the FEA method to the relaxation modulus as
obtained from the GEX-double reptation modulus
(Eq. 7), it can be investigated how the dynamic moduli
depend on the parameters of the model.

In order to fix the time grid, a rough estimate of the
relaxation spectrum for a given parameter set {a, b, 1,
GON} is given by the Aury law (Ferry 1980):

3G(1)

H(7) ~
®~ —Fhnt),_.

(15)

and for the relaxation modulus as expressed by Eq. (7) it
b GY

gives
2b a—+1 E%
« T [b 0\

0]

This formula has been applied to estimate a minimum
and a maximum relaxation time (e.g., those times
beyond which the spectrum falls three decades below
its maximum). Then it has been used to generate the
time range necessary for the FEA method; i.e., a time
range exceeding the minimum and maximum time of the
relaxation spectrum of two decades.

For the sake of discussion, it has been investigated
how the model describes the MWD sensitivity. Scaling
the data to 7 and GIO\I, the results only depend on the a
and b parameters. Furthermore, using Eq. (3), a and b
can be associated to the M,,/M,, and M,/M,, ratios. In
Fig. 2 the results for My,/M, =2 with M,/M,,=1.5 and
1.9 have been reported; while in Fig. 3 the results for
M, /M, =2 with M,/M, =2.1 and 5 have been shown. It
is evident how large changes of the M,,/M,, ratio weakly
affect the dynamic moduli, while small changes of the
M,/M,, ratio significantly deform the dynamic moduli
curves. Therefore, it can easily be inferred that the use of
rheological data to obtain MWD, by the fitting to the
model used in this paper, will be able to give rather well
defined M,/M,, ratios, while the M,,/M,, ratios will have
large confidence intervals.

HGEX (’L’) ~

1E+0 3
O A
g i
% 1E-2 + Mw/Mn=2.0
g ; ,
(]
< —— Mz/Mw=1.5
N N Y Mz/Mw=1.9
([ R A S
1E-3 1E+0 1E+3
Frequency

Fig. 2 Dynamic modulus curves as a function of frequency, as
computed with FEA from the GEX-double reptation model. The
parameters a and b have been chosen to get My/M,, =2 with M,/
M,, = 1.5 and 1.9. The frequencies have been normalized to 7 and the
dynamic moduli to G,
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Fig. 3 Dynamic modulus curves as a function of frequency, as
computed with FEA from the GEX-double reptation model. The
parameters a and b have been chosen to get M,/M,, =2 with

My/M,=2.1 and 5. The frequen01es have been normalized to t and
the dynamic moduli to G

Fit procedure

In order to get MWD information from rheological
measurements, the dynamic data {G{} and {G[} at a
given frequency set {w;}, j=1, 2, ... Q, have been ﬁtted
to the GEX-double reptation model (Eq. 7), by a #*
minimization procedure. According to the FEA method
(Eq. 12), the objective function is

"2(a b,7,GY)
2

ZM (wj) GGEx(a,b, T, G(])\jati)

2

+ Z (w_]> GGEX(a7b7va(1)\Iati)

"
2. |G
=1

e
1
i=1

As discussed in a previous paper (Nobile et al. 1996b),
the logarithms of the moduli have been considered to
account for a constant relative error. In some cases the
summations over the experimental frequencies, wj, can
be limited to improve the results. In particular, the G’
data at small frequencies should be neglected since the
GEX-double reptation model could be inaccurate (as
discussed in Nobile and Cocchini 2000). On the other
hand, at large frequencies the G” FEA estimates from
the GEX-double reptation model need too large time
grids. Following these observations we have decided to
stop the summation on G” one decade beyond the G’-
G” crossover and to start the summation on G’ one
decade before the crossover. Anyway, it has also been
shown that the choice of the actual ranges of summation
in Eq. (17) is not crucial, as it should be, in order to have
reliable results.

To reduce the number of free parameters of the
model some constraints can be considered. The analyt-

ical expression for the zero shear-rate viscosity in the
GEX-double reptation model (Eq. 14 in Nobile and
Cocchini 2000) is very useful to eliminate the =
parameter once #, has been assigned:

. L2 () (35t +4) 2059
GRIT @R+ 2),Fa(1L,2 545 L5+ 1 )

where ,F is the hypergeometric function.

In principle, a similar expression for the steady-state
compliance (Eq. 15 in Noblle and Cocchini 2000) could
be used to estimate G Unfortunately, this is of little
help due to the large errors in the estimate of J0 itself.

A way to estimate GN is through the sum rule

4

G4, :_/ "G dinw (19)
0

T
where wpeai is the frequency at which G” attains a local
maximum in the terminal zone (Ferry 1980). Indeed, the
experimental curves often do not show that maximum in
G”.

Alternative methods are proposed in the literature
and applied to different homopolymers, such as the tan ¢
minimum criterion (Wu 1987) and the Wu relationship
(Wu 1989). According to the former method, GON is the
value obtained by G’ at the frequency where tan o reaches
its minimum in the rubbery plateau zone. The latter
relationship correlates the ratio between the G'-G”
crossover and GON to the polydispersity. It read as

G 2.631
log( =N_) —0.38 + o8P
GCrOSS

1 +245logp
where Gg.oss 1S the modulus at the crossover and
p=My/M, should be less than about 3.
In the frame of the GEX model, a new method can be
adopted: the G—G” crossover frequency can be used to
obtain a somewhat more involved sum rule:

(20)

4 @eross
7 G :—/ G"dlno (21)
TJo
where 0 < y < 1. The y value depends on the MWD
shape and in the case of the GEX model it is a function
of the a and b parameters only. It cannot be computed
analytically, but it turns out that it is a weak function of
the M, /M, and M,/M,, ratios, as obtainable from
Eq. (3). A working approximation, that will be used in
the next section, is

(0.0103264-0.4781461 L,
+0.6028697 L%71.02063()9 L,

log(y) =

+1.4745246 1L3-1.6073631 L, Lz)
where L; =log(M,,/M,)) and L, =log(M,/M,,).

(22)
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MWD from dynamic moduli data

The methodology illustrated so far has been applied to
various polymers. A polyacetal sample, Celcon M25
(Nobile and Cocchini 1999), a polypropylene P3 sample
(Wasserman and Graessley 1996), and the two mixtures
M1 and M2, obtained by mixing nearly monodisperse
polystyrenes (Wasserman and Graessley 1992) have been
analyzed.

The material parameters for the various polydis-
perse samples are those reported in the referenced
papers (or obtained from information reported therein)
and they are recalled in Table 1. In the case of the
zero-shear rate viscosity, the experimental values are
reported.

Analogously, the molecular weight averages of the
Celcon M25 and of the P3 samples as obtained from
GPC measurements have been recalled in Table 2. In the
same table the molecular weight averages for the M1
and M2 mixtures calculated from the known composi-
tion of the mixture (Wasserman and Graessley 1992) are
also reported.

The fitting procedure has been applied to the dynamic
moduli data by minimizing the y%, only as a function of
the a and b parameters of the GEX distribution. The
other parameters (k, o, My, and GON) are either those
reported in Table 1 or have been evaluated by using the
constraints discussed above. Indeed, for all the polymers
tested, the k and a parameters are those from Table 1.
For what concerns the GY values, in the case of the
M25, P3, and M1 mixture, they have been calculated by
using the constraint of Eq. (21), and they are reported in
Table 3. In particular, for the M1 mixture a GY; value of
1.9 x 10° Pa is obtained, that compares well with the
value of 2 x 10° Pa from the literature (Table 1). For
comparison, the fitting procedure has also been per-
formed with this last value, obtaining quite comparable
results. Therefore, in the case of the M2 mixture, the
value from the literature has directly been used.

For the sake of the discussion, it is worth mentioning
that in the case of isotactic polypropylene, plateau
modulus data for narrow fractions are not reported in
literature. The value of 4.5 x 10° Pa, reported in Ta-
ble 1, refers to the plateau value for atactic polyprop-
ylene as first evaluated by Plazek and Plazek (1983) and
by Fetters et al. (1994), and later used by Wasserman

Table 2 Molecular weight averages for the same polymer samples
as in Table 1 obtained from GPC measurements (Celcon M25 and
P3) and from calculation on the known composition of the
mixtures (M1 and M2)

Sample M, M, M, M, .+,
Polyacetal M25 53,000 109,000 183,000

Mixture M1 154,000 356,000 670,000 1,300,000
Mixture M2 155,000 398,000 1,040,000 2,450,000
Polypropylene P3 65,000 360,000 1,040,000 1,880,000

and Graessley (1996) in the discussion of their experi-
mental results on P3. It corresponds to an entanglement
molecular weight M, =6520. Therefore, following this
suggestion in the analysis of the moduli data of P3 by
the fitting to our model, we first used the value proposed
for the atactic — PP. The results obtained in terms of the
molecular weight averages, also reported in Table 3,
however, are in significant disagreement with the
corresponding values reported from GPC. Somewhat
better agreement with the GPC data has been obtained
by using the constraint of Eq. (21), obtaining a GON
value of 3 x 10° Pa. To confirm this result, the Wu
relationship (Eq. 20) has also been used, and a similar
estimate for GY% has been obtained, even if the
polydispersity index for P3, p=4.7, is beyond the
ascertained range of validity of Eq. (20). On the other
hand, neither the sum-rule, Eq. (19), nor the tan ¢
minimum criterion could be applied to the P3 data in the
frequency range available.

Finally, the 7 parameter has been calculated from
Eq. (18) with the experimental values of the zero
shear-rate viscosity as reported in Table 1. The corre-
sponding values have been reported in Table 3. As
indicated in Eq. (8), the t values will give the M,
parameters.

The results of the fitting procedure on the dynamic
moduli data have been reported in Figs 4, 5, 6, and 7
and summarized in Table 3.

The range of dynamic moduli data actually used in
the fitting procedure has been indicated with arrows in
the figures. Figures 4, 5, 6, and 7 show that the fit is
generally satisfactory. Some discrepancy between the
predicted and experimental G’ values is observed at
the low frequencies, where a less accurate prediction of
the model is expected.

Table 1 Material parameters for the polyacetal sample Celcon M25 (Nobile and Cocchini 1999), the polypropylene P3 sample
(Wasserman and Graessley 1996), and the two polystyrene mixtures M1 and M2 (Wasserman and Graessley 1992)

Sample T (°C) 1o (Pa's) k o GY (Pa)
Polyacetal M25 190 3870 8.54 x 10712 3.50 NA

Mixture M1 150 8.00 x 10° 1.68 x 1072 3.38 2% 10°
Mixture M2 150 1.64 x 107 1.68 x 1072 3.38 2% 10°
Polypropylene P3 190 11,025 5.32x 107" 3.60 4.5%10°
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Table 3 Results of the fitting procedure on the polymer samples. The value of G?\, reported in the table are those obtained by using the

constraint of Eq. (21)

Sample G (Pa) 7 (s) a b M, M,, M, M, ;|
M25 1.47 x 10° 5.28 x 10710 2.26 0.46 57,000 118,000 204,000 316,000
M1 From Table 1 2.88 x 1072 0.59 0.55 74,000 340,000 763,000 1,330,000
1.9 x 10° 8.81 x 107! 0.34 0.69 59,000 324,000 684,000 1,115,000
M2 From Table 1 143 x 1073 0.88 0.47 107,000 422,000 961,000 1,737,000
P3 From Table 1 231 x 1078 0.36 0.37 36,000 494,000 1,756,000 4,120,000
3.0 x 10° 9.61 x 107% 0.59 0.43 62,000 399,000 1,102,000 2,228,000

The molecular weight averages reported in Table 3
have been obtained from Eq. (3) with the best-fit a and b
parameters and with M, evaluated from Eq. (8). The
90% confidence intervals are nearly +£10%, =+1%,
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Fig. 4 Dynamic data, G" (O) and G” (A), for the polyacetal Celcon
M25 at Ty=190 °C (Nobile and Cocchini 1999). The continuous
curves are the fit with the GEX-double reptation model for dynamic
moduli, Egs. (7) and (12). The arrows give the frequency range
actually used for fitting
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Fig. 5 Dynamic data, G’ (O) and G” (A), for the polystyrene mixture
M1 at To=150 °C (Wasserman and Graessley 1992). The continuous
curves are the fit with the GEX-double reptation model for dynamic
moduli, Egs. (7) and (12). The arrows give the frequency range
actually used for fitting

+1%, and £3% for M,, M,,, M,, and M, for all
samples tested.

The molecular weight averages reported in Tables 2
and 3 are in a fairly good agreement, except the case of P3
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Fig. 6 Dynamic data, G’ (O) and G” (A), for the polystyrene mixture
M2 at To=150 °C (Wasserman and Graessley 1992). The continuous
curves are the fit with the GEX-double reptation model for dynamic
moduli, Egs. (7) and (12). The arrows give the frequency range
actually used for fitting
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Fig. 7 Dynamic data, G’ (O) and G” (A), for the polypropylene P3
sample at Tp=190 °C (Wasserman and Graessley 1996). The
continuous curves are the fit with the GEX-double reptation model
for dynamic moduli, Egs. (7) and (12). The arrows give the frequency
range actually used for fitting
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with the G, value from the literature, as already discussed
previously. Concerning the M,, and M, values, the
predictions obtained from the dynamic moduli measure-
ments, Table 3, differ by less than 10% with respect to
those obtained either from GPC measurements (Celcon
M25 and P3) or from the knowledge of the composition
(M1 and M2 mixtures), Table 2. The discrepancies
increase at about 20% for M, ;. In particular, the
procedure satisfactorily catches the differences between
the M1 and M2 mixtures, which differ in their composi-
tion only at the high molecular weight tail.

More controversial results are obtained for M,,. In the
case of M25 and P3 samples, the predictions for M, differ
by less than 10% from the corresponding values obtained
by GPC measurements, while for the two polystyrene
mixtures they differ by more than 50% from the
corresponding values obtained by calculation from the
known composition of the mixtures. This event could be
justified by the low sensitiveness of the rheological
measurements on the M,,/M,, ratio, as shown in Fig. 3.

Conclusions

In this paper the analytical solution for the relaxation
modulus from the double reptation model with the

Tuminello step relaxation function and the GEX MWD
function has been used to obtain MWD from viscoelas-
tic data. The model obtained so far has been, in fact,
applied to get the MWD of different polymers from their
dynamic data by least-squares fitting, without the need
for the inversion of the double reptation integral
equation. Moreover, to evaluate the dynamic moduli
from the relaxation ones in an efficient and accurate
numerical way, a Finite Element Approximation (FEA)
technique has been used. The sensitiveness of the GEX-
double reptation dynamic moduli on the model param-
eters has been investigated and the results have shown
that the evaluation of the MWD from rheological data
will provide well defined M,/M,, ratios, while the M,,/
M,, ratios will have large confidence intervals. Finally,
concerning the M, and M, values, the predictions
obtained from the dynamic moduli measurements differ
less than 10% from those obtained from GPC measure-
ments, while, as expected, more uncertainty is present in
the M,, predictions.
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