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Abstract The “dual constraint”
model developed by Mead, Van
Dyke et al. is here extended by
inclusion of “‘early-time” contour-
length fluctuations and constraint-
release Rouse relaxation, and then
evaluated by comparing its predic-
tions with literature data for over 50
different linear and star polymers. By
combining the reptation model of
Doi and Edwards with contour-
length fluctuations and constraint
release, the model provides a sys-
tematic approach to prediction of the
rheological properties of polymers.

The parameters are taken from the
literature and used consistently for
linear polymers, star polymers, and
their mixtures having the same
chemical compositions. In most
cases, the predictions of the model
appears to agree well with data for
monodisperse, bidisperse, and poly-
disperse linear and star polymers,
except at low molecular weights.

Key words Linear viscoelastic
Double reptation - Constraint
release - Linear polymers - Star
polymers

Introduction

The first detailed molecular model for predicting rhe-
ological properties of well entangled polymers was
originated by de Gennes (1971) and developed into a
full constitutive theory by Doi and Edwards (1978,
1979). This model is based on the notion of reptation in
a conceptual “tube’ of constraints imposed by the mesh
of surrounding polymer molecules. While the Doi-
Edwards theory successfully predicts the nonlinear
rheological response of entangled polymers in step
strains, it has several drawbacks in both linear and
nonlinear regimes. Since an understanding of the linear
regime is foundational for that of the nonlinear regime,
the accuracy of predictions in the linear regime is crucial.
The drawbacks of the Doi-Edwards prediction in the
linear regime are that:

1. It predicts the low-shear-rate Newtonian viscosity
to scale as M® instead of M>* which is observed
experimentally, where M 1is the polymer molecular
weight.

2. For frequencies beyond the crossover point of G’
and G”, the Doi-Edwards theory predicts that the loss
modulus (G”) decreases in proportion to w™ > which is
steeper than the observed behavior, for which the
exponent ranges between 0 and —0.25 depending on
the molecular weight of the polymer.

3. The Doi-Edwards theory fails to predict a high-
frequency upturn in G” and G”.

These discrepancies in the Doi-Edwards predictions are
probably due to nonreptative mechanisms, mainly
contour-length fluctuations and Rouse relaxations.

Milner and McLeish (1997, 1998) have proposed
improved models for predicting the linear rheological
properties of monodisperse linear and star polymers.
Their theory for monodisperse linear polymers combines
reptation, contour-length fluctuations, and Rouse relax-
ation processes. (Milner and McLeish 1997) Their
models for monodisperse and bidisperse star polymers
combine contour-length fluctuations with a tube-renew-
al process called “dynamic dilution.” They have also
recently proposed a theory for mixtures of monodisperse
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linear with monodisperse star polymers. (Milner et al.
1998) While these models seem successfully to describe
monodisperse linear, monodisperse, and bidisperse star
data, and mixtures of monodisperse linear and star
polymers, there is a need for a single ‘“universal”
framework capable of encompassing polydisperse linear
and star molecules, or mixtures of linear and star
molecules. Developing such a theory is challenging
because the theory for star polymers describes constraint
release entirely in terms of a “‘tube dilution™ process,
which is an inappropriate description of constraint
release for linear polymers.

Recently, Mead, Van Dyke et al. (2000) have devel-
oped the ““‘dual constraint model,” in which an approx-
imate treatment of constraint release processes combines
both ““double reptation” and “‘tube dilution” concepts.
While the “tube dilution™ ideas in this model are not
fully self consistent, the model does have the virtue that
it is, in principle, equally applicable to linear and star
polymers, whether monodisperse or polydisperse, and to
mixtures of linears and stars. In principle, it is also
extendible to the nonlinear regime.

In addition, the ““dual constraint” model involves no
parameters beyond the friction coefficient { of Rouse
theory and the tube diameter a (or, equivalently, the
plateau modulus GY) of reptation theory. Thus, once
these two parameters have been specified (from the
literature, for example), predictions for well entangled
polymers can be made for linear or star polymers of
arbitrary molecular weight, or for polydisperse poly-
mers, without needing to specify other parameters.

In this paper, we extend the “dual constraint’” model
by incorporating (a) early-time contour-length fluctua-
tions (Milner and McLeish 1997, 1998) and (b) “con-
straint-release Rouse” processes (Viovy et al. 1991); we
then thoroughly test the extended dual constraint model
in the linear viscoelastic regime by using it to predict sets
of rheological data from different labs, including
virtually all sets of linear viscoelastic data from the
literature for well characterized monodisperse and
bidisperse linear and star polymers. Where available,
we use literature values for the parameters, {, « and GON.
The behaviors of linear and star polymers of the same
chemical composition are then correlated by using the
same model parameters for both architectures. In
addition, we also test the model by comparing its
predictions to linear viscoelastic data for well defined
polydisperse samples produced by mixing together a
large number of well defined monodisperse fractions. By
confronting the model with many different data sets in
the literature, and by using the same input parameters to
predict data from a wide variety of sources, we are able
to evaluate thoroughly and objectively the validity of
the model, and to provide a standard of comparison
against which any future improved model can be
judged.

Theoretical background

The “dual constraint” model that we will test is that of Mead, Van
Dyke, et al., who incorporated two forms of constraint release into
the dynamics of entangled polymers. The first form of constraint
release is “double diffusion’” which augments the “‘double reptation”
theory of constraint release by inclusion of fluctuation as a
mechanism of constraint release. This first mode of constraint release
has been found successfully to account for the effects of polydisper-
sity on the relaxation of polydisperse linear chains in most cases.

The second form of constraint release is “dynamic dilution,”
which was introduced by Ball and McLeish (1989) to describe the
self-consistent time-dependent loosening of the effective entangle-
ment network, or widening of the tube, that is realized when the
relaxation of monodisperse star polymers is considered on ever
longer time-scales. This second form of constraint release is
required for stars, because even a monodisperse star has such a
wide range of relaxation times that over the time-scale required for
the last interior part of an arm to relax, the tip of that arm has
relaxed so many times that it acts more like a solvent than a real
obstacle to motion of other chains.

Both forms of constraint release assume that the constraint
releases lead to immediate relaxation of the constrained chain (for
double diffusion) or immediate expansion of the chain to match
with the wider tube (for dynamic dilution). This assumption has
been found to be acceptable for most cases except when dilute
chains with long relaxation times (i.e., long chains) are in the
matrix of chains with much shorter relaxation time (i.e., short
chains) (Milner 1996). The failure is expected because the dilute
long chains cannot explore the dilated tube as fast as the dilation
process occurs by relaxation of short chains in the matrix. This case
(dilute long chains in a matrix of short chains) has been studied by
Watanabe et al. (1985, 1991) and Montfort et al. (1984), and
theoretically by Viovy et al. (1991). The result can be described by
considering so-called ‘“‘constraint-release Rouse” motions, which
are Rouse-like motions of the long chain in a ‘“‘supertube”
produced by relaxation of the short chains.

In order to make the model applicable in all cases, the extended
dual constraint model described here combines both forms of
constraint release together with the constraint-release Rouse process
into a single formalism. It does so by solving twice a diffusion
equation for reptation and/or fluctuation of linear or star polymers.
The equation is first solved in a fixed tube, i.e., in the absence of
constraint release. This first solution to the diffusion equation
supplies a single quantity y*, the time dependent fraction of the
entanglements that would survive over a period of time 7 if each chain
relaxed in a fixed matrix. This function is then corrected with the
constraint-release Rouse process when *(¢) relaxes faster than
Rouse motion of the chain, and the corrected function named ¢*(¢).
¢*(¢) is then used as a time-dependent dilution factor which affects
fluctuations in a second solution of the diffusion equation. After
solving the diffusion equation this second time, with dynamic
dilution included via ¢*(¢), the resulting survival probability of the
chain is then obtained. The survival probability of the constraint
surrounding the chain is the same as that of the chain except that the
former is corrected for the constraint-release Rouse process. The
survival probability of the chain is multiplied by that of the constraint
to account for double diffusion and then multiplied by the plateau
modulus to get the relaxation modulus. Finally, the high-frequency
Rouse relaxation modes are added.

In what follows, we lay out the equations solved here; further
discussion of these equations, and justification for them, are
provided by Mead, Van Dyke et al. (2000).

A. Reptation and fluctuation in a fixed matrix

The linear viscoelastic constitutive equation for highly entangled
polymers proposed here is based on the tube model of Doi and
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Edwards (1978, 1979, 1986). For oscillatory deformation at low and
moderate frequencies, the major relaxation mechanisms for linear
polymers are reptation, contour-length fluctuation, and constraint
release. For star polymers, the arms are joined together, preventing
reptation. Thus, contour-length fluctuation and constraint release
are the only relaxation mechanisms for stars at low and moderate
frequencies. At high frequencies, Rouse processes are important for
both architectures.

Reptation can be thought of as the diffusion of a chain out of a
tube; therefore, it can be represented by a diffusion equation for the
tube-survival probability. Contour-length fluctuation is a relax-
ation process induced by thermal fluctuation of the tube length
with time. Including both reptation and contour-length fluctuation,
the diffusion equation for linear polymers subjected to a small step
strain at time =0 is (Mead, Van Dyke et al. 2000).

3p; (s1,7) _ Dy O°pj (si, 1)
ot Lf 651-2

_pi*(slvt) (1)

(1)

The initial and bounary conditions are p; =1 at ¢ = 0, and p; =0, at
the chain end. The first term on the right of Eq. (1) represents the
reptation mechanism and the second term is for contour-length
fluctuation. The equation is the same for star polymers except for
star, the reptation term is removed. The subscript i denotes a linear
chain of molecular weight M; or the arm molecular weight for a star
polymer. In Eq. (1), pj(s;?) is the survival probability of a tube
segment occupied by a chain of type i as a function of time ¢ and
contour distance s;, where s; ranges from 0 at the center of a linear
polymer chain or the branch point of a star to 1% at the chain end of
a linear, or to 1 at the chain end ofa star. D;, the curvilinear diffusion
coefficient, is defined as L? /rd ;m%, where L; is the average contour
length of the tube and 4 is the reptation time constant (Doi and
Edwards 1986). L; equals N;b%/a, where « is the tube diameter, b is
the effective polymer statistical segment length, and N;is the number
of monomers composing a chain of type i. The relationship between
a and b is given by b = a(y/M,/M.), and N; can be rewritten as
M, /M,, where M, is the monomer molecular weight and M is the
moleculdr weight between two entdnglements T4 1S given by
14.,= ((N? bY)/(n*k, Ta?) where ky, is the Boltzmann constant and T
is the absolute temperature (Doi and Edwards 1986, p 196).

The second term represents contour-length fluctuations. The
relaxation time for contour-length fluctuations, t},, accounts for
the activated relaxation described by Doi dnd Kuzuu (1980),
Pearson and Helfand (1984), Doi and Edwards (1986), and Mead,
Van Dyke et al. (2000). This activated relaxation, which has for its
prefactor the longest Rouse relaxation time, is accurate for deep
fluctuations. Shallow fluctuations, however, only drag a small bit of
the chain, and hence are much faster than predicted by the formula
for activated relaxation. A formula for these shallow, fast,
fluctuation modes has been derived from Milner and McLeish
(1997, 1998). Borrowing from this work, we have two expressions,
one for shallow (tcary;) and one for deep (tj,, ;) fluctuations:

225 3TRi () oyt (Nen.,-)2
C
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Here c is a prefactor which equals 1 for star polymers and 2 for
linear polymers (since a linear polymer has two fluctuating chain
ends). Nen; = M;/M¢ is the number of entanglements per chain for
linear polymers or per arm for stars. tg; is the longest Rouse
relaxation time of a chain defined by tr; = {N; b2 / 67k, T, which is
smaller than the rotational relaxation time 7, from Doi and
Edwards by a factor of two (Doi and Edwards 1986, p 115). Thus,
TR, 18 related to 74, by TR ;= 74.i/(6Nen.)-
U*(s;) is the activation energy for chain retraction given by

15 Nen s
8 ¢

Tearlysi(sl) (2)

TR,i

and 77 (si) =

U'(s;) = (1—cs;)’ 3)

The quick fluctuation mode of chain ends (s; close to 1) is
controlled by 7c,1y,; and gradually changes to the normal activation
mode 17, , toward the center (s, close to 0). Therefore, 7%, in Eq. (1)
equals Ty ; for large s; and ). ; for small s5;. We propose here a
simple crossover function that splices these two functions together
with a transition zone over which a geometric average of the two is
used. The crossover function from Tearly,i 1O Tie; along the chain
follows the solid line in Fig. 1, which is given by

Tz),- = Tearly,i when (1 —s;) < CT
rzi = Tearly,i * rl*aw,i when C} < (1 —s;) < C} 4)
T: = Tates when (1 —s;) < G5

where Cj is the first crossover position of Ty, and tj,, ; close to
the chain end, and Cj is the second crossover point deeper inside
the tube. Close to the chain end where (1 —5;) < Cj, 1 takes the
value of Teay; and deep inside the tube where (1 — s,) s Cz, ;18

controlled by 1j, . ; For the tube segments between Cj and C3, t}, s
taken to be the geometric average of the two functions of 5.

The overall survival probability y; () of a tube occupied by
chain 7 is then calculated from p;(s;,7) by

1

Vi) = / i (50, )ds; (5)

0

and the average tube survival probability y; (¢) of all chains is
Y (1) = 2w (1) (6)

where w; is the weight fraction of the chains of length L;. We obtain
Y*(1) numerically by solving for pi(s;,f) using a Crank-Nicolson
method, and then converting to ¥*(r) and Y*(r) by means of
Eqgs. (5) and (6), respectively. Note that y*(¢) is calculated when
constraint release is not present.

The approximate constraint-release Rouse process is then
activated when *(¢) decreases faster than a Rouse relaxation
process would permit. A detailed explanation of the constraint-
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Fig. 1 The crossover function (solid line) from T,y (dotted line) to
(the;) (dashed line) with no constraint release (¢*=1) for a linear
polymer with 30 entanglements per chain or for a star with 15
entanglements per arm. The crossover points are indicated by C] and
C;. The x-axis (1 — s) is the distance from the chain end (1 — s=0)
toward the branch point of the star or the center of the linear chain
(1-s=1)
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release Rouse process has been given in Viovy et al. (1991), and
Milner (1996). Here, we will merely adopt the formula from Milner
and McLeish (1998) that constraint-release Rouse relaxation
permits relaxation no faster with time than

Vr(t) = ¥ (1) (i)fl/z ™)

to

where 7, is the time when *(¢) starts to drop faster than V2

At time near zero, when the majority of the entanglement
constraints still exist, the average survival probability of the chains
#{,) equals ¥, and remains so until some time 7= #,, at which ¢,
switches to Ygr(f). At some later time ¢, if Ygr(f) drops below
Wy» d(, then switches back to y*(¢). Whenever y*(¢) drops faster
than {72 again, the constraint-release Rouse process will be
activated and lp‘}) from Eq. (7) with a new t, will be used for qﬁz‘t).
The expression for ¢*(¢) can therefore be written as

¢"(1) =¥ (1) when (1) > g (1)
¢ (1) = yg(e)  when Y (1) < g (1)

The average survival probability of the chains ¢*(¢) will be used as
the dilution factor in the fluctuation term in part B below.

(3)

B. Reptation and fluctuation with constraint release

In general, constraint-release manifests itself both in a local
relaxation of an entanglement constraint and in a global loosening
of the entanglement network. These modes of constraint release are
called “tube reorganization” and “‘tube dilution,” respectively
(Viovy et al. 1991). While the local relaxation of entanglement
constraints will be combined later in the final relaxation modulus,
the time-dependent loosening of the entanglement network or tube
widening, known as “dynamic dilution” (Ball and McLeish 1989),
is included here in the activated fluctuation term.

Dynamic dilution takes into account the large differences in time-
scales between fast and slow relaxation processes by allowing the
accumulation of constraint-release events to reduce the activation
energy for deep-chain fluctuations. This reduction results in faster
relaxation of the test chain. The dynamic-dilution mechanism is
incorporated into the dual constraint model by using the reduced
activation energy,Ucn(s;,?), instead of U*(s;), to calculate Ty,
While this makes 1, ; time dependent, Tc,y1y,; remains the same as in
part A. The expression for Teuy,; and Ty, with dynamic dilution
can be written as (Mead, Van Dyke et al. 2000)

225 1Ry Nens) >
‘Cearlyj(si) :777:3 ;2 (1 7051‘)4 (%)

T

©)

S exp(Uerr(si, t)

and Tlaleﬁi(si-,t) = c

where Ugg(s;,?) is obtained by multiplying U* by the dilution factor
¢*(1) calculated from Eq. (8) giving

15 Nenj
8 ¢
As shown in Fig. 2, although t;; has behavior similar to that in
part A, the crossover locations, C; and C,, are now changing with

time due to the time dependence of 7}, ;. Hence, 7;; along the tube
position s; is described by Eq. (4) with tj;,. ; replaced by Tiae,i:

Uet(si, 1) = ¢ (1)(1 — cs;)? (10)

Tei = Tearly,i when (1 —s;) < Cy
Téi = 4/ Tearly,iTlate,i whenC; < (1 - Si) <G (1 1)
T = Tlate,i when (1 — S,-) > C2

where C; and C, are again the crossover points.

T T T T
10} e
- T -
1011 N late ]
109: Iate(t1):
* 107- Tlake(tz) A
T - -
5 105F 00000 e ¢ ]
103F early -1
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vC:, C,(t) ~
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Fig. 2 The crossover function from Ty tO Tjae With constraint
release (¢*(1)=1.0, 0.7, and 0.4) for the polymer of Fig. 1. The
crossover points C; and C, change with ¢*(7), which decreases with
time

This new expression for 7:; is now incorporated into the
diffusion equation as follows:

Opi(sint) _ Didpi(sist)  pilsis1)
ot - Lz2 aslz ‘L'g“.,'(S,')

(12)

where p,(s;,t) and 7 ; are the tube segment survival probability and
the time constant for contour length fluctuation, respectively, in the
presence of constraint release by dynamic dilution (Eq. 11).

The overall survival probability ¢,¢) of a tube occupied by
chain 7 can then be calculated from p,(s;t) by

1

8,0 = [ s (13)
0

and the average survival probability of all tubes is

b)) = > widi(0) (14)

¢d(#) can again be obtained numerically by solving for p(s;?) using
the Crank-Nicolson method, (Using logarithmic time) then con-
verting to ¢(f) and ¢(¢) by means of Egs. (13) and (14),
respectively.

So far, we have only accounted for ““global” constraint-release
effects that accelerate contour-length fluctuations via the dilution
factor ¢*(¢), which is used in the fluctuation potential U.q. We can
describe local constraint-release events using the double-diffusion
mechanism, developed as an extension of double reptation
(Tsenoglou 1987; des Cloizeaux 1988) by Mead, Van Dyke et al.
(2000). This theory considers the survival probability of a binary
topological interaction of a test chain with a surrounding chain.
This mechanism accounts for the effect of the surrounding chains
on the overall relaxation process by multiplying the average
survival probability of the test chain by that of the constraints
surrounding the chain. Without the constraint-release Rouse
process, the multiplication would be ¢?(f). However, after includ-
ing constraint-release Rouse processes, the fraction of constraints
¢’(¢) that block motion of a test chain at time ¢ can differ from the
fraction of tube segments ¢(7) that are still occupied at time ¢. Thus

¢'() = (1) when (1) < $r(1)

1) = dr(t) when b(1) < drl) (13
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—1/2
where ¢g(t) = ¢>(t0)(% / , to is the time when ¢ (¢) begins to
drop faster than /2, and ¢(t,) is the average survival probability
at ty. The activation of constraint-release Rouse processes for the
fraction of local constraints ¢’(¢) in Eq. (15) is identical to that for
the dilution term ¢*(¢) in Eq. (8). That is, at time near zero, ¢’(¢)
equals ¢(7). After that, at each time t, ¢’(¢) is assigned the greater of
the values of ¢(7) and ¢gr(?).
Thus, the overall survival probability of the binary interactions
between the test chains and the surrounding chains becomes

(1) = p(0)¢' (1)

The relaxation modulus G(7) from the contributions of reptation,
contour-length fluctuations, and constraint release can be obtained
by multiplying ®(¢) by the plateau modulus G?\,:

G(1) = GRO(1) = GXp(1)¢' (1)

The final relaxation mechanism we consider is high-frequency
Rouse relaxation within the tube (not to be confused with the
constraint-release Rouse processes by which a chain escapes one
tube and explores a wider one). High-frequency Rouse relaxation
includes stress relaxations of segments of the test chain at time-
scales both shorter than 7., the time at which the chain segments
first feel the constraint imposed by the conceptual tube, and
longer than 7., during which only the longitudinal Rouse modes
along the tube are available. The ‘“‘equilibration time” z. is the
Rouse relaxation time for an entanglement segment of a chain
and is independent of chain length, i.e., the molecular weight of
the polymer. 7. is related to tg; by 7. = ZTR_,-/NGZM (Doi and
Edwards 1986, p 214), which implies that 7, is related to t4; as
7, = 74;/3N3 .. The division of spatial scales separating Rouse
processes with time-scales less than 7. from those with time-
scales greater than 7. has been represented by Milner and
McLeish (1998) using an approximate ‘“‘fragmented Rouse”
spectrum to calculate the Rouse relaxation modulus of chain i

(Gr.):

(16)

(17)

Nen,i

1, K%t 0 o K%t
GRﬁi(t):gGN;exp B + Gy Z exp

k=Nen,;i TR

(18)

Here, the first term accounts for the slow longitudinal modes which
are confined by the tube to one dimension rather than three as in
the ordinary Rouse theory; hence, their magnitude is reduced by a
factor of three. The second term represents fast three-dimensional
relaxation of portions of the chain within a single tube segment.
Finally, the full stress-relaxation modulus (Gyo,1) combines G(¢)
from Eq. 17 with the contribution from Rouse processes giving

Gtotal(t) = G(t) + Z WiGR.i(t) (19)

The stress-relaxation modulus can then be converted to the storage
modulus (G’) and the loss modulus (G”) by

G'(w) = a;/ Giotal (2) cos(wt)dt, and
0

G (w) = w/ Giotal () sin(wt)dt
0

The calculated G’ and G” can be compared with experimental data
for polybutadiene, polyisoprene, and polystyrene, for both linear
and star architectures. The comparison for monodisperse, bidis-
perse, and polydisperse polymers are presented in the following
section.

Results and discussion

For well entangled linear polymers, the longest relax-
ation time, which is related to reptation, would be
proportional to M? if reptation were the only relaxation
process. However, since other relaxation processes are
also active near the terminal region, the terminal
relaxation time in the experiments always shows a
dependence on molecular weight with a power-law
exponent higher than 3. For the typical range of
polymer molecular weights, the terminal relaxation time
is found to be proportional to M**. Comparison of the
dual constraint model with experiments shows that
double diffusion and dynamic dilution improve the
linear viscoelastic predictions at low and intermediate
frequencies. While the double diffusion improves the
predictions especially in the terminal region, the early
fast diffusion, which is included in the contour-length
fluctuation mechanism, improves the prediction of G”
by attenuating the steep decrease in the intermediate-
frequency region (Milner and McLeish 1997). For star
polymers, the relaxation mechanisms are the same as for
linear polymers except that star polymers do not reptate;
therefore, the most important relaxation mechanism for
star polymers is contour-length fluctuation. At high
frequencies, the Rouse relaxation processes create up-
turns in G” and G” for both linears and stars.

The parameters used in the model are the plateau
modulus (GY), the relaxation time for a segment of a
chain (z.), and the polymer molecular weight or the
number of entanglements per polymer chain
(Nen = M/M,). M, is the molecular weight between
two entanglements and can be computed from the value
of G?\I by M, = pkBTNA/G?\I where N4 is Avogadro’s
number, T is the absolute temperature, kg is Boltz-
mann’s constant, and p is the density of the polymer
(Ferry 1980). Since 14; = ((N°*b%/(n’k,Ta?) and 7. =
74;/3N2 . as mentioned earlier, 7. can be related
to the monomeric friction coefficient { and the tube
diameter a by 1. = {a®N;/3n*Ne, ikpT. By substituting
N;=M;/M, and N,;=M,;/M,, 1. can be rewritten as
{a®M. /37°kgTM,. Although t. is calculated from { and
a, the tube diameter a reported in the literature is
calculated from GY, leaving a direct proportion of 7.
and (. As can be seen from this relationship, 7. is
independent of polymer molecular weight and architec-
ture; therefore, we can correlate the behavior of linear
and star polymers of the same chemical composition by
using the same 7, and GY for both architectures. Of
these, GON is essentially temperature-independent, while
T, (or {) is very sensitive to temperature. These two
model parameters are taken from literature, where
available. When the value of { is unavailable, which is
the case for polyisoprene and polystyrene at low
temperatures, we obtain 7. by fitting the model to
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experimental data for a linear polymer, and consistently
using the value obtained for all other linear and star
polymers having the same chemical composition at the
same temperature. The model parameters for all poly-
mers tested in this paper are summarized in Table 1.

The comparisons of the predictions with experiments
are reported for monodisperse, bidisperse, and polydis-
perse polymers. In the monodisperse case, we find that for
high molecular weight polymers, the model predicts the
experimental data reasonably well using literature values
of 7. and GON, with no fitting parameters. However, the
predictions at low numbers of entanglements N, are not
very accurate. This problem might be expected since the
“tube” concept becomes questionable for a low number of
entanglements. In order to identify the experimental data
in which the model predictions might be expected to fail,
we use open symbols (u) to indicate experimental data that
have N, less than 10. For bidisperse polymers, the linear-
linear blend and star-star blend behaviors are predicted
reasonably well for the limited experimental data report-
ed. For polymers with continuous polydispersity, com-
parisons between the model predictions and the
experiments are reported for 2 sets of polystyrene
consisting of mixtures of 11 and 13 components of linear
monodisperse polymers of different molecular weight. We
found that the model can capture accurately the effect of
very small amounts of long-chain components. Case
studies for monodisperse, bidisperse, and polydisperse
polymers are described subsequently in separate sections
for several linear and star polymers.

Monodisperse polymers — case studies
Polybutadiene (PBD)

Linear PBD. The experimental data for linear polybut-
adienes at 28 °C were taken from Baumgaertel et al.

(1992) who reported G’ and G” plots for four different
molecular weights (M): 20.7 K, 44.1 K, 97 K, and
201 K, where the “K” represents a factor of 1000. The
polydispersity index (P.I.=M,/M,) for all of these
polymers is less than 1.10 except for the sample of
highest molecular weight, which has a P.I. of 1.27. For
the model calculations, the molecular weight between
entanglements (M.) 1is calculated from GIO\I by
M, = pkaNA/G(f\J (Ferry 1980). The parameters GON,
M., and a for PBD are found from Fetters et al. (1994)
to be 1.25 x 10° Pa, 1815, and 44.4 x 107 cm, respec-
tively. Since Fetters’ value of M, is based on the
equation M, = % pkp TNA /GON, which contains a factor
of 4/5 that is not present in the definition of M, used by
Ferry, we must multiply Fetters’ values of M, by 5/4,
giving M, =2269 (Ferry’s definition). Consequently, the

tube diameter, a, which is given by a = (b\/M./M),

must be increased by a factor of /5/4, giving
a=49.6 x 10°® cm. The corresponding values of
Nen = M/M, for the four samples are 9.12, 19.44,
42.75, and 88.59, respectively. The polymers are as-
sumed to be monodisperse for all calculations except for
the highest molecular-weight sample (which has the
highest polydispersity). For this sample, we account for
the distribution of molecular weights in our calculations
by discretizing the molecular weights into 20 compo-
nents with the weight fractions corresponding to the
area under the molecular-weight-distribution curve. The
monomeric friction coefficient ({) is taken from Ferry
(1980, p 331) to be 107%7° g/s at 25 °C. This is shifted
slightly using the WLF equation (Ferry 1980, p 227)
to 10787 g/5 at the test temperature of 28 °C. From
{ and a, the corresponding value of t. for polybutadiene
at 28 °C turns out to be 1.31 x 10® s. The comparison
between theory and experiments for linear PBD is shown
in Fig. 3a, b. As can be seen, the model predicts the
experimental data well.

Table 1 Summary of the model

parameters for polybutadienes, ~ Folymer {(gs™) Gy(Pa)’ M. e a (cm)® T (5)
polystyrene, and polyisoprene (g mol™)
PBD
(25 °C) 10757 25 % 10° 2,269 49.6 x 1078 1.51 x 107°
(28 °C) 131 x 107°
(30 °C) 29315 x 1077
PS
(150 °C) n/c 2% 10° 16,625 85.5%x 1078 5% 1072
(160 °C) n/c 1x1072
(169.5 °C) 3.02x 107° 1.96 x 1073
(180 °C) 9.85x 107° 6.22 x 107
PI
(25 °C) n/a 434 x 10° 5200 62 x 1078 6x107°
(75 °C) n/a 4x107°

n/c = data not accurate, n/a = data not available
#Data obtained from WLF shifting from 25 °C
®Data taken from Fetters et al. 1994

¢ Using Ferry’s definition i.e., M, = ,okaNA/GON



523

107y
108 @ 4
10°L
G' PBD, linear
Pa) N, =8.12
M =19.44
i N, =42.75
N, =B8.59
1 1 1 1
10°
5
G 10
(Pa)
10*
1000
100 I 1 1 1 1 L 1 1 Il
0.01 1 100 10" 10°® 10"
w (sec’)

Fig. 3a, b Comparison of the model predictions of: a storage
modulus, G’; b loss modulus, G”, with experimental data for linear
polybutadienes at 28 °C (Baumgaertel et al. 1992). The molecular
weights of the samples from right to left are 20.7 K, 44.1 K, 97 K, and
201 K, respectively. The solid lines are the model predictions using the
literature  values of the parameters: G =125x 10°Pa and
Te=131x 10"%s. In this and subsequent figures, the open symbols
represent data for polymers with less than N, = 10 entanglements per
chain or per branch

Star PBD. The experimental data for star polybutadi-
enes at 25 °C were taken from Adams et al. (1996). The
linear viscoelastic data were reported for four samples
having different number of arms and almost the same
number of entanglements per arm, each with a very
narrow molecular weight distribution. The molecular
weights of all samples with the numbers of arms,
functionalities (f), and amounts of residual unreacted
linear chains (/) are summarized in Table 2.

We use the model parameters G% =1.25 x 10° Pa,
M.=2269, and a=49.6 x 107 cm, the same as for

Table 2 Functionality, molecular weight (g mol™"), fraction of
residual linear chains, and the diluted number of entanglement per
arm of PBD star-branched polymers

Star PBD f My 1 (%) Nen
(diluted)
3 arms 2.8 101,600 4.3 15.3
4 arms 3.9 145,700 7.0 15.3
8 arms 7.2 240,900 9.7 13.3
12 arms 11.8 369,300 4.5 13.18

linear PBD. The monomeric friction coefficient ({) from
Ferryis 1077 g/s at 25 °C for PBD (Ferry 1980, p 331).
7. associated with these values of { and a for PBD is
1.51 x 107 5. The corresponding numbers of entangle-
ments per arm (N,,) for these samples are 15.99, 16.47,
14.75, and 13.79, respectively. The small fraction of
linear chains in the polymer samples act like a solvent;
thus diluting N, of the star polymers in each sample
proportionally to the amount of linear chains present.
Therefore, Ne, turn out to be 15.3, 15.3, 13.3, and 13.18
for star polymers with 3 arms, 4 arms, 8 arms, and 12
arms, respectively, as reported in Table 2. The model
predicts no dependence of the rheological properties of
stars on the number of arms. As shown in Fig. 4a—d,
the model for star PBD agrees fairly well with all
experimental data, especially for 4-arm and 8-arm
stars (Fig. 4b, c). However, the prediction for the 3-
arm star (Fig. 4a) slightly overestimates the experimen-
tal relaxation time; on the other hand, the experimental
relaxation time is underestimated for the 12-arm star.
This implies a certain degree of unexplained arm-
number dependence of the rheological properties of
star polymers. The discrepancy for the 3-arm star
polymers is thought to be due to the diffusion of the
branch point of the star in the direction of the arms
(Klein 1986) causing a faster than predicted relaxation
of the polymers.

Polystyrene (PS)

Linear PS. There are two sources of experimental data
for linear polystyrene with narrow molecular weight
distributions. One is for samples of molecular weight
290 K, 750 K, and 3000 K at 180 °C (Schausberger
et al. 1985); the other set is for molecular weights
(weight average) of 275 K and 860 K at 169.5 °C
(Graessley and Roover 1979). The model parameters for
PS are G =2 x 10° Pa, M. = 16,625, and a=85.5 x
1078 cm, (all are from Fetters et al. 1994, with M, and
a corrected by the factors of 5/4 and /5/4, respectively,
as earlier). With M, = 16625, those molecular weights of
PS at 180 °C correspond to N.,=17.44, 45.11, and
180.45, and for PS at 169.5 °C; the corresponding N,
are 16.54 and 51.73. The monomeric friction coeflicient,
g, is cal%ulated from the experimental correlation
{ = {,e™®0 where T is the testing temperature in °C,
{oo=2.7x10""" g/s for high molecular-weight polysty-

renes, and the constant % equals 1620 £ 50 (Majeste
et al. 1998). Here, we use the upper bound, which is

%: 1670. The values of { are then 9.85 x 10™° g/s at
180 °C and 3.02 x 107> g/s at 169.5 °C. Thus, 7. for PS
is 622x10%s at 180°C and 1.955x107°s at
169.5 °C. The comparisons of the model predictions
with experiments are shown in Fig. 5a, b for the

experimental data set at 180 °C and in Fig. 6a, b for



524

T T T T T T
10° (a) 3arms
GI,G" 105 | 1
(Pa)
10*
B PBD, star
N, =15.3
1 1 1 1 1 1
I I I ) I ) ) ) I
10° (b) 4 arms
G,G" 10°L i
(Pa)
10* | PBD, star -
N =153
en
1 1 1 1 1 1 1 1
I I I ) I ) ) ) I
107 L (c) 8 arms
10° L
GI,GII
(Pa) 10° |
10t L PBD, star |
N =183
en
1 1 1 1 1 1 1
I 1
10° (d) 12 arms
G'\G" 10° L J
(Pa)
10* | PBD, star -
N =13.18
en
1 1 1 1 1 1 1

o (sec™)

Fig. 4a—d Comparison of the model predictions of storage modulus,
G’, and loss modulus, G”, with experimental data for star
polybutadienes at 25 °C (Adams et al. 1996). The molecular weights
and functionalities (f) of the stars are: a MW =972 K (f=2.8);
b MW = 135.5 K (f=3.9); ¢ MW =217.5 K (f="7.2); d MW =353 K
(f=11.8). The solid lines are the model predictions using the literature
values of the parameters: G% = 1.25 x 10° Pa and 7,=1.51 x 107 s

the one at 169.5 °C. The predictions agree well with all
experimental data except for the lowest N, at 180 °C
(Nep=17.44).

Star PS. The experimental data for PS stars (Graessley
and Roover 1979) are for the samples with molecular
weights of 1027 K (four arms) and 1090 K (six arms) at
169.5 °C. All model parameters for the PS stars are the
same as the linear PS at 169.5 °C (i.e., G?\I =2 % 10° Pa,

106 1 Ll I 1 1 T 1 1 1
108 @
G' 104 L
(Pa) PS, linear
N = 17.44
1000 | N = 45.11
N = 180.45
1 1 1 1
T T T T T T T T T
10°
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Fig. 5a, b Comparison of the model predictions of: a storage
modulus (G’); b loss modulus (G”) with experimental data for linear
polystyrenes at a reference temperature of 180 °C (Schausberger et al.
1985). The arm molecular weights of the samples from right to left are
289.97 K, 750 K, and 3000 K, respectively. The solid lines are the
model predictions using the literature values of the parameters:
G%=2x10"Paand 7,=6.22 x 107*s

M, = 16625, and 7.=1.955 x 107 5). The numbers of
entanglements per arm for the PS stars are 15.44 and
10.93, respectively. As is shown in Fig. 7a, b, the model
predictions agree fairly well with the experimental data
for N., = 15.44. However, the model underestimates the
longest relaxation time for the six-arm PS star with
N, =10.93 by a factor of 4. This might be expected
because of its small number of entanglements.

Polyisoprene (PI)

Linear PI. The experimental data from Fetters et al.
(1993) are used for the comparisons for both linear and
star polyisoprene. The linear polyisoprene studied by
Fetters et al. has a molecular weight of 500 K (25 °C).
The parameters for PI are taken from Pearson et al.
(1983) which give M,=5200 and G(I)\I:4.34 x 10° Pa
(Ferry’s definition); thus, N, for this data is 96.15. Since
the literature value of { is unavailable for PI, 1. for this
case is left as the only fitting parameter. The comparison
between the predictions and the experimental data are
shown in Fig. 8 using 7.=6.0 x 107> s. As can be seen,
the model fits the experimental data well.
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Fig. 6a, b Comparison of the model predictions of: a storage
modulus (G’); b loss modulus (G”) with experimental data for linear
polystyrenes at a reference temperature of 169.5 °C (Graessley and
Roover 1979). The molecular weights of the samples from right to left
are 275 K and 860 K, respectively. The solid lines are the model
predictions using the literature values of the parameters:
G =2x 10’ Pa and 7.=1.96 x 107 s

Star PI. The experimental data for polyisoprene 4-arm
stars are also taken from Fetters et al. (1993). The data
were reported for the arm molecular weights of 95 K,
72.2 K, and 47.5 K at 25 °C with narrow molecular
weight distributions. Their experimental data allow the
effect of arm length to be studied. We use the same
values of the model parameters G and M, as for linear
PI. The corresponding values of N, for the three
molecular weights of PI stars are 9.13, 13.88, and 18.27.
If we also use the same value of 7. as for linear PI
(te=6.0 x 107> s), the predictions underestimate the
longest relaxation times by approximately a factor of 2
(Fig 9a, b, solid lines). The best fit to experimental data
are obtained using 7.=2 x 10™*s (Fig. 9a, b, broken
line). Since the value of 1. for the linear chains was also
obtained by fitting, it is not clear which of the two values
of 1. should be considered the more accurate.

We have also compared the model with the experi-
mental data for linear and star PI from Pearson et al.
(1983). These linear polyisoprene data are for samples
with three different molecular weights: 316 K, 513 K,
and 561 K with narrow molecular weight distributions
at 75 °C (corresponding to Ng,=060.77, 98.65, and
107.88). The data for star PI are reported for 8-arm
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Fig. 7a, b Comparison of the model predictions of: a storage
modulus (G”); b loss modulus (G”) with experimental data for star
polystyrenes at reference temperature 169.5 °C (Graessley and Roover
1979). The molecular weights of the samples from right to left are
1090 K (6 arms) and 1027 K (4 arms), respectively. The solid lines are
the model predictions using the literature values of the parameters:

G =2x10°Pa and 7,=1.96 x 107 s

stars with a molecular weight of 790 K (N, = 18.99) at
the same temperature. The comparisons of the model
predictions with experimental data for the linear and
star PI are shown in Figs. 10 and 11, respectively. We
use the same literature values of G and M, as for the

10? T T T T T T T T T T
10°[
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Fig. 8 Comparison of the model predictions of storage modulus (G”)
and loss modulus (G”) with experimental data for a linear
polyisoprene with MW =500 K at 25 °C (Fetters et al. 1993). The
solid lines are the model predictions with the literature value of G%
(e G =4.34 x 10° Pa). Since the monomeric friction coefficient is
not available in the literature, 7. is chosen to give the best fit to the
experimental results. This gives 7.=6.0 x 107> s
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Fig. 9a, b Comparison of the model predictions of: a storage
modulus, G”; b loss modulus, G”, with experimental data for star
polyisoprenes at 25 °C (Fetters et al. 1993). The arm molecular
weights of the samples from right to left are 47.5 K, 72.2 K, and 95 K,
respectively. The predictions from our model are represented by lines
with the literature value of G, (i.e., G% =4.34 x 10° Pa). The solid
lines were obtained using the same 7. as for the linear PI, namely
7.=6.0 x 107 s. However, 7. that gives the best fit to the
experimental data is 1. =2.0 x 107 s (broken lines)

comparison with Fetters’ data mentioned above for both
linear and star PI. Since { is unavailable at 75 °C as it
was at 25 °C, the value of 1.=4 x 107> s, which gives
the best fit to the linear PI data, was chosen. Surpris-
ingly, for the star PI, the same value of t. as for the
linears gives a large discrepancy in the prediction of the
star data. In order to obtain the best fit, 7, was adjusted
to a value of 5x10™®s (broken lines) which is
approximately eight times lower than the value of .
used for linear PI at the same temperature. This large
discrepancy is particularly surprising in view of the
agreement in the value of 7. required to fit both star and
linear data for the three other sets of samples, including
polybutadiene, polystyrene, and even another set of
polyisoprene samples at a different temperature. At
present, we have no explanation for the discrepancy for
this polyisoprene at 75 °C.

Bidisperse polymers — case studies

Since the model can capture the linear viscoelastic
properties of monodisperse polymers in most cases with
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Fig. 10a, b Comparison of the model predictions of: a storage
modulus, G’; b loss modulus, G”, with experimental data for linear
polyisoprenes at 75 °C (Pearson et al. 1983). The molecular weights of
the samples from right to left are 316 K, 513 K, and 561 K,
respectively. The solid lines are the model predictions with the
literature value of G?\I (i.e., G?\I =434 x 10° Pa). Since the monomeric
friction coefficient is not available in literature, 7. is chosen to give the
best fit to the experimental results. This gives .=4 x 107 s
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Fig. 11 Comparison of the model predictions of storage modulus
(G") and loss modulus (G”) with experimental data for 8-arm star
polyisoprenes MW =790 K at 75 °C (Pearson et al. 1983). The
predictions from our model are represented by lines with the literature
value of G¥ (e, G =4.34x10° Pa). The solid lines were
obtained using the same 7. as for the linear PI, namely .=4 x 107 s.
However, 7. that gives the best fit to the experimental data is 7=
5% 107 s (broken lines)

no adjustable parameters, we now move on to test the
model for binary blends of low and high molecular
weight entangled polymers of the same architecture. For
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linear-linear blends, data are available for polybutadiene
and polystyrene. For star-star blends, the comparison is
only possible for a single set of polyisoprenes. The
results show that the model can capture the mixing
behavior of those polymers very well, as described in
detail below.

Linear-linear binary blends

Polybutadiene. There are quite a few experimental data
sets to test for polybutadiene bidisperse blends. One is
from Rubinstein and Colby (1988) at 30 °C. It consists
of the mixture of MW =70.9 K (N, =31.25) and 335 K
(Nen = 156.46) with volume fractions of the high molec-
ular weight (x;) of 0.0, 0.638, 0.768, 0.882, and 1.0. The
model parameters, G(I)\I and 7. at 25 °C, are taken to be
the same as for monodisperse PBD, already discussed.
Since the test temperature is 30 °C, the WLF function is
applied to obtain a value of 7,=9.315 x 10~ s at 30 °C.
As shown in Fig. 12, the model predicts G” for this
experimental data set very well. Another experimental
data set was taken from Struglinski et al. (1985) which
reports extensive rheological properties for three sets of
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Fig. 12a, b Comparison of the model predictions of loss modulus,
G”, with experimental data for linear-linear blends of polybutadienes
MW =70.9 K/335 K) at 30 °C (Rubinstein and Colby 1988). The
comparisons are made on: a log-log; b log-linear scales. The volume
fractions of the high molecular weight component (x;) from right to
left are 0.0, 0.638, 0.768, 0.882, and 1.0, respectively. The solid lines are
the model predictions using the literature parameters G(llI =1.25x%
10° Pa and 7, =9.315% 107 s

PBD mixtures at 25 °C. The first set is 41L/174L, which
is a set of mixtures of PBD with MW =39 K
(Nen=17.19) and 181 K (N¢,=79.77), with x;,=0.0,
0.1, 0.3, 0.5, 0.7, and 1.0. The second set, 98L/435L,
consists of blends of higher molecular weights,
MW =925 K (N, =40.77) and 450 K (N, =198.33),
with x;=0.0, 0.3, 0.48, 0.8, and 1.0. The third set (41L/
435L) contains mixtures of the lowest molecular weight,
MW =39 K (Ng,=17.19), with the highest one,
MW =450 K (N, =198.33), with the following volume
fractions of the high molecular weight: x;=0.0, 0.26,
0.56, 0.8, and 1.0. The model parameters are again
the same as the monodisperse PBD at 25 °C (i.e.,
7e=1.51 x 107°s and G =1.25 x 10° Pa). The com-
parison for the first, second, and third sets are shown in
Figs. 13, 14, and 15, respectively.

As can be seen in Fig. 13 for 41L/174L, the model
can predict G" and G” very well for all concentrations of
the high molecular weight component (174L). For the
second set (98L/435L) in Fig. 14 and the third set (41L/
174L) in Fig. 15, the model cannot predict the behavior
for the very high molecular weight component 435L
(Nen =198.33) well using the literature value of .. In
order to get the best fit for the high molecular weight

105 = {a}

PBD, linear -
N =17.19

&n,shor

=79.99 7

an lang

10° 10*

Fig. 13a, b Comparison of the model predictions of: a storage
modulus, G”; b loss modulus, G”, with experimental data for linear-
linear blend of polybutadienes (411./174L) at 25 °C. (Struglinski et al.
1985) The volume fractions of the high molecular weight component
(x)) from right to left are 0.0, 0.1, 0.3, 0.5, 0.7, and 1.0, respectively.
The solid lines show the corresponding model predictions using the
literature parameters GoN =1.25x 10° Pa and 7.=1.51 x 10=6 s
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Fig. 14 Comparison of the model predictions of loss modulus, G”,
with experimental data for linear-linear blends of polybutadienes
(98L/435L) at 25 °C (Struglinski et al. 1985). The volume fractions of
the high molecular weight component (x)) from right to left are 0.0, 0.3,
0.48, 0.8, and 1.0, respectively. The solid lines show the corresponding
model predictions using the literature parameters GON =125x10° Pa
and 7,=1.51 x 107" s
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Fig. 15 Comparison of the model predictions of loss modulus, G”,
with experimental data for linear-linear blends of polybutadienes
(41L/435L) at 25 °C (Struglinski et al. 1985). The volume fractions of
the high molecular weight component (x;) from right to left are 0.0,
0.26, 0.56, 0.8, and 1.0, respectively. The solid lines show the cor-
responding model predictions using the literature parameters G?\I =
1.25 x 10° Pa and 7.=1.51 x 107 s

component, 7, would need to be shifted to 0.9 x 1076 s
which is about 1.7 time smaller than the literature value
at this temperature. We suspect that the model starts to
overestimate the longest relaxation time at very high
molecular weight. This might also explain the discrep-
ancy of 7. for the monodisperse linear and star PI in
Figs. 8 and 9 in that N, for linear PI in Fig. 8
(Nep, =96.15) may be too high, thus giving a higher
value of the best-fit 7.. Apart from this, the rheological
predictions of the mixtures using the literature value of
T, 1.e., 1.51 X 107 s, agree well with the data as shown
in Fig. 14a, b for 98L/435L and Fig. 15a, b for 41L/
435L, respectively.

o
(Pa) 1000 |

PS, linear
9.62

100

en,short

10°

10°

10*
GII
(Pa) 1000

100

10
10°®

0.001 0.1 10
o (sec’)

1000

Fig. 16a, b Comparison of the model predictions of: a storage
modulus, G”; b loss modulus, G”, with experimental data for linear-
linear blend of polystyrenes (MW =160 K/670 K) at 160 °C.
(Montfort et al. 1979) The volume fractions of the high molecular
weight component (x;) from right to left are 0.0, 0.05, 0.1, 0.2, 0.5, and
1.0, respectively. The solid lines show the corresponding model
predictions using the literature value of GON (ie., GON =0.2 x 10° Pa).
7.=0.01 s was adjusted to give the best fit to the experimental result

Polystyrene. The experimental binary blends of polysty-
rene at 160 °C are taken from Montfort et al. (1979),
who reported the rheological properties for a set of
polystyrene mixtures of MW =160 K (N, =9.62) and
670 K (N, =40.3) with x,=0.0, 0.05, 0.1, 0.2, 0.5, and
1.0. For the model parameters, we use the same G&, M.,
and « as for monodisperse PS mentioned earlier. For (,
since the temperature of 160 °C is close to the glass
transition temperature (T, =100 °C) and { becomes too
temperature-sensitive for the correlation of Majeste
et al. used earlier to be accurate, we left 7. to be the
only fitting parameter for this set. As can be seen from
Fig. 16a, b, the predictions capture the binary behavior
of this set of mixtures reasonably well at every
concentration using the fitted value 7., =0.01 s.

Star-star blends

The single set of experimental data for star-star blends
found in the literature is due to Blottiére et al. (1998).
The data are for 3-arm PI star blends of two different
molecular weights, MW/arm =28 K (N, =5.385) and
MW/arm =144 K (N, =27.69), with x;,=0.0, 0.2, 0.5,
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amounts of high molecular weight components. The
compositions of the mixtures are shown in Table 3.

The comparisons between the experimental data and
the model predictions for M1 and M2 are shown in
Fig. 18. The model parameter G& is again taken from
the literature (G% =0.2 MPa). For {, since the temper-
ature (150 °C) is again too low for the Majeste’s
correlation used earlier to be accurate, we left 7, to be
the only fitting parameter for this set, and obtained
Te=5x 1072 s. As can be seen, the model can predict
well the effect of the small fractions of the high
molecular weight components in M2.

A lesser degree of polydispersity was also accounted
for accurately earlier for the linear PBD with
MW =201 K (P.I.=1.27) by breaking the distribution
of the PBD into 20 discrete components (the first curve
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Fig. 17a, b Comparison of the model predictions of: a storage
modulus, G’; b loss modulus, G”, with experimental data for star-star
blend of polyisoprene (MW,,, =28 K/144 K) at 25 °C (Blottiére
et al. 1998). The volume fraction of the high molecular weight
component (x;) from right to left are 0.0, 0.2, 0.5, and 0.8, respectively.
The solid lines from left to right show the corresponding model
predictions using the same model parameters as for the broken line in
Fig. 9, i.e, G4 =125 x 10° Pa and 7,=2 x 10™* s

0.8 at 25 °C. (x;=1.0 is omitted because no accurate
experimental data are reported for pure PI with MW/
arm = 144 K.) Since the temperature is the same as for
monodisperse star PI mentioned earlier, we use the same
model parameters as reported there (i.e., G?\I =4.34 x
10° Pa and 7. =2 x 107 5). As shown in Fig. 17a, b, the
model can predict the binary behavior of the star blends
well without adjustable parameters. However, the pre-
diction for the short chain (MW/arm =28 K) is off by a
factor of 4, which is expected because of its small
number of entanglements.

Polydisperse linear polymers — case studies

Experimental data sets for polydisperse polymers which
provide a good test of the model are those from
Wasserman and Graessley (1992). They prepared two
polystyrene samples, M1 (P.I.=2.3) and M2
(P.I.=2.57). These consist of 11 and 13 molecular
weight components, respectively. M2 has the same
components as M1 except that M2 has small additional

Table 3 Composition of polystyrene mixtures M1 and M2

M Weight Fractions
M1 M2
2,980 0.001 0.001
5,570 0.002 0.002
9,100 0.004 0.004
19,600 0.008 0.008
37,900 0.030 0.030
96,400 0.150 0.148
190,000 0.260 0.257
355,000 0.358 0.353
706,000 0.140 0.139
1,090,000 0.039 0.038
2,890,000 0.008 0.010
3,840,000 0.007
4,480,000 0.003
107 —TT—T—T—
6
=l ]
10°F T it -
,ﬁ‘-:-::-: osums *
G, G E
(Pa) .
PS5, linear
. M1
A I -
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10° 10 107 10" 10°
wisec)

Fig. 18 Comparison of the model predictions of storage modulus
(G") and loss modulus (G”) with experimental data for linear
polydisperse polystyrenes (M1 and M2) at the reference temperature
150 °C (Wasserman and Graessley et al. 1992). The solid lines are the
model predictions with the parameter G?\] =2 x 10° Pa (Fetters et al.
1994). 1.=5.0x 107 s was adjusted to give the best fit to the
experimental results



530

log § (g-s") T
5L % - i
_ ~
6k i 4
-7 1 1 1 1
0.006 0.007 0.008 0.009 0.01 0.011
(T(K) - 323)"

Fig. 19 Comparison of the monomeric friction coefficient, {, for
polystyrenes from Majeste’s correlation (broken line with error bars)
and from the best fit of the model to the rheological data (symbol)

on the left in Fig. 3a, b). As mentioned earlier, the
model gave a good prediction of G” and G” for this
somewhat polydisperse polymer.

In this paper, the rheological predictions of PS were
considered at various temperatures, i.c., 180 °C,
169.5 °C, 160 °C, and 150 °C. Although the correlation
of { as a function of temperature for PS is available from
Majeste et al., the correlated values only give good
predictions to experimental data at 180 °C and 169.5 °C.
At lower temperatures, the (s that give the best fits to PS
data start to deviate from Majeste’s values. By convert-
ing the best-fit 7, for PS at 160 °C and 150 °C back to {
using the correlation {a*M./37*kgTM, mentioned ear-
lier, we can compare Majeste et al.’s predicted values of
{ with the values of ( that give the best fits to
experimental data. As shown in Fig. 19, the best-fit {
(symbols) starts to deviate from the values of Majeste
et al. (broken line with error bars) at low temperature.
We suspect that, for temperatures close to T, (100 °C), {
becomes too temperature-sensitive for the correlation of
Majeste et al. to be accurate.

Conclusion

We have systematically compared the model predic-
tions of the ““dual constraint” model, a general theory
for the linear viscoelastic properties of entangled
polymers with literature data for several monodisperse
polymer melts, including polybutadiene, polyisoprene,
and polystyrene, for both linear and star architectures.
The predictions are also extended to the rheological
behavior of bidisperse and polydisperse polymers. The
theory is that of Mead, Van Dyke et al. (2000)
extended by including early-time contour-length fluc-
tuations and constraint-release Rouse processes (Viovy
et al. 1991; Milner et al. 1998), as well as Rouse modes

modified using the ‘“fragmented spectrum” of Milner
and McLeish (1998). The model parameters 7. (calcu-
lated from { and @) and G, which are independent of
polymer molecular weight and architecture, are ob-
tained from the literature and are taken to be identical
for polymers with the same chemical composition and
at the same temperature, regardless of their architec-
tures. The model appears to predict the monodisperse,
bidisperse, and polydisperse literature data well with-
out adjustable parameters, except for the case of
polystyrene at low temperature and polyisoprene, for
which reliable { was not available in the literature
which necessitated obtaining the value by fitting.
Nevertheless, by comparing the model with experimen-
tal data, we observed a few weaknesses of the
predictions in both star and linear polymers. For star
polymers, we find that the model fails at low N, and
suspect that the number of arms might affect the
terminal relaxation time (which is not predicted by
the model). In some cases, especially in polyisoprene, the
star polymers seem to need a higher equilibrium time
7. than the linear counterpart. For linear polymers, for
a best fit to the data, the model seems to need a
different value of 7. when the number of entanglements
is either too low or too high. The problem may arise
either from some inaccuracy of the “tube” concept at
low numbers of entanglements or from the form of the
prefactor (tr) used in the expression for the contour-
length fluctuation in Eq. (2). (We note that Pearson
and Helfand 1984 used a weaker departure of the
prefactor on Ng,, namely N.,*? and we have found
that this form of prefactor can improve the predictions
at the low and the high ends of the molecular-weight
range.) For binary blends, the ““dual constraint” model
works almost perfectly for both linear-linear blends
and star-star blends at all concentrations. The out-
standing point of the model is that it can be
universally applied to the linear and star polymers,
whether monodisperse, bidisperse, or polydisperse,
without introducing additional parameters other than
the ones required for the original Doi-Edwards model.
Moreover, the conceptual framework underlying the
model can be further extended to the regime of
nonlinear viscoelasticity. In addition, if experimental
linear viscoelastic data for well-entangled polymers are
provided at several different temperatures, the model
predictions can be used as a means of obtaining a
reliable correlation of the monomeric friction coeffi-
cient, {, with temperature.
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