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Abstract
Star polymers with three arms are the simplest example of branched polymers. Elongational rheology data of three well-
characterized monodisperse polystyrene melts, a symmetric star, an asymmetric star, and a linear polymer with the same 
span molecular weight of 180 kg/mol reported by Huang et al. (Macromolecules 49:6694−6699, 2016) are analyzed by the 
enhanced relaxation of stretch (ERS) model (Wagner and Narimissa, J Rheol 65:1413–1421, 2021). All three melts show the 
same elongational stress growth coefficient and the same steady-state elongational viscosity in fast extensional flows when 
the stretch-related Weissenberg number Wi

R
= 𝜀̇𝜏

R
> 1 . Excellent agreement between experimental data of elongational 

stress growth coefficient and model predictions is obtained, based exclusively on the linear-viscoelastic characterization of 
the polymer systems. Stress relaxation following steady elongational flow depends on the presence of the branch point and 
the length of the arm, and a new process regarding relaxation of the orientation of the stars is identified.

Keywords  Polymer melt · Polystyrene · Star polymers · Elongation · Tube model · ERS model · Stretch relaxation · 
Relaxation of orientation

Introduction

Elongational viscosity measurements by use of filament 
stretching rheometers with locally-controlled deformation 
and deformation rate as developed by Hassager and cow-
orkers (Bach al. 2003) have revealed surprising differences 
between the elongational rheology of linear polymer melts 
and their solutions (Huang et al. 2013, 2013). These differ-
ences were not foreseen by the original tube model of Doi 

and Edwards (1978, 1979), which is based on the assumption 
of a constant tube diameter a0, and this has to lead to sub-
stantial modifications of the tube model as, e.g., discussed 
by Narimissa and coworkers (2019, 2020a,b, 2021) and 
Ianniruberto et al. (2020). According to Doi and Edwards 
(see Eq. A9 in Doi and Edwards 1978), the line density of 
monomer units that are found per length of the tube is a well-
defined thermodynamic quantity defining the tube diameter. 
As a stretch of the test chain reduces the line density of 
monomers, this affects the value of the local tube diameter. 
Therefore, chain stretch at the mesoscopic level of the tube 
model is related to a strain-dependent tube diameter a ≤ a0, 
as first suggested by Marrucci and de Cindio (1980). Relax-
ing the assumption of constant tube diameter a0 in nonlinear 
viscoelastic flow allowed for modelling of the elongational 
viscosity of monodisperse entangled linear polymer systems 
based exclusively on their linear-viscoelastic characteriza-
tion and the Rouse stretch relaxation time of the chain (Wag-
ner et al. 2005, 2021a,b; Narimissa et al. 2020a, 2021).

However, for other than linear polymers such as long-
chain branched (LCB) polymer systems, progress in under-
standing the relation of molecular characteristics and non-
linear viscoelastic rheology has been rather limited, not least 
because of the scarcity of reliable rheological data for well-
defined polymer systems. Nielsen et al. (2006) investigated 
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the elongational viscosity of nearly monodisperse polysty-
rene (PS) pom-pom melt with two branch points and 2 to 
3 arms per branch point, and they found elongational vis-
cosity overshoot at the highest elongation rate. Wagner and 
Rolón-Garrído (2008) modified the molecular stress func-
tion (MSF) model by considering branch point withdrawal 
and obtained an agreement with the pom-pom polystyrene 
data of Nielsen et al. (2006). Huang et al. (2016) explored 
systematically the nonlinear dynamics of model branched 
polymers starting from the simplest structures, which are 
star polymers with three arms. They investigated three poly-
styrene melts, a symmetric star, an asymmetric star, and a 
linear polystyrene in nonlinear elongational flow. All three 
samples have the same span molecular weight of nominally 
180 kg/mol and reach the same elongational steady-state 
viscosity in fast flows (faster than the inverse Rouse time), 
confirming the expectation of Ianniruberto and Marrucci 
(2013) that entangled melts of LCB macromolecules become 
quasilinear by aligning the arms in strong extensional flows. 
Indeed, Mortensen et al. (2018, 2021) could demonstrate by 
small-angle neutron scattering (SANS) studies of a three-
armed polystyrene star polymer that upon exposure to large 
elongational flow, the star polymer indeed changes its con-
formation: all three arms are oriented parallel to the flow, 
one arm being either in positive or negative stretching direc-
tion, while the two other arms are oriented parallel, right 
next to each other in the direction opposite to the first arm. 
Huang et al. (2016) also measured stress relaxation follow-
ing the steady elongational flow and found that the relaxa-
tion of the different samples depends on the presence of the 
branch point and the length of the arm.

In the present paper, we analyze the elongational vis-
cosity data of Huang et  al. (2016) by use of the ERS 
model, which has been recently developed in the context 
of tube models with varying tube diameters (Wagner and 
Narimissa 2021). The ERS model starts from the defini-
tion of the Rouse time being proportional to the square 
of the number of monomers in the chain. With increas-
ing stretch and decreasing tube diameter a, the number of 
monomers in a control volume of length and diameter a 
will decrease with the consequence of enhanced relaxation 
of stretch in this control volume. The incremental increase 
of the relaxation rate with stretch is proportional to the 
4th power of the stretch, and the evolution equation of the 

stretch is obtained as a balance of extension rate versus 
stretch relaxation rate. The ERS model leads to predictions 
of the elongational viscosity of linear polystyrene melts 
and solutions, which are in quantitative agreement with 
experimental evidence, based exclusively on the LVE char-
acterization of the polymer systems and the Rouse time. 
It is of interest to see whether this model is also able to 
capture the dynamics of the simplest branched structures, 
i.e., star polymers.

The paper is organized as follows: we first give a short 
report of the experimental data and the linear-viscoelastic 
characterization of the polymer systems considered in the 
“Experimental data and linear-viscoelastic characteriza-
tion” section, followed by a summary of the ERS model 
in the “Enhanced relaxation of stretch (ERS) model” sec-
tion. The main focus of the paper is on the comparison of 
experimental data and model predictions for the start-up of 
elongational flow and for stress relaxation after the steady 
elongational flow. Conclusions are summarized in the last 
section.

Experimental data and linear‑viscoelastic 
characterization

The three polystyrene melts with different molecular struc-
tures, a linear (Lin180), an asymmetric star (Star20), and 
a symmetric star (Star90), were synthesized via anionic 
polymerization. Lin180 has a molecular weight of 187 kg/
mol, and the stars have a backbone of molecular weight of 
185 kg/mol and an arm located at the centre of the backbone 
of molecular weight 20.5 kg/mol (Star20), and 92.4 kg/mol 
(Star90) (Huang et al. 2016), respectively. The molecular 
structures are illustrated in Figure 1, and the molecular char-
acteristics are summarized in Table 1.

Details of small amplitude oscillatory spectroscopy 
(SAOS) and elongational viscosity measurements are pre-
sented in Huang et al. (2016). Elongational measurements 
using a filament stretching rheometer were performed at T = 
130°C. Storage (G′) and loss modulus (G″) were measured 
at temperatures between 130 and 160 °C and shifted to T0 = 
130 °C by time-temperature shifting (TTS) according to the 
WLF equation with shift factor aTg,

Fig. 1   Illustration of molecular 
structures for Lin180, Star20, 
and Star90. Reprinted with 
permission from Huang et al. 
(2016). Copyright [2016], 
American Chemical Society
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and coefficients c0
1
= 8.99 and c0

2
= 81.53 K . From the mas-

tercurves of G′ and G′, parsimonious relaxation spectra were 
obtained,

for characterization of the linear-viscoelastic relaxation 
modulus G(t). The partial moduli gi  and relaxation times τi 
(Table 2) as determined by the IRIS software (Winter and 
Mours 2006) result in excellent agreement with the linear-
viscoelastic data of G′ and G″, see Fig. 2.

From Figure 2a, it can be seen that the G′ and G″ curves 
of Lin180 and Star90 overlap each other for frequencies 
ω > 0.1  rad/s. This is essentially in accordance with the 
fact that a symmetric star polymer with arm mass Ma and 
a linear chain of mass 2Ma have the same Rouse time (Ian-
niruberto and Marrucci 2013). However, the G′ and G″ 
curves of Lin180 and Star90 differ in the flow regime due 
to the branch point. Reptation is impossible for symmetric 
stars because the arms have no single tube down which to 
slide. As explained by Milner and McLeish (1997), stress 
relaxes in star melts by arm retraction combined with 
dynamic dilution. In the case of the asymmetric star, the 
short arm of Star20 is not well entangled (about one entan-
glement when taking the entanglement molar mass of PS 
as Mem = 13.3  kg/mol in the melt state) and thus relaxes 
much faster than the backbone. The asymmetric stars then 
looks like a linear chain composed of the two long arms, 
and the star can thus reptate (Frischknecht et al. 2002). 
In the viscoelastic regime, Star20 shows lower G′ and G″ 
values than Star90 and Lin180, indicating that on the time 
scale of the backbone, the relaxed arm indeed behaves like 
a solvent that dilutes the backbone consisting of the two 

(1)log10aTg =
−c0

1

(
T − T0

)

c0
2
+
(
T − T0

)

(2)G(t) =
∑
i=1

gi exp
(
−t∕�i

)

long arms with 92.4  kg/mol each. The volume fraction of 
the backbone of Star20 is given by (Table 1)

The dilution effect is also seen in the loss tangent 
tanδ = G '  ' /G' when plotted as a function of the absolute 
value of the complex modulus G∗ =

√
G’2 + G’’2 (Fig. 2b). 

Due to dilution, the minimum of tanδ indicating the plateau 
modulus GN of the polymer system is shifted to the left rela-
tive to the minima of Lin180 and Star90, showing a reduc-
tion of the plateau modulus. However, in the flow regime, 
Star20 shows higher G′ and G″ values than Lin180 because 
the short arm increases the drag on the remaining two arms 
as they reptate.

According to the Doi–Edwards model, the Rouse time τR, 
the disengagement (or reptation) time τd and the zero-shear 
viscosity η0 of linear chains with Z entanglements are given 
by (Dealy et al. 2018),

τe is the entanglement segment equilibration time. We 
identify here τd with the mean quadratic average of the 
relaxation times of the discrete relaxation spectrum and 
calculate η0 from the discrete relaxation spectrum,

(3)� =
2 ⋅ 92.4 kg∕mol

Mw

=
184.8

208.3
= 0.89

(4)�R = Z2
�e

(5)�d = 3Z�R

(6)�0 =
�
2

12
GN�d

(7)�d =

∑
i gi�

2
i∑

i gi�i

Table 1   Sample characterization at T = 130 °C

Characteristics Lin180 Star20 Star90

Mw [kg/mol] 187.0 208.3 289.1
Mw/Mn 1.02 1.03 1.03
Number of long arms
Mw [kg/mol] of long arm

-
-

2
92.4

3
92.4

Mw [kg/mol] of short arm - 20.5 -
η0 [Pa.s] 6.81e + 7 7.83e + 7 1.73e + 8
ϕ [-] 1 0.89 1
τd [s] 752 1563 3504
τR [s] 132 132 132
τd/τR 6 12 27

Table 2   Relaxation spectra at T = 130 °C by IRIS (Winter and Mours 
2006)

Lin180 Star20 Star90

gi [Pa] τi [s] gi [Pa] τi [s] gi [Pa] τi [s]

3.47e + 7 6.89e − 4 3.63e + 8 5.50e − 5 9.56e + 7 1.94e − 4
8.28e + 5 1.70e − 2 1.31e + 6 7.75e − 3 2.50e + 6 5.14e − 2
3.07e + 5 1.04e − 0 4.10e + 5 4.44e − 2 6.33e + 4 1.69e + 2
1.17e + 5 6.34e − 1 1.65e + 5 2.25e − 1 6.64e + 4 5.21e + 0
5.71e + 4 3.97e + 0 7.60 + 4 1.10e + 0 4.95e + 4 3.40e + 1
5.30e + 4 2.17e + 1 4.97e + 4 5.10e + 0 4.98e + 4 7.28e + 2
6.25e + 4 1.12e + 2 4.35e + 4 2.14e + 1 3.24e + 4 3.08e + 3
7.99e + 4 5.88e + 2 4.28e + 4 1.02e + 2 2.05e + 3 1.14e + 4
6.98e + 3 1.81e + 3 3.97e + 4 3.96e + 2

3.30e + 4 1.58e + 3
6.70e + 2 7.05e + 3
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For quantification of the Rouse time τR, Osaki’s approach 
(Osaki et al. 1982; Takahashi et al. 1993; Isaki et al. 2003; 
Menezes and Graessley 1982) is used, which extrapolates 
the Rouse time of unentangled polymer systems to the Rouse 

(8)�0 =
∑
i

gi�i

time of entangled polymer melts and solutions, and takes 
into account the power of 3.4 scaling of the zero-shear vis-
cosity with molar mass M and polymer fraction ϕ. This leads 
to the relation (Wagner 2014).

for the Rouse stretch relaxation time. Mcm denotes the criti-
cal molar mass in the melt state, when the entanglement 
effect becomes apparent by a change of the power of 1 to the 
power of 3.4 scaling of the zero-shear viscosity as a func-
tion of molar mass. For monodisperse polystyrene a value 
of Mcm = 35    kg/mol has previously been used successfully 
for modeling the transient and steady-state elongational and 
shear viscosities of well-entangled linear PS melts and solu-
tions of linear PS (Wagner 2014; Narimissa et al. 2020a, b, 
2021; Wagner et al. 2021a, b). For Lin180, it is necessary 
to use a value of Mcm = 42.5  kg/mol in Eq. (9) resulting in 
τR = 132s in order to obtain good agreement with the experi-
mental elongational viscosity data. This may be due to the 
relatively low molecular weight of Lin180 and is still within 
the accepted range of Mcm ≅ 2  to  3Mem. Following Ian-
niruberto and Marrucci (2013), we assume that the stretch 
relaxation times of Star 20 and Star90 are identical to the 
Rouse stretch relaxation time of Lin180, i.e., τR = 132s. The 
values of disengagement time, stretch relaxation time, and 
zero-shear viscosity as calculated from Eqs. (7–9) are sum-
marized in Table 1. We note for later use that the ratio of dis-
engagement time to Rouse or stretch relaxation time, τd/τR, 
increases from 6 (Lin180) to 12 (Star20) and 27 (Star90) 
due to the presence of the branch point, which suppresses 
reptation and restricts tube renewal to arm retraction by fluc-
tuations, the more so, the longer the arm.

The enhanced relaxation of stretch (ERS) 
model

The MSF model is a generalized tube segment model with 
strain-dependent tube diameter (Wagner 1990; Wagner and 
Schaeffer 1992; Wagner et al. 2001, 2003, 2005; Narimissa 
and Wagner 2019). The extra stress tensor σ(t) of the MSF 
model is given by a history integral of the form

t is the time of observation when the stress is meas-
ured, and t′ indicates the time when a tube segment was 
created by reptation. The strain measure �IA

DE
 represents 

the contribution to the extra stress tensor originating from 
the affine rotation of the tube segments according to the 

(9)�R =
12 M�0

�2� RT�

(
Mcm

M�

)2.4

(10)�(t) = ∫
t

−∞

�G(t − t’)

�t’
f 2(t, t’) �

IA
DE
(t, t’)dt’

Fig. 2   a Storage (G′) and loss modulus (G″) of Lin180, Star20, and 
Star90. Reprinted (adapted) with permission from Huang et  al. 
(2016). Copyright [2016], American Chemical Society. b Loss tan-
gent tanδ = G '  ' /G' as a function of the complex modulus G∗. Lines in 
(a) and (b) are fit by parsimonious spectra (Table 2)
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“independent alignment (IA)” assumption of Doi and 
Edwards (1978, 1979), and is given by

with S(t, t') being the relative second order orientation ten-
sor. u ' u' is the dyad of a deformed unit vector �’ = �’(t, t’),

�−1
t

= �−1
t
(t, t’) is the relative deformation gradient ten-

sor and u' is the length of u'. The orientation average is 
indicated by <…>0,

i.e., an average over an isotropic distribution of unit vectors 
u.

f = f(t, t') represents the inverse of the relative tube 
diameter a/a0, and at the same time the relative length of 
a deformed tube segment,

At time t=t’ the tube segment was created with equi-
librium tube diameter a0 and equilibrium length l0. For 
f ≡ 1, Eq. (10) reduces to the original Doi–Edwards IA 
(DE IA) model.

While �IA
DE

 is determined directly by the deformation 
history according to Eq. (11), f is found as a solution of an 
evolution equation considering affine tube segment defor-
mation balanced by enhanced Rouse relaxation (Wagner 
and Narimissa 2021). With increasing stretch and decreas-
ing tube diameter a, the number of monomers in a con-
trol volume of length and diameter a will decrease with 
the consequence of enhanced relaxation of stretch in this 
control volume. The incremental increase of the relaxa-
tion rate with stretch is proportional to the 4th power of 
the stretch, and the evolution equation of the ERS model 
is obtained as a balance of extension rate versus relaxa-
tion rate,

with initial condition f(t, t '  = 0) = 1. In the limit of vanishing 
chain stretch, Eq. (15) degenerates naturally into the classi-
cal evolution equation,

(11)�
IA
DE
(t, t’) ≡ 5

⟨
�’�’

u’2

⟩

o

= 5�(t, t’)

(12)� ’ = �
−1
t
�

(13)⟨… ⟩o ≡ 1

4� � [… ] sin �od�od�o

(14)f (t, t ́) =
a0

a(t, t ́)
=

l(t, t’)

l0

(15)
�f

�t
= f (� ∶ �) −

f − 1

�R

(
1 − �

4
)
−

�
4
(
f 5 − 1

)
5�R

(16)
�f

�t
= f (� ∶ �) −

1

�R

(f − 1)

Equations (10) and (15) represent the ERS model and 
are solved numerically. As shown by Wagner and Narim-
issa (2021), the ERS model and the extended interchain 
pressure (EIP) model (Wagner and Rolon-Garrido 2009a, 
b) lead to nearly identical predictions. The EIP model is 
also based on the assumption of a deformation-dependent 
tube diameter. However, the EIP model assumes that chain 
stretch is limited by increasing interchain tube pressure 
caused by thermal fluctuations of the test chain.

From Eq. (15) follows at high Weissenberg numbers 
Wi = 𝜀̇𝜏R (with elongational strain rate 𝜀̇ ) and large defor-
mations, when the equilibrium stretch is reached and 
∂λ/∂t = 0 that the square of molecular stress f is propor-
tional to the square root of Wi and inverse proportional to 
the square of the polymer fraction,

In this asymptotic limit and neglecting the glass transi-
tion, the tensile stress is expected to reach a value of,

From Eq. (18) and considering that GN = GNmϕ2, the 
universal relation for the high Wi tensile stress of melts 
and solutions is obtained,

with GNm being the plateau modulus of the melt. Eq. (19) is 
similar to the universal relation of Narimissa et al. (2020) as 
derived for the EIP model.

Comparison of experimental data and model 
predictions

In the following, we compare predictions of ERS model, 
Eqs. (10) and (15), with experimental evidence. We recall 
that the model is based exclusively on the linear-viscoelas-
tic characterization of the polymer systems and the stretch 
relaxation time τR.

Elongational stress growth coefficient

Figure 3 presents the elongational stress growth coeffi-
cient �+

E
(t) as a function of time t for Lin180, Star20, and 

Star90 together with predictions of the ERS model and the 
Doi–Edwards IA model. Good agreement of data and pre-
dictions of the ERS model within experimental accuracy is 
obtained. Minor discrepancies exist at the low strain rate of 
𝜀̇ = 0.003 s−1 between the steady-state viscosity measured 
and predicted for Lin180 (prediction too low) and Star90 

(17)f 2 = �
−2
√
5Wi

(18)� = 5GNf
2 = 5GN�

−2
√
5Wi

(19)� = 5GNm

√
5Wi
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(prediction too high). At the highest strain rate investigated, 
𝜀̇ = 0.2 s−1 , the data of Lin180 and Star90 show a maxi-
mum. At least for Lin180, this is unexpected and is most 
likely an experimental artefact.

In Fig.  4a, data and predictions of the elongational 
stress growth coefficient �+

E
(t) for all 3 polymer systems 

are presented in the same plot. Data and predictions of 
Lin180, Star20, and Star90 superimpose for 𝜀̇ ≥ 0.01 s−1 
when the stretch-related Weissenberg number WiR = 𝜀̇𝜏R 
reaches values larger than 1. For the lowest strain rate of 
𝜀̇ = 0.0003 s−1 , the presence of the branch point restrict-
ing reptation in the polymer stars prolongs terminal relaxa-
tion and increases the zero-elongation viscosity. The effect 
is more pronounced for Star90 due to its longer arm than 
for Star20. The elongational viscosity as a function of the 
elongation rate 𝜀̇ is shown in Fig 4b and illustrates the con-
vergence of the elongational viscosities of Lin180 and the 
star polymers at higher strain rates. We note that the dilution 
effect of the short sidearm of Star20 vanishes at higher elon-
gation rates as predicted by the universal relation (19), i.e., 
the elongational stress becomes independent of the degree of 
dilution in the limit of fast deformations. Concerning Star90, 

we recall that the ratio of τd/τR is much larger for Star90 than 
for Lin180 (Table 1), which translates into the orientational 
Weissenberg number Wid = 𝜀̇𝜏d of Star90 being much larger 
than the Weissenberg number WiR = 𝜀̇𝜏R relevant for stretch. 
When WiR reaches a value of WiR = 1 and stretching of the 
chain begins, the arms of Star90 are already highly oriented 
and aligned in the flow direction, i.e., Star90 has already 
the appearance of a quasi-linear entity, with one arm being 
either in positive or negative stretching direction, while the 
two other arms are oriented parallel in the direction oppo-
site to the first arm. This orientational effect is seen in the 
elongational viscosities already at 𝜀̇ = 0.003 s−1 (Fig. 4b): 
With WiR < 1 for Lin180 and Star20, and WiR ≈ 1 for Star90, 
there is no significant chain stretch at this elongation rate, 
while due to orientation, the elongational viscosity of Star20 
(Wid = 5) and of Star90 (Wid = 11) measured is below the 
viscosity of Lin180 (Wid = 2).

Relaxation after steady elongational flow

Huang et al. (2016) investigated stress relaxation when after 
start-up flow with 𝜀̇0 = 0.03 s−1 the elongation was stopped 

Fig. 3   Data (symbols) and pre-
dictions of ERS model (lines) 
of elongational stress growth 
coefficient �+

E
(t) for a Lin180, b 

Star20, and c Star90. Short-
dashed lines indicate the linear-
viscoelastic elongational stress 
growth coefficient. Long-short 
dashed lines are predictions of 
the DE IA model
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at Hencky strain of ε = 3.2. Stress relaxation is reported as 
�
−
E
(t) , i.e., the stress measured is divided by the elonga-

tion rate 𝜀̇0 = 0.03s−1 applied before the flow was stopped. 
Figure 5a shows the extensional stress growth/decay coef-
ficient as a function of time together with predictions of the 
ERS model for Lin180. In Fig. 5b, only the decay part is 

presented by setting the time when relaxation starts as t = 0. 
Excellent agreement between data and model is found. The 
prediction of the DE IA model is also shown in Fig. 5, which 
allows separating fast stretch relaxation governed by the 
Rouse stretch relaxation time τR from the long-time relaxa-
tion of orientation according to the disengagement time τd. 
This is demonstrated in Fig. 5b by the difference between 
prediction of the ERS model, �−

ERS
(t) , and the DE IA model, 

�
−
DEIA

(t) , i.e., �−
ERS

(t) − �
−
DEIA

(t) : the effect of chain stretch has 
totally vanished after a relaxation time of about 3τR.

Stress relaxation for Star20 and Star90 are presented in 
Figs. 6 and 7 in comparison to the relaxation of Lin180. 
As already discussed by Huang et al. (2016), relaxation of 
Star20 follows the relaxation of Lin180 only for about 15 s 
after cessation of elongation (Fig. 6). At longer relaxation 
times, �−

E
(t) of Star20 drops off faster than �−

E
(t) of Lin180 

until the slower terminal relaxation of Star20 sets in. On 
the other hand, the relaxation curves of Lin180 and Star90 
superimpose up to a relaxation time of about 500 s, and 
then the longer terminal relaxation of Star90 becomes evi-
dent. Also shown in Figs. 6 and 7 are predictions of the ERS 
model. While predictions agree with the initial relaxation of 
Star20 and Star90, they fail at longer relaxation times. Con-
sidering the excellent agreement of experimental data and 
predictions for the stars in the start-up of elongational flow 
(Fig. 4) as well as the excellent agreement of data and model 
predictions for Lin180 in both start-up flow and relaxation 
(Fig. 5), this is quite surprising. The origin of this disagree-
ment is found in the relaxation of orientation according to 
the DE IA model, also shown in Figs. 6 and 7: as clearly 
seen in Figs. 6b and 7b, orientational relaxation observed 
experimentally is faster than predicted by the DE IA model. 
This conclusion is substantiated by considering the differ-
ence between the prediction of the ERS model and the DE 
IA model, �−

ERS
(t) − �

−
DEIA

(t) , which is also shown in Figs. 6b 
and 7b. For both Star20 (Fig. 6b) and Star90 (Fig. 7b), 
�
−
ERS

(t) − �
−
DEIA

(t) is nearly identical to �−
ERS

(t) − �
−
DEIA

(t) of 
Lin180, which means that the effect of chain stretch van-
ishes for the stars and the linear melt in the same way, in 
line with the same stretch relaxation time of the three poly-
mer systems. SANS data of relaxation of a stretched sym-
metric three-arm star melt as reported by Mortensen et al. 
(2021) show also that initially stretch relaxation occurs as 
in a linear chain, followed by orientational rearrangement 
of the two arms, which are oriented parallel to each other in 
the flow direction and in the opposite direction to the third 
arm. Therefore, it is likely that stars feature an additional 
relaxation effect, which is not present in linear polymers 
and which speeds up the orientational relaxation relative 
to the expectations of the ERS model. We note that this 
is a nonlinear-viscoelastic relaxation effect, which should 
not be confounded with the linear-viscoelastic stress relaxa-
tion of stars being slowed down by arm retraction relative to 
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Fig. 4   a Data (symbols) and predictions of ERS model (lines) of 
elongational stress growth coefficient �+
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(t) for Lin180, Star20, and 

Star90. Short-dashed lines indicate the linear-viscoelastic elonga-
tional stress growth coefficients. b Data (symbols) and predictions 
of ERS model (lines) of elongational viscosity 𝜂

E
(𝜀̇) for Lin180 (full 

line), Star20 (dashed line), and Star90 (long-short dashed line)
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the relaxation of linear melts with the same span molecular 
weight (Frischknecht et al. 2002). Indeed, the terminal stress 
relaxation of Star 20 and Star90 is slower than of Lin180, as 
seen in Figs. 6 and 7.

In order to account for the faster orientational relaxation 
of the stars, we assume that a fraction α of the stress decay 

coefficient relaxes faster than expected by the ERS model, 
while a fraction 1 − α of the orientation relaxes as predicted 
by the ERS model. The experimentally observed elonga-
tional stress decay coefficient �−

E
(t) can be described quanti-

tatively by the empirical relation

�
−
ERS

(t) is the elongational stress decay coefficient of the 
ERS model according to the stress Eq. (10), t0 the time when 
relaxation starts at ε = 3.2, and τor is the relaxation time of 
the additional relaxation process. For Star20, excellent fit 
of the relaxation data is obtained for values of α = 0.30 and 
τor = 30  s (Fig. 6c and d), while for Star90 the correspond-
ing parameters are α = 0.45 and τor = 300  s (Fig. 7c and d). 
Equation (20) is obtained by replacing the DE IA tensor 
�
IA
DE
(t, t’) in the stress Eq. (10) for times t ≥ t0 by

resulting in a stress equation for σ(t ≥ t0) of the form

The additional orientational relaxation process of the DE 
IA tensor �IA

DE
(t, t’) is only active during relaxation. It is sup-

pressed during start-up of flow, possibly due to tension in 
the chain. It becomes active as soon as stretch is reduced by 
relaxation.

Conclusions

Star polymers with three arms are the simplest example of 
branched polymers. As shown by Huang et al. (2016), a 
symmetric star (Star90), an asymmetric star (Star20), and 
a linear polystyrene melt (Lin180) with the same molecular 
weight of the backbone show the same elongational stress 
growth coefficient and reach the same elongational steady-
state viscosity in fast flows, i.e., at Weissenberg numbers 
WiR = 𝜀̇𝜏R > 1 . According to our analysis, in the start-up 
of the elongational flow of stars, the effects from the arm 
and the branch point are shielded: for Star20 with an arm 
length of about one entanglement, the arm acts as a diluent 
on the time scale of the backbone, and Star20 behaves like a 
linear polymer diluted to a volume fraction of ϕ = 0.89. For 
Star90, the ratio of disengagement time to stretch relaxation 
time is τd/τR = 27 compared to τd/τR = 6 for Lin180 with the 
same span molecular weight. Therefore, when WiR reaches a 

(20)
�
−
E
(t) = � exp
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]
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(t) + (1 − �)�−
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(t)

(21)
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Fig. 5   Comparison of data (symbols) and predictions of ERS model 
(full lines) of elongational stress growth/decay coefficients �+
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and �−
E
(t) for Lin180. The start-up flow with constant strain rate 

𝜀̇ = 0.03s
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value of WiR = 1 and stretching of the chain begins, the arms 
of Star90 are already highly oriented and aligned in the flow 
direction, i.e., Star90 has already the appearance of a lin-
ear entity, with one arm being either in positive or negative 
stretching direction, while the two other arms are oriented 
parallel in the direction opposite to the first arm. For all three 
polymer systems, excellent agreement between experimental 
data of the elongational stress growth coefficient and predic-
tions of the ERS model (Wagner and Narimissa 2021) is 
obtained, based exclusively on the linear-viscoelastic char-
acterization and the Rouse stretch relaxation time of Lin180.

However, stress relaxation following the steady elonga-
tional flow of the stars depends on the presence of the branch 
point and the length of the arm and is different from stress 
relaxation of Lin180. Our analysis shows that this discrep-
ancy is related to the relaxation of the orientation of the 
stars, and not to the relaxation of stretch. A new process 
regarding orientational relaxation of the stars is identified: 
while a fraction 1 − α of the orientation of the stars relaxes 
as expected for a linear chain, a fraction α relaxes much 
faster. The additional orientational relaxation can be quanti-
fied by an orientational relaxation time τor. For Star20, the 
parameters of the additional relaxation process are α = 0.30 

and τor = 30  s, while for Star90 the corresponding parame-
ters are α = 0.45 and τor = 300  s. The additional process of 
orientation relaxation is only active during relaxation. It is 
suppressed during the start-up of flow, possibly due to ten-
sion in the chain, and it becomes active as soon as the stretch 
is reduced by relaxation. Our analysis is in agreement with 
the SANS data of relaxation of a stretched symmetric three-
arm star melt as reported by Mortensen et al. (2021), show-
ing that initially stretch relaxation occurs as for linear chains, 
followed by orientational rearrangement of arms “1” and 
“2,” which are oriented parallel to each other in the flow 
direction and in the opposite direction to arm “3.” This reori-
entational process of star relaxation is not present in linear 
polymers and speeds up orientational relaxation. While it is 
plausible that the parameters α and τor of the additional ori-
entational relaxation process are larger for the symmetric 
Star90 than the asymmetric Star20, we are not yet in a posi-
tion to relate these parameters quantitatively to the molecu-
lar characteristics of the stars. However, we note that the 
parameter α of Star90 is roughly α ≅ 0.5. From Eq. (20) and 
for relaxation times t − t0 >  > τor, the stress decay coefficient 
�
−
E
(t)  i s  a p p r o x i m a t e l y 

�
−
E
(t) ≅ �

−
DEIA

(t)∕2 =
1

[1∕�−DEIA(t)+1∕�
−
DEIA

(t)]
 , i.e. orientational 

Fig. 6   Comparison of data 
(symbols) and predictions (full 
lines) of elongational stress 
growth/decay coefficients 
�
+
E
(t) and �−

E
(t) for Lin 180 and 

Star20. The start-up flow with 
constant strain rate 𝜀̇ = 0.03 s−1 
is stopped at Hencky strain 
ε = 3.2, followed by stress relax-
ation. In (b) and (d) time t = 0 is 
defined as the time when relaxa-
tion starts. Dashed lines are 
predictions of the DE IA model. 
a and b Predictions of ESR 
model, Eq. (10). In (b), also the 
differences between prediction 
of the ERS model and the DE 
IA model, �−

ERS
(t) − �

−
DEIA

(t) , for 
Lin180 and Star20 (long-short 
dashed lines) are shown. c and d 
Predictions of ESR model, Eq. 
(10), plus additional relaxation 
process according to Eq. (20) 
with α = 0.30 and τor = 30  s 
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relaxation of Star90 can be considered resulting from the 
addition of the simultaneous relaxation rates of two linear 
backbones, one made up of arms “1” and “3,” the other of 
arms “2” and “3.” Further relaxation experiments on 
branched polymers with well-defined topology will be 
needed to characterize this new orientational relaxation pro-
cess in more detail and to relate it quantitatively to the 
molecular structure. Also, the implications on the orienta-
tional relaxation of more complicated branched structures 
(comb polymers and randomly branched topologies) need to 
be investigated.

Acknowledgements  The authors acknowledge the financial support 
from the Ministry of Science and Technology of China (MOST, Grant 
no.: QN2021030003L).

Funding  Open Access funding enabled and organized by Projekt 
DEAL.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 

article are included in the article's Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article's Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​
org/​licen​ses/​by/4.​0/.

References

Bach A, Rasmussen HK, Hassager O (2003) Extensional viscosity for 
polymer melts measured in the filament stretching rheometer. J 
Rheol 47:429–441

Dealy JM, Read DJ, Larson RG (2018) Structure and rheology of 
molten polymers: from structure to flow behavior and back again. 
Carl Hanser Verlag GmbH Co KG, München

Doi M, Edwards SF (1978) Dynamics of concentrated polymer sys-
tems. Part 3.- The Constitutive Equation. J Chem Soc Faraday 
Trans 74:1818-1832

Doi M, Edwards SF (1979) Dynamics of concentrated polymer sys-
tems. Part 4.- Rheological Properties. J Chem Soc Faraday Trans 
75:38-54

Frischknecht AF, Milner ST, Pryke A, Young RN, Hawkins R, 
McLeish TCB (2002) Rheology of three-arm asymmetric star 
polymer melts. Macromolecules 35:4801–4820

Fig. 7   Comparison of data 
(symbols) and predictions (full 
lines) of elongational stress 
growth/decay coefficients 
�
+
E
(t) and �−

E
(t) for Lin 180 and 

Star90. The start-up flow with 
constant strain rate 𝜀̇ = 0.03 s−1 
is stopped at Hencky strain 
ε = 3.2, followed by stress relax-
ation. In (b) and (d) time t = 0 is 
defined as the time when relaxa-
tion starts. Dashed lines are 
predictions of the DE IA model. 
a and b Predictions of ESR 
model, Eq. (10). In (b), also the 
differences between prediction 
of the ERS model and the DE 
IA model, �−

ERS
(t) − �

−
DEIA

(t) , for 
Lin180 and Star90 (long-short 
dashed lines) are shown. c and 
d Predictions of ESR model Eq. 
(10), plus additional relaxation 
process according to Eq. (20) 
with α = 0.45 and τor = 300  s.

100 101 102 103 104

t [s]

105

106

107

108
Lin180Lin180

Star90Star90

(a)

100 101 102 103 104

t [s]

105

106

107

108

Lin180Lin180

Star90Star90

(b)

100 101 102 103 104

t [s]

105

106

107

108
Lin180Lin180

Star90Star90

(c) (d)

100 101 102 103 104

t [s]

105

106

107

108

Lin180Lin180

Star90Star90

424 Rheologica Acta (2022) 61:415–425

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 3

Huang Q, Agostini S, Hengeller L, Shivokhin M, Alvarez NJ, 
Hutchings LR, Hassager O (2016) Dynamics of star polymers 
in fast extensional flow and stress relaxation. Macromolecules 
49:6694–6699

Huang Q, Alvarez NJ, Matsumiya Y, Rasmussen HK, Watanabe H, 
Hassager O (2013) Extensional rheology of entangled polysty-
rene solutions suggests importance of nematic interactions. ACS 
Macro Lett 2:741–744

Huang Q, Mednova O, Rasmussen HK, Alvarez NJ, Skov AL, Almdal 
K, Hassager O (2013) Concentrated polymer solutions are differ-
ent from melts: role of entanglement molecular weight. Macro-
molecules 46:5026–5035

Ianniruberto G, Marrucci G (2013) Entangled melts of branched PS 
behave like linear PS in the steady state of fast elongational flows. 
Macromolecules 46:267–275

Ianniruberto G, Marrucci G, Masubuchi Y (2020) Melts of linear poly-
mers in fast flows. Macromolecules 53:5023–5033

Isaki T, Takahashi M, Urakawa O (2003) Biaxial damping function of 
entangled monodisperse polystyrene melts: comparison with the 
Mead-Larson-Doi model. J Rheology 47:1201–1210

Marrucci G, de Cindio B (1980) The stress relaxation of molten 
PMMA at large deformations and its theoretical interpretation. 
Rheol Acta 19:68–75

Menezes E, Graessley W (1982) Nonlinear rheological behavior of 
polymer systems for several shear-flow histories. J Poly Sci Part 
B: Poly Phys 20:1817–1833

Milner ST, McLeish TCB (1997) Parameter-free theory for stress 
relaxation in star polymer melts. Macromolecules 30:2159–2166

Mortensen K, Borger AL, Kirkensgaard JJK, Garvey CJ, Almdal K, 
Dorokhin A, Huang Q, Hassager O (2018) Structural studies of 
three-arm star block copolymers exposed to extreme stretch sug-
gests persistent polymer tube. Phys Rev Lett 120:[207801]. https://​
doi.​org/​10.​1103/​PhysR​evLett.​120.​207801

Mortensen K, Borger AL, Kirkensgaard JJK, Huang Q, Hassager 
O, Almdal K (2021) Small-angle neutron scattering study 
of the structural relaxation of elongationally oriented, mod-
erately stretched three-arm star polymers. Phys Rev Lett 
127(17):[177801]. https://​doi.​org/​10.​1103/​PhysR​evLett.​127.​
177801

Narimissa E, Huang Q, Wagner MH (2020a) Elongational rheology of 
polystyrene melts and solutions: concentration dependence of the 
interchain tube pressure effect. J Rheol 64:95–110

Narimissa E, Poh L, Wagner MH (2021) Elongational viscosity scal-
ing of polymer melts with different chemical constituents. Rheol 
Acta 60:163–174

Narimissa E, Schweizer T, Wagner MH (2020b) A constitutive analysis 
of nonlinear shear flow. Rheol Acta 59:487–506

Narimissa E, Wagner MH (2019) Review on tube model based consti-
tutive equations for polydisperse linear and long-chain branched 
polymer melts. J Rheol 63:361–375

Nielsen JK, Rasmussen HK, Denberg M, Almdal K, Hassager O (2006) 
Nonlinear branch-point dynamics of multiarm polystyrene. Mac-
romolecules 39:8844–8853

Osaki K, Nishizawa K, Kurata M (1982) Material time constant char-
acterizing the nonlinear viscoelasticity of entangled polymeric 
systems. Macromolecules 15:1068–1071

Takahashi M, Isaki T, Takigawa T, Masuda T (1993) Measurement of 
biaxial and uniaxial extensional flow behavior of polymer melts 
at constant strain rates. J Rheol 37:827–846

Wagner MH (1990) The nonlinear strain measure of polyisobutyl-
ene melt in general biaxial flow and its comparison to the Doi-
Edwards model. Rheol Acta 29:594–603

Wagner MH (2014) Scaling relations for elongational flow of polysty-
rene melts and concentrated solutions of polystyrene in oligomeric 
styrene. Rheol Acta 53:765–777

Wagner MH, Kheirandish S, Hassager O (2005) Quantitative predic-
tion of transient and steady-state elongational viscosity of nearly 
monodisperse polystyrene melts. J Rheol 49:1317–1327

Wagner MH, Narimissa E (2021) A new perspective on monomeric 
friction reduction in fast elongational flows of polystyrene melts 
and solutions. J Rheol 65:1413–1421

Wagner MH, Narimissa E, Poh L, Shahid T (2021a) Modelling elon-
gational viscosity and brittle fracture of polystyrene solutions. 
Rheol Acta 60:385–396

Wagner MH, Narimissa E, Shahid T (2021b) Elongational viscosity 
and brittle fracture of bidisperse blends of a high and several low 
molar mass polystyrenes. Rheol Acta 60:803–817

Wagner MH, Rolón-Garrído VH (2008) Verification of branch point 
withdrawal in elongational flow of pom-pom polystyrene melt. J 
Rheol 52:1049–1068

Wagner MH, Rolon-Garrido VH (2009a) Nonlinear rheology of linear 
polymer melts: modeling chain stretch by interchain tube pressure 
and Rouse time. Korea-Aust Rheolol J 21:203–211

Wagner MH, Rolon-Garrido VH (2009b) Recent advances in constitu-
tive modeling of polymer melts. Novel Trends of Rheology III. 
AIP Conf Proc 1152:16–31. https://​doi.​org/​10.​1063/1.​32032​66

Wagner MH, Rubio P, Bastian H (2001) The molecular stress function 
model for polydisperse polymer melts with dissipative convective 
constraint release. J Rheol 45:1387–1412

Wagner MH, Schaeffer J (1992) Nonlinear measures for general biaxial 
extension of polymer melts. J Rheol 36:1–26

Wagner MH, Yamaguchi M, Takahashi M (2003) Quantitative assess-
ment of strain hardening of low-density polyethylene melts by the 
molecular stress function model. J Rheol 47:779–793

Winter HH, Mours M (2006) The cyber infrastructure initiative for 
rheology. Rheol Acta 45:331–338

Publisher’s note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

425Rheologica Acta (2022) 61:415–425

https://doi.org/10.1103/PhysRevLett.120.207801
https://doi.org/10.1103/PhysRevLett.120.207801
https://doi.org/10.1103/PhysRevLett.127.177801
https://doi.org/10.1103/PhysRevLett.127.177801
https://doi.org/10.1063/1.3203266

	Analysis of elongational flow of star polymers
	Abstract
	Introduction
	Experimental data and linear-viscoelastic characterization
	The enhanced relaxation of stretch (ERS) model
	Comparison of experimental data and model predictions
	Elongational stress growth coefficient
	Relaxation after steady elongational flow

	Conclusions
	Acknowledgements 
	References


