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Abstract
The rheology of suspensions showing discontinuous shear thickening (DST) is well documented in conventional rheometer 
with rotating tools, but their study in capillary flow is still lacking. We present results obtained in a homemade capillary 
rheometer working in an imposed pressure regime. We show that the shape of the experimental curve giving the volume flow 
rate versus the wall stress in a capillary can be qualitatively reproduced from the curve 𝛾̇(𝜏) obtained in rotational geometry 
at imposed stress but instead of a sharp decrease of the volume flow rate observed at a critical stress, this transposition pre-
dicts a progressive decrease in flow rate. The Wyart-Cates theory is used to reproduce the stress-shear rate curve obtained 
in rotational geometry and then applied to predict the volume flow rate at imposed pressure. The theoretical curve predicts 
a total stop of the flow at high stress, whereas experimentally it remains constant. We propose a modification of the theory 
which, by taking into account the relaxation of the frictional contacts in the absence of shear rate, well predicts the high 
stress behavior. We also hypothesized that the DST transition propagates immediately inside the capillary, once the wall 
shear stress has reached its critical value: τR = τc, even if the internal shear stress τ(r < R) is below the critical one. In this 
way the whole experimental curve can be well reproduced by the modified W–C model.
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Introduction

The rheology of concentrated suspensions is quite com-
plex since it can exhibit a broad diversity of behavior like a 
yield stress, shear thinning or shear thickening or both and 
even sudden jumps of viscosity. These different behaviors 
are related to structural changes when the applied stress is 
increased. Depending on the balance between hydrodynamic 
shear forces imposed by the applied stress and local inter-
particle forces (lubrication, Van der Waals, Debye–Huckel, 
hydration, entropic etc..) individual particles can gather 
into different types of aggregates whose shape and life time 
will depend both on the applied shear rate and on the local 
interactions between the particles. A common feature is 

the fact that the suspending fluid imprisoned inside these 
aggregates move as if it was a solid part of the aggregates, 
then increasing the effective solid volume fraction and so the 
viscosity of the suspension. Such an approach can describe 
several rheological behaviors of concentrated suspensions 
(Quemada and Berli 2002; Bossis and Brady 1989). In 
monodisperse suspensions of colloidal particles, a sudden 
jump of viscosity during a ramp of stress was attributed to 
the transition from a low viscosity configuration made of a 
stacking of sheets of particles sliding over each other to a 
disordered one (Hoffman 1972). This transition is specific 
to monodisperse particles which can arrange in layers of 
hexagonally packed particles, thus increasing the average 
distance between sheared layers and lowering the viscosity 
compared to a disordered state.

Nevertheless, the presence of a sudden jump of viscosity 
was also observed in suspensions of polydisperse suspen-
sions of Latex particles (Laun et al. 1991) and it was proved, 
by neutron scattering (Laun et al. 1992; Bender and Wagner 
1996) that there was no layered pattern before the transition. 
Also suspensions of particles of irregular shape like corn-
starch (Fall et al. 2008) or acicular calcium carbonate (Egres 
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and Wagner 2005) or gypsum (Neuville et al. 2012) show 
this jump of viscosity whereas their irregular shape prevents 
the formation of ordered sliding layers. This discontinuous 
shear thickening (DST) was studied mostly in conventional 
rotational rheometry coupled with different techniques like 
dichroism (d’Haene et al. 1993), magnetic resonance imag-
ing MRI (Fall et al. 2010), shearing of photo-elastic beads 
(Bi et al. 2011) neutron scattering (Laun et al. 1992; Bender 
and Wagner 1996) to obtain some information on the evolu-
tion of the structural properties during this transition. Both 
numerical simulations (Seto et al. 2013; Mari et al. 2014; 
Johnson et al. 2017; Singh et al. 2018; Guy et al. 2020) 
and experiments have shown that the onset of the transition 
was ruled by the competition between the shear forces and 
the repulsive forces which prevent the surfaces to come in 
contact and to experiment friction forces. For instance, by 
varying the pH in suspensions of silica or alumina at a con-
stant salt concentration, Franks et al. (Franks et al. 2000) 
have shown that an increase of the magnitude of the repul-
sive force was correlated with an increase of the shear stress 
needed to obtain the transition. More recently Clavaud et al 
(2017), using a suspension of silica spheres in a rotating 
drum to measure the friction coefficient,  have shown that 
the DST could only be observed if the suspension was ini-
tially in a frictionless state. There is now a large consensus 
that, in order to experimentally observe a DST transition, the 
particles should initially be separated by a repulsive force 
and that this transition will occur when the shear forces 
dominate the repulsive ones, allowing a frictional contact 
between the surfaces of the particles. It is the formation of a 
percolated network of particles in frictional contacts, as the 
ones observed in numerical simulations (Mari et al. 2014; 
Gameiro et al. 2020), able to support the stress through elas-
toplastic contacts, which explains the jump of viscosity (see 
for example reviews Brown and Jaeger 2014; Denn et al. 
2018; Morris 2020)). The correlation between an increase 
of the normal force between particles and the one of the 
interparticle friction has been confirmed by AFM (Comtet 
et al. 2017; Hsu et al. 2018; Madraki et al. 2020).

A model which explains qualitatively this rheological 
behavior was proposed by Wyart and Cates (W–C) (Wyart 
and Cates 2014) and is based on the idea that the volume 
fraction at which the viscosity diverges, depends on the 
imposed stress. In the W–C model, this process was charac-
terized by a jamming fraction ΦJ(τ) lower than the usual 
jamming fraction of a perfect hard sphere suspension at ran-
dom close packing (RCP), Φ0, but higher than a volume 
fraction Φj

μable to mechanically support a stress without 
flowing: Φj

μ < Φj(τ) <  Φ0. This last limit reached for τ → ∞ 
is not well defined since it depends on macroscopic proper-
ties like the stiffness of the boundaries or the anisotropy of 
the structure and of local properties like the particle friction 
coefficient, μ. At high friction (μ > 1), a possible value for 

monodisperse spheres could be the loose random packing 
fraction Φμ

j
∼ ΦRLP~0.55–0.56 (Jerkins et al. 2008; Singh 

et al. 2018). In this model, for volume fraction between Φj
μ 

and Φ0, it exists a domain of stress above which the suspen-
sion cannot flow, called the shear jammed domain. On the 
other hand, for Φc < Φ<Φμ

j
 where Φc is the volume fraction 

under which there is no DST transition, the DST transition 
takes place with a S-shape of the shear stress versus shear 
rate curve, followed at high enough stresses by a Newtonian 
regime when ΦJ(τ) becomes constant (Bi et al. 2011; Singh 
et al. 2018). These predictions are quite well verified by 
numerical simulations, but large disagreements persist when 
the parameters of the W–C model obtained by numerical 
simulations are transposed to represent the experimental 
data (Lee et al. 2020) or with polydisperse suspensions (Guy 
et al. 2020). An improved version of the model where the 
breakdown of the percolated force chains are allowed in the 
shear jammed zone was recently proposed (Baumgarten and 
Kamrin 2019). Also, attempts to introduce adhesive con-
tacts, responsible for the presence of a yield stress, with a 
similar approach as in the W–C model, will help to general-
ize this model to a larger class of suspensions (Singh et al. 
2019; Richards et al. 2020). The aim of this work is to bring 
some experimental data which can help to progress in the 
prediction of the rheological behavior of these concentrated 
suspensions, in particular with new experiments obtained 
with capillary flows. Usually, experimental data on DST 
phenomena are obtained in conventional rotational rheom-
etry and very few papers present results obtained in capillary 
rheometry. A comparison between a cone-plate geometry 
and a capillary at imposed pressure on latex particles of 
diameter 0.3–0.4μm, has shown an apparent critical shear 
rate about two times larger in capillary geometry (Laun et al. 
1991) which was attributed to wall slip. Pressure gradient in 
a square microchannel with confocal microscopy was used 
to study the velocity and concentration profiles of PMMA 
spheres of diameter 2.6μm at Φ = 0.63; they found unex-
pected flow profiles, compared to yield stress fluids which 
were explained by taking into account the stress fluctuations 
(Isa et  al. 2007). In  situations of high confinements 
(R/a < 30) a regime of oscillations of the flow rate was 
observed and explained by a local change of volume fraction 
associated with the permeation of the solvent through 
jammed domains (Isa et al. 2009). Recently, we have studied 
the flow of a concentrated magnetorheological suspension 
in a capillary at imposed flow rates (Bossis et al. 2020) 
showing that we recover the jamming transition but at a 
higher critical shear rate compared to conventional rheom-
etry, both in the absence and presence of a magnetic field.

In the first section, we shall present new experimental 
results for the flow of a suspension of magnetic particles in 
the regime of imposed pressure. The stress-shear rate curve 
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obtained in conventional rheometry will be used to predict 
the volume flow rate at imposed pressure. The similarity 
between the predicted curve and the experimental one, 
despite the difference in flow geometry will be outlined 
but the reduction of the volume flow rate when the stress is 
increased is much more gradual than in experiments. In the 
second part we apply the W–C model to fit the experimental 
curve obtained in rotational rheometry and then we use it to 
predict the volume flow rate in the capillary configuration. 
As in rotational rheometry, the model predicts a total stop 
of the volume flow rate as the stress is increased contrary 
to what is observed experimentally. In the last section, we 
propose a modification of the W–C model to explain the fact 
that the flow is not totally blocked above the transition, and 
we also show that it is necessary to consider a non-local rhe-
ology above the transition if we want to explain the abrupt 
transition observed in the capillary at imposed pressure.

Materials and methods

We are using suspensions of carbonyl iron particles, grade 
HQ, from BASF, supplied by Imhoff & Stahl Gmbh; their 
density is ρp = 7.8  g/cm3 and their average diameter 
d = 2a = 0.6μm. They are suspended in a mixture of 85% 
ethylene–glycol and 15% water which is used to minimize 
the evaporation at room temperature. The viscosity of the 
suspending fluid is η0 = 0.011 Pa.s. The additive used to 
prevent the aggregation between the particles is a 

plasticizer used in cement industry called Optima100 and 
sold by the company Chryso. The Reynold number based 
on the size of the particles is Rep = 𝜌𝛾̇d2∕𝜂 . For a typical 
shear rate of 10 s−1 and the minimum viscosity of the sus-
pension we have used: η = 1 Pa.s, the particle Reynold num-
ber is of order 10–8, so inertial effects at the level of the 
particle are totally negligible in these suspensions. The 
sedimentation velocity of a particle v = 2(�p − �

f
)ga2/9η is 

of order 0.01 μm/s so we can also neglect sedimentation 
effects in the capillary. Practically, all the commercial capil-
lary rheometers impose the volumetric flow rate through the 
motion of a piston. In this case the DST transition results in 
a jump of pressure at a critical shear rate (Bossis et al. 2020) 
but more information on the physics of the transition can be 
obtained by driving the pressure since in this case, it is pos-
sible to observe the decrease of the shear rate and its subse-
quent behavior. For these experiments, we have used a 
homemade capillary rheometer described in Fig. 1.

It is composed of a tank with a pressure regulating valve 
(MDG-3 from Seflid) and a piezoelectric manometer (LEO 
2 from Serv’instrumentation; resolution 10–3 bar, max-
imum pressure 3 bars) connected to a 3-way ball valve 
(SS-43GXS4 from Swagelok). For the gas, we use dry 
compressed air. The vertical output of the 3-way valve is 
connected to the liquid tank in plexiglass, itself connected 
to the capillary through an interchangeable flange whose 
output is a part of the capillary. This part can be prolon-
gated through a tube fitting union (for instance SS-400–6 
for a tube of ¼ in external diameter) to easily change the 

Fig. 1   Sketch of the equipment 
for capillary flow at imposed 
pressure
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length of the capillary. The third way of the valve is con-
nected to a water vacuum pump through a 2-way valve 
and a vacuum manometer. The suspension is first pumped 
from a container placed on a balance (STX from Ohaus) 
into the liquid tank at a known negative pressure and the 
change of weight recorded each second. Then the path 
of the 3-way valve is turned towards the pressurized gas 
tank, which is regulated at a given pressure, for instance 
during 60 s, then the pressure is changed to another value 
and so on until emptying of the liquid tank; the change of 
weight is recorded during this time for typically ten differ-
ent pressures. The procedure can be repeated several times 
until enough different pressure points have been recorded. 
The internal diameter of the tank is 2.5 cm and its height 
10 cm. The radius of the capillary was R = 1.5 mm. The 
imposed pressure was corrected to consider the change 
of height of the column of fluid in the tank which was 
deduced from the change of mass. The mass flow rate 
Q(P) at a given pressure P, was obtained from the fit by a 
straight line of the mass versus time. The integration time 
of a mass measurement was 1 s, still we did not observe 
a decrease of flow rate at constant pressure which could 
have been attributed to clogging effects at the entrance of 
the capillary as predicted for small values of R/a (Koivisto 
and Durian 2017) since we have R/a ~ 5000. The wall shear 
stress is related to the pressure by: �R = P.

R

2L
 where L is 

the length of the capillary. In these experiments we have 
used two different lengths L = 36 cm and L = 18 cm of a 
stainless-steel tube for the capillary and there was no dif-
ference between the data recorded for these two lengths.

On the other hand, the measurement of the viscosity was 
made with an imposed stress rheometer MCR 502 from 
Anton Paar. We used a cylindrical geometry with a small 
gap to minimize the change of shear rate inside the gap and 
to avoid particle migration.

Experimental results

The rheograms are represented in Fig. 2 for three volume 
fractions: Φ = 0.6; Φ = 0.64; Φ = 0.65. For the two highest 
volume fractions, we have a strong signature of the DST 
transition with an abrupt decrease of the shear rate fol-
lowed by strong oscillations around an average value which 
remains approximatively constant during the increase of 
stress.

The behavior is different at Φ = 0.6 where the transition 
is still accompanied by oscillations of the shear rate but 
without a sudden decrease of its value. In a forthcoming 
paper focused on the rheology of MR suspensions at high 
volume fractions, we shall see that the volume fraction of 
0.60 is approaching the one corresponding to the random 

loose packing of this suspension which is estimated to be 
Φrlp = 0.58 whereas the close packing is Φ0 = 0.681. The 
critical shear rate strongly decreases with the increase of 
volume fraction passing from 200 s−1 at Φ = 0.6 to 10 s−1 at 
Φ = 0.65 whereas the critical stress decreases slightly. Above 
Φrlp, the Wyart-Cates (W–C) model predicts that at high 
enough stress the suspension will be completely jammed and 
will stop. Actually, we rather observe, as many other authors 
(d’Haene et al. 1993; Laun 1994; Frith et al. 1996; Fagan 
and Zukoski 1997; Fall et al. 2015; Hermes et al. 2016), that 
above the transition, the shear rate remains approximately 
constant whatever the value of the stress. In practice at high 
stresses, it ends up by an expulsion of the suspension in 
plate-plate or cone-plate geometry or by foaming in cylin-
drical Couette geometry. We shall come back to the analy-
sis of the W–C model in the context of the capillary flow 
in the next sections. The results obtained in capillaries for 
the wall shear stress as a function of the volume flow rates 

Fig. 2   Rheograms in cylindrical Couette cell for three volume frac-
tions: Φ = 0.6; Φ= 0.64; Φ = 0.65. The dashed black lines are a poly-
nomial fit of the experimental curve

Fig. 3   Volume fraction Φ = 0.6. Red dots are the flow rates measured 
at different imposed pressures. The solid line is obtained from Eq. (1) 
with 𝛾̇(𝜏) given by the dashed curve of Fig. (2) for Φ = 0.6
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are presented in the three following figures (Figs. 3, 4, 5). 
On these figures we have also plotted the predicted curve 
obtained from the fitted curve of the experimental rheogram 
𝛾̇(𝜏)(cf Fig. (2)) through the equation:

This equation is always valid whatever the rheological law 
since it just comes from the definition of the volume flow rate 
as the integral from r = 0 to r = R of the velocity field vz(r) and 
of the change of variable r = R. τ (r)/ τR, where τR is the wall 
shear stress.

The previous figures show that, qualitatively, the pre-
dicted result from the use of rheometry through Eq. (1) is in 

(1)Q
(

𝜏R

)

= 𝜋∫
R

0

r2𝛾̇(r)dr =
𝜋R3

𝜏3
R
∫

𝜏R

0

𝜏2𝛾̇(𝜏)d𝜏

agreement with the experimental points showing a decrease 
of the flow rate above a critical flow rate whose value is nev-
ertheless smaller than the experimental one for Φ = 0.64 and 
Φ = 0.65. At Φ = 0.60, where the rheometry does not show a 
sudden decrease of the shear rate (Fig. 2), the predicted curve 
has the same aspect as the experimental one with a rounded 
part at the transition. This is quite different for Φ = 0.64 and 
Φ = 0.65 (Figs. 4 and 5) because the predicted curves do not 
reflect the sudden decrease of the flow rate.

We have seen that both in rotational rheometry and in cap-
illary flow we have a sharp transition but that, if we intro-
duce the experimental curve 𝛾̇ (τ) obtained from rheometry 
in Eq. (1), the predicted transition for the capillary flow is a 
soft one; (cf. Figures 4–5). Still Eq. (1) is general and applies 
whatever the rheological law. We will see what the reason is 
for this contradiction in the last section, but first let us see how 
the W–C model applies to a capillary flow.

Application of the Wyart‑Cates model

In the W–C model, the volume fraction where the viscosity 
diverges, depends on the applied stress in the following way:

As explained in the introduction ΦRLP can be approximated 
by the random loose packing which is 0.58 for our suspension 
and the frictionless packing is Φ0 = 0.681. The function f rep-
resents the proportion of frictional contacts in the suspension 
and increases from 0 to 1 while increasing the stress. Different 
expressions have been proposed for the function f; we shall 
take the following one (Guy et al. 2020):

The parameters λ and q are taken to fit the experimental 
curve obtained in conventional rheometry and τc is the critical 
stress at the transition.

The viscosity and the shear rate dependence are given by 
the usual relation for concentrated suspensions, with the only 
difference that Φ0 has been replaced by ΦJ(τ). The yield stress 
in Eq. (4) is the dynamic yield stress of a Bingham law which 
fits quite well the beginning of the stress-shear rate curve:

The values of α and τy are obtained from the fit by 
Eq. (4) of the first part of the curve for τ < τc and λ and q 
are obtained by the condition that the fitted curve should 
have a zero slope for d𝛾̇

d𝜏
 at the experimental turning point 

𝜏c, 𝛾̇c . The result is represented in Fig. 6 by the solid black 

(2)ΦJ(�) =
(

ΦRLP − Φ0

)

f (�, λ, q) + Φ0

(3)f (τ∗, �, q) = e
−
(

�

τ∗

)q

with τ∗τ∕τc

(4)𝛾̇(τ) =
τ − 𝜏y

𝜂c(Φ, 𝜏)
with 𝜂c(Φ, 𝜏) = 𝛼(1 −

Φ

Φj(𝜏)
)
−2

Fig. 4   Volume fraction Φ = 0.64. Red dots are the flow rates meas-
ured at different imposed pressures. The solid line is obtained from 
Eq. (1) with 𝛾̇(𝜏) given by the dashed curve of Fig. (2) for Φ = 0.64

Fig. 5   Volume fraction Φ = 0.65. Red dots are the flow rates meas-
ured at different imposed pressures. The solid line is obtained from 
Eq. (1) with 𝛾̇(𝜏) given by the dashed curve of Fig. (2) for Φ = 0.65
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line with the following values:τy=19.4Pa,α=0.02,λ=1.2
9,q=6.08.

We see that the W–C model predicts a zero shear 
rate when the jamming fraction ΦJ(τ) becomes equal 
to the actual value, Φ, whereas, as already pointed out, 
the experimental shear rate does not cancel and remains 
approximatively constant (solid blue line). It is also inter-
esting to note that, on this figure, the shear rate for the 
results at imposed pressure is the Newtonian shear rate 
𝛾̇N = 4Q∕(𝜋R3) . This shear rate is not the real wall shear 
rate which is obtained by the derivative of Eq. (1):

The derivative of the volume flow rate relatively to the 
stress is not well defined experimentally, especially during 
the transition; this is the reason why we have decided to 
compare in Figs. 3, 4, and 5, the wall stress versus volume 
flow rate rather than versus the shear rate. The quite large 
difference between the critical shear rate in conventional 
rheometry and in capillary flow in Fig. 6 is partly due to 
the use of the Newtonian shear rate instead of the real one, 
and we can see in Fig. 4 that the agreement is better if we 
consider the volume flow rate instead of the Newtonian 
shear rate.

Since, the Eq. (4) represents the W–C model for the func-
tion 𝛾̇(𝜏) in rotational rheometry, we can use this analytical 
equation in Eq. (1) to compare the prediction of this model 
with the experiment in the case of a capillary flow. This is 
the solid blue line in Fig. 7.

�y = 19.4Pa, � = 0.02, λ = 1.29, q = 6.08

(5)𝛾̇R =
1

𝜋R3

[

𝜏R
dQ(𝜏R)

d𝜏R
+ 3Q(𝜏R)

]

As this model predicts a complete jamming above a given 
stress (τm = 233 Pa for Φ = 0.64), the predicted volume flow 
rate will also progressively stop when the stress rises. In 
this model, since the stress remains low at the center of the 
capillary, the central part will continue to flow even if a 
solid zone has begun to form on the wall where the stress is 
larger than the jamming stress τm. This zone will progres-
sively extend towards the center until it fills all the section 
of the capillary when the flow stops. There are two striking 
differences between the prediction of the W–C model and 
the experiment. The first concerns the soft transition instead 
of the abrupt one and was expected since it was already 
observed with the fitted experimental rheometric curve that 
the W–C theory try to represent. The second is that the vol-
ume flow rate decreases towards zero while experimentally 
it remains constant above the transition.

A possible reason for the soft transition could be related 
to shear induced migration which would gradually modify 
the volume fraction profile and could then be responsible 
for this behavior. Actually, shear induced migration above 
DST was observed in a Couette cell of large gap by mag-
netic resonance imaging with cornstarch particles (Fall 
et al. 2010) so we have to analyze its possible role on the 
stress-volume flow rate curve. In the appendix we develop 
an analysis of shear induced migration in the presence of 
aggregates based on the work of Mills and Snabre (Mills and 
Snabre 1995). The predicted effect of migration on the wall 
stress versus flow rate curve is shown to increase the vol-
ume flow rate between 50 and 100% at the vicinity of the 
critical stress compared to the experimental values which on 
the other hand, are well predicted in the absence of migra-
tion (cf Appendix, Fig. 11). The lack of migration could be 
surprising at first glance given that it was observed with 
cornflake particles by magnetic resonance imaging in a large 

Fig. 6   Fit of the rheometric curve (blue solid line) by the Wyart-
Cates model (solid black line). The shear rate for the results at 
imposed pressure (red squares) is deduced from the flow rate 
by:𝛾̇ = 4Q∕(𝜋R3)

Fig. 7   Prediction of the stress versus flow rate in the frame of the 
W–C model. The experimental points for the capillary flow are the 
red dots at Φ = 0.64

6 Rheologica Acta (2022) 61:1–12



1 3

gap Couette cell where the shear rate is also inhomogeneous. 
In fact, our particles are more than an order of magnitude 
smaller and the diffusion coefficient being proportional to 
the square of the radius of the particles we expect a much 
smaller migration as long as the particles are not aggregated. 
On the other hand, above the transition, in the presence of 
a percolated network of frictional contacts, the transverse 
motion of particles during the deformation and rearrange-
ment of this network is probably a rarer event than when 
particles do not stick to each other. This analysis shows that 
shear induced migration cannot explain why the use of the 
rheometric data obtained in rotational geometry, as well as 
the W–C model based on these data, fail to reproduce the 
sharp change of volume flow rate in capillary flow. In the 
last section, we will propose an explanation of this disagree-
ment, but first we need to investigate why the volume flow 
rate does not stop above the transition as predicted by the 
W–C model.

Modification of the W–C model to get 
a constant flow rate above the transition

If the flow stops, we expect that the normal force will relax 
either through remaining Brownian motion or lubricated 
contacts still present in the percolated network or because 
the polymer molecules which were strained or removed 
from the surface by the local flow will come back to their 
initial position. In this case, the percolated structure will 
be momentaneously isotropized and destroyed, but the high 
applied stress will make the suspension to flow again and 
the cycle between arrested flow and flowing states will start 
again. This qualitative explanation is based on an equilib-
rium between forces which on one hand tend to destroy the 
percolated network of frictional contacts and on another 
hand to reinforce it. This approach is generally used to 
describe the evolution of a structural parameter like for 
instance, the sizes of the aggregates in the presence of shear 
and of attractive or Brownian forces and to predict the rheo-
logical law related to this structural parameter (Quemada 
and Berli 2002). In this kind of approach, the flowing state 
observed above the transition can be the result of an aver-
age of unstable flows which depends on the ratio between 
the measurement time and inertial time tm/tI. Another way 
to describe this phenomenon is to say that the structure at 
the jamming volume fraction ΦJ(f) (which is smaller than 
the RCP one, Φ0), can still deform and yield so, depending 
on the difference between the applied stress and the yield 
stress generated by the percolation of frictional contacts, the 
suspension can still flow through rupture and reformation of 
frictional bonds. In a recent paper (Baumgarten and Kamrin 
2019), a similar reasoning was applied to the fraction, f, 
of frictional contacts (here defined by Eq. (3)); a constant 

shear rate in the limit of high stress was obtained thanks to 
the introduction of a “hardening function” H(τ) scaling as 
τ3/2. A simpler way to obtain a constant shear rate when the 
jamming fraction approaches the actual volume fraction is 
to introduce a divergence of the viscosity at a given non-zero 
shear rate. As already said, the fraction of frictional contact 
must tend to zero with time when the suspension no longer 
flows and that, whatever the value of the initial stress. Let us 
then write the fraction of frictional contact as:

Here f(τ*) is the function already defined by Eq. (3) and 
L(x) is a function which tends to zero when x tends to zero 
and which saturates to unity like for instance the Langevin 
function: L(x) = coth(x)-1/x. The parameter tL is related to 
the relaxation time of the stress during the blockage phase: 
the larger, the closer we approach a complete stop of the flow. 
We call fjam the value of f for which we have ΦJ(fjam) = Φ (here 
using Eq. (2) and (3) give fjam = 0.44 for Φ = 0.64). Since at 
high stresses f (�∗) → 1 , the equation L(tL.𝛾̇) = fjam will give 
the limiting shear rate, 𝛾̇l , for which the viscosity �

(

f
′) diverges; 

in our example for Φ = 0.64 and tL = 0.18  s, 𝛾̇l = 8.49s−1 . 
Due to this divergence, the shear rate 𝛾̇ = (𝜏 − 𝜏y)∕𝜂(𝜏

∗, 𝛾̇) 
approaches quickly its asymptote. We have added here the 
presence of a dynamic yield stress which is present in our case 
and the viscosity is the one given by Eq. (4) with f ’ instead 
of f in Eq. (2). The resulting curve is shown in Fig. 8 with the 
relaxation time tL = 0.18 s together with the original prediction 
of the W–C model. We see that this simple modification allows 
to well represent the experimental data.

As it is not the scope of this paper we did not try to 
reproduce the oscillations of the shear rate which can 
be obtained by including the inertia of the rotating part 

(6)f
�

(𝜏∗, 𝛾̇) = f (𝜏∗) ∗ L(tL.𝛾̇)

Fig. 8   Comparison of the prediction of the W–C model (green line) 
with the modified value of f: Eq.  (6) and tL = 0.18  s (red line). The 
solid blue line is the experimental result in Couette geometry at 
Φ = 0.64
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of the rheometer in the equation of motion of the tool 
(Bossis et al. 2017, 2019; Richards et al. 2019). We do not 
see any fluctuations of the flow rate at imposed pressure 
although they could appear due to the inertia of the fluid 
itself (Nakanishi et al. 2012) but the averaging time of 1 s 
for the mass measurement is too large to observe them if 
any, because the inertia time: �I =ρ R2∕2�,which rules the 
relaxation of a shear rate fluctuation, is typically smaller 
than 1 ms in our experimental conditions. It should also 
be noted that, for the analytical curve 𝛾̇(τ) derived from 
the rotational rheometry data, we have used an average 
value of the fluctuating shear rate, implicitly assuming that 
this average was the equilibrium curve in the absence of 
inertia and that it is the right value to introduce in Eq. (1) 
since, in the capillary flow, the inertia is negligible and its 
effect is not observed. Now that we have an equilibrium 
curve from the modified W–C model we could also use the 
theoretical curve 𝛾̇(τ) of Fig. 8 instead of the fitted curve 
in Eq. (1) but the result would be very close from the one 
obtained with the fitted rheometric curve: there will be 
no sharp transition of the volume flow rate as observed 
experimentally. So, the modification of the W–C theory 
does not help to explain this discrepancy.

On the other hand, Eq. (1) is always valid, but we have 
done the hypothesis that the rheological law inside the cap-
illary was the same as in the cylindrical shear cell, or in 
other words that the law 𝛾̇ (τ) fitted from the rheometry 
applies locally inside the capillary with � = (r∕R)�R . This 
is not very realistic: as soon as the transition takes place 
close to the wall where the shear stress is maximum, the 
radial stress will provoke the propagation of the percolation 
towards the center of the cell. We can assume that above 
the transition, we suddenly move towards a regime where 
we have a uniform viscosity given by the modified W–C 
model. Said differently, the jamming volume fraction is the 
one at the wall ΦJ(τR) and does not depend on the radial 
coordinate. Assuming a constant viscosity independent of 
the radial coordinate means that we have now in Eq. (1):

Above the transition, even if the percolated structure 
extends to the center of the capillary, it is likely that 
the contact forces between the particles will be lower at 
the center and consequently that the viscosity will also 
be lower; nevertheless, as it can be seen in Fig. 9, this 
approximation represented by Eq.  (7) well reflects the 
experimental behavior.

The green curve is the result of Eq. (7) applied to the 
prediction of 𝛾̇(𝜏R) by the W–C model modified with the 
help of Eq. (6) and the blue curve is the same Eq. (7) applied 

(7)𝛾̇(𝜏) =
𝜏

𝜂
(

𝜏R

) ⇒ Q
(

𝜏R

)

=
𝜋R3

4
𝛾̇(𝜏R)

to 𝛾̇(𝜏R) fitted from the rheometry cf. (Fig. 2). Even if this 
approach is an “oversimplification,” the important point to 
underline is that the comparison between the data obtained 
in the capillary at imposed pressure and those obtained in 
Couette cell geometry cannot be explained above the tran-
sition without abandoning the hypothesis of a local rheol-
ogy represented by the solid black line in Fig. 9. This point 
would be quite trivial for small value of R/a but here we have 
R/a ~ 5000 proving the long-range effect of the transmission 
of normal forces above the DST transition.

Conclusion

We have presented new experiments based on capillary flow 
at imposed pressure of a suspension in the regime of discon-
tinuous shear thickening. The rheological law 𝛾̇(𝜏) of the 
same suspension was measured in conventional rheometry 
using a cylindrical Couette cell. At high enough volume 
fraction, we well recover the DST transition in this capil-
lary flow with a strong and abrupt decrease of the volume 
flow rate for a critical stress. The experimental curves Q(τR) 
of the volume flow rate as a function of the wall stress were 
compared with the ones predicted using the rheological 
law from Eq. (1). The agreement was qualitative but did 
not reflect the abrupt transition observed experimentally. 
A possible reason could have been the migration of par-
ticles towards the center, but an analysis of shear induced 
migration shows that it would give a volume flow rate much 

Fig. 9   Different models used to predict the volume flow rate at 
imposed pressure. Solid black line: Eq. (1) with fitted value of 𝛾̇(𝜏R) 
(cf. Figure 2). Green solid line: Eq. (7) with 𝛾̇(𝜏R) from the modified 
W–C model. Blue solid line: Eq. (7) with the fitted values of 𝛾̇

(

𝜏R

)

. 
Red dots: experimental points at Φ = 0.64
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larger than the experimental one. The use of the Wyart-Cates 
model to predict the volume flow rate does not help and 
furthermore predicts a flow stop above the critical stress 
which is not observed experimentally. On the contrary, as 
in conventional rheometry for the shear rate, the volume 
flow rate remains approximatively constant when the stress 
is increased. It is possible to explain this behavior consider-
ing that, if the flow stops for a given stress, the absence of 
shear flow will allow to reactivate the interparticle repulsive 
forces and will lead to a deformation of the percolated struc-
ture and a new start of the flow. Allowing the fraction, f, of 
frictional contacts to cancel at low shear rate independently 
of the value of the applied stress (cf. Equation (6)) allows 
us to well reproduce the zone of constant flow rate at high 
stress. The other discrepancy stands in the fact that, the use 
of the curve 𝛾̇(𝜏) obtained in a Couette cell to predict the 
one observed in the capillary shows a gradual decrease of 
the volume flow rate above the DST transition rather than 
the abrupt one observed experimentally. If we consider that, 
in the presence of a percolated network of contacts, the vis-
cosity does not depend on the radial position and is equal 
to the one on the wall: η (τR), (or in other words that the 
frictional network has extended over the entire section of 
the capillary), then it is possible to recover the volume flow 
rate obtained at imposed pressure from the rheometry in a 
Couette cell.

Appendix: Effect of Shear induced migration 
on the volume flow rate

Shear induced migration in a gradient of shear rate is related 
to the gradient of the number of collisions between particles 
since each collision induces a random transverse motion of 
order of magnitude a, relatively to the average velocity 
direction which induces a migration from the higher rate of 
collision domain (high𝛾̇ ) to the lower one. This migration 
was first observed by NMR in concentric cylinders (Abbott 
et al. 1991; Graham et al. 1991; Chow et al. 1994) and in 
Poiseuille flow (Hampton et al. 1997). The shear induced 
diffusion coefficient is proportional to 𝛾̇a2 with a coefficient 
which depends on the volume fraction and of the interparti-
cle force but that remains usually smaller than unity for rea-
sonable values of the range of roughness (Leighton and 
Acrivos 1987; Da Cunha and Hinch 1996; Zarraga and 
Leighton, 2001) or of the interparticle forces (Meunier and 
Bossis 2008). In our case with an average radius of 0.3μm, 
the typical time for a migration of 1 mm—the characteristic 
value of the radius of the capillary- would be 
Tm ∝

1

𝛾̇

(

R

a

)2

≈ 105s for a typical wall shear rate of 10 s−1. 
The time needed for the transfer of the suspension from the 

input to the output of the capillary is Ttr = πR 2L/Q then, with 
a radius of 1.5 mm and the maximum length used of 36 cm 
and a minimum flow rate of 0.01cm3/s, we get Ttr = 250 s 
which is more than two orders of magnitude smaller than the 
migration time. Nevertheless, if below the transition we can 
neglect the migration, this not so obvious anymore above the 
transition since it is related to the formation of aggregates of 
particles in frictional contact which are supposed to perco-
late between the walls of the capillary. Instead of the radius 
of the particles which determines the transverse change of 
trajectory, it is rather a typical size of the aggregates, which 
means that now the migration time becomes just propor-
tional to 𝛾̇−1 which in turns, is now much smaller than the 
transfer time of the suspension. Of course, this analysis is 
only indicative because the collision between big aggregates 
will mainly result in their deformation rather than in a global 
change of trajectory. As already underlined, the size of the 
aggregates formed during the transition can play a major role 
in shear induced migration. We shall use the work of P. Mills 
and P. Snabre (Mills and Snabre 1995) who have introduced 
in a simple way a correlation length, ξ, in order to estimate 
its influence on the migration. They obtain the following 
result for the volume fraction Φ (r) in a circular capillary:

where Φ0 is the closed-packed volume fraction,ΦR = Φ(R) 
and L an exponent which is equal to 2 for 0 < r < ξ and 1 for 
ξ < r < R. The correlation length ξ is the one over which the 
stress is transmitted from one particle to the other inside a 
chain through frictional or lubricated contacts. The factor 2 
comes from the integral of the stress along a chain of length 
ξ. Note that the value L = 1 gives a density profile with a 
cusp at the center (Phillips et al. 1992). In the frame of the 
W–C model Eq. (8) can be re-written as:

With

In Eq. (10) the jamming volume fraction now will depend 
on r since in the capillary the stress: τ (r) = τR (r/R) varies 
from zero at the center to τR on the wall so the jamming 
volume fraction will depend on r* = r/R:

Combining Eq. (9) and (10) gives the variation of the 
volume fraction:

(8)
Φ(r)

1 − Φ(r)∕Φ0

=
(

r

R

)L ΦR

1 − ΦR∕Φ0

(9)
Φ(r)

ΦR

=
(

R

r

)L

√

�(R)

�(r)

(10)�(r) = �(1 −
Φ(r)

ΦJ(r)

)
−2

(11)ΦJ(r
∗) =

(

ΦRLP − Φ0

)

f
(

r∗�R, λ, q
)

+ Φ0
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Due to the divergence of the viscosity for Φ(r) = Φj(r) , 
the volume fraction in Eq. (12) remains bounded by Φj(r) . 
The unknown in Eq. (12) is ΦR the volume fraction at 
r = R. It is derived from the condition of recovering the 
average volume fraction:

In Fig. (10) we have represented the volume fraction 
profile deduced from Eq.  (12), (13) for four different 
stresses. These are equilibrium profiles when the migration 
is ended. For τR = 100 we are well below the critical stress 
and the maximum volume fraction at the center (r* = 0) is 
equal to Φ0 and decreases almost linearly from the center 
to the wall. For τR = 200, even if we are slightly above the 
transition, the profile is rather the same as for τR = 100 
except close to the wall where the volume fraction is 
slightly lower. The change is important at τR = 275 Pa 
and still more important at τR = 340, both values being 
above the jamming stress in the W–C model in the absence 
of migration. It is only at this last stress that the profile 
becomes blunted with, at the center of the capillary the 
maximum volume fraction Φ = Φ0. This kind of profile was 
experimentally observed on suspensions of non-Brownian 
spheres with R/a ~ 40 at Φ = 0.55 by magnetic resonance 
imaging (Oh et al. 2015).

The wall stress versus flow rate for different profiles of 
volume fraction, including the case of a constant volume 
fraction already presented in Fig. (7) in the absence of 

(12)Φ
(

r∗, �R
)

=
ΦR

r∗l
(

1 −
ΦR

ΦJR

)

+
ΦR

ΦJ (r
∗)

(13)Φ = 2∫
1

0

Φ
(

r∗, �R
)

r∗dr∗

migration, is represented in Fig. (11)). In the presence of 
migration we use, instead of Eq. (4), the following one:

where r = r* τR and Φ(r) the solution of Eqs.(12),(13).
When the stress has exceeded the transition value, τc, 

the jamming fraction ΦJ decreases with the stress until it 
reaches everywhere the local volume fraction Φ(r) mak-
ing the flow to stop due to the divergence of the viscos-
ity. We have taken in Eq.  (8) a value of the exponent 
L = 1 + fe(r*. τR, λ,q)) which changes from 1 to 2 with the 
value of the stress to consider the progressive increase of 
the correlation length, ξ, with the stress. This correlation 
length is related to the presence of clusters of particles 
which transport the particles during their rotation on a 
length equivalent to the diameter of the cluster. Since, 
even in the absence of friction, the hydroclusters can also 
play this role, we can use L = 2 also below the transition. 
In this case, we obtain the red curve which is still more 
different from the experimental results. It appears that, 
whatever the migration model, the increase in volume 
fraction at the center of the capillary will result in an 
important increase of the volume flow rate which is not 
compatible with the experimental data especially con-
cerning the maximum volume flow rate. From this com-
parison between the models without and with migration 
and the experimental values we can conclude that we do 
not have migration.

𝛾̇
(

r, τR
)

=
τ(r) − 𝜏y

𝜂r(Φ, 𝜏)
with 𝜂r(Φ, r) = 𝛼(1 −

Φ(r)

Φj(r)
)
−2

Fig. 10   Predicted volume fraction profiles Φ(r*) for four different 
wall stresses: τ = 100, τ = 200, τ = 275, τ = 340 at an average volume 
fraction of Φ = 0.64

Fig. 11   Prediction of the stress versus flow rate in the frame of the 
W–C model. In blue without migration; in green with an exponent 
1 < L < 2 (cf. Equation (8) with L = 1 + fe(r*. τR, λ, q))) depending on 
the value of the stress; in red with L = 2 whatever the value of the 
stress. The experimental points are the red dots at Φ = 0.64
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