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Abstract
Elongational viscosity data of four well-characterized blends consisting of 10% mass fraction of monodisperse polysty-
rene PS-820k (molar mass of 820 kg/mol) and 90% matrix polystyrenes with a molar mass of 8.8, 23, 34, and 73 kg/mol, 
respectively, as reported by Shahid et al. Macromolecules 52: 2521–2530, 2019 are analyzed by the extended interchain 
pressure (EIP) model including the effects of finite chain extensibility and filament rupture. Except for the linear-viscoelastic 
contribution of the matrix, the elongational viscosity of the blends is mainly determined by the high molar mass component 
PS-820k at elongation rates when no stretching of the lower molar mass matrix chains is expected. The stretching of the long 
chains is shown to be widely independent of the molar mass of the matrix reaching from non-entangled oligomeric styrene 
(8.8 kg/mol) to well-entangled polystyrene (73kg/mol). Quantitative agreement between data and model can be obtained 
when taking the interaction of the long chains of PS-820k with the shorter matrix chains of PS-23k, PS-34k, and PS-73k 
into account. The interaction of long and short chains leads to additional entanglements along the long chains of PS-820k, 
which slow down relaxation of the long chains, as clearly seen in the linear-viscoelastic behavior. According to the EIP 
model, an increased number of entanglements also lead to enhanced interchain pressure, which limits maximal stretch. The 
reduced maximal stretch of the long chains due to entanglements of long chains with shorter matrix chains is quantified by 
introducing an effective polymer fraction of the long chains, which increases with the increasing length of the matrix chains 
resulting in the excellent agreement of experimental data and model predictions.

Keywords  Polymer melt · Polymer blend · Fracture · Chain scission · Elongation · EIP model · Interchain pressure · Finite 
extensibility

Introduction

While there seems to be general agreement on the univer-
sality of the linear-viscoelastic behavior of well-entangled 
monodisperse linear polymer melts and solutions based on 
only three material parameters (plateau modulus, charac-
teristic time, and the number of entanglements), this uni-
versality is lost in the nonlinear viscoelastic regime as espe-
cially apparent in elongational flows (Huang et al. 2013a, b, 
2015). Polymer melts exhibit a monotonic strain-rate thin-
ning behavior of the elongational viscosity, while polymer 
solutions with the same number of entanglements exhibit 
an initial strain-rate thinning behavior followed by a strong 
increase of the elongational viscosity, which occurs at rates 
comparable to the reciprocal Rouse time of the chains. This 
nonuniversality is now well established experimentally; 
however, its molecular origin and in particular the absence 
of extension thickening in the case of polymer melts has 

 *	 Manfred H. Wagner 
	 manfred.wagner@tu-berlin.de

	 Esmaeil Narimissa 
	 esmaeiln@technion.ac.il

1	 Polymer Engineering/Polymer Physics, Berlin Institute 
of Technology (TU Berlin), Ernst‑Reuter‑Platz 1, 
10587 Berlin, Germany

2	 Dept. of Chemical Engineering, Technion–Israel Institute 
of Technology (IIT), Technion City, 32 000 Haifa, Israel

3	 Dept. of Chemical Engineering, Guangdong Technion–Israel 
Institute of Technology (GTIIT), Shantou 515063, China

4	 Bio and Soft Matter, Institute on Condensed Matter 
and Nanoscience, Université Catholique de Louvain, 
Ottignies‑Louvain‑la‑Neuve, Belgium

5	 DSM Materials Science Center, P.O. Box 18, NL‑6160 MD, 
Geleen, The Netherlands

http://orcid.org/0000-0002-1815-7060
http://crossmark.crossref.org/dialog/?doi=10.1007/s00397-021-01304-1&domain=pdf


804	 Rheologica Acta (2021) 60:803–817

1 3

sparked different theoretical explanations as discussed, e.g., 
by Narimissa et al. (2020a, 2021) and Ianniruberto et al. 
(2020).

Marrucci and Ianniruberto (2004) proposed that flow-
induced contraction of the tube diameter from its equilib-
rium value results in an “interchain pressure” relaxation 
effect. By incorporating this concept in the molecular stress 
function (MSF) theory, Wagner et al. (2005) and Wagner 
and Rolón-Garrido (2009a, b) were able to obtain quanti-
tative agreement for monodisperse polystyrene (PS) melts. 
They assumed that chain stretch is balanced by two restoring 
tensions with weights of 1/3 in the longitudinal direction 
of the tube, due to a linear entropic spring force, and 2/3 in 
the lateral direction, due to a nonlinear interchain tube pres-
sure, both of which are characterized by the Rouse stretch 
relaxation time. This approach is in quantitative agreement 
with the time-dependent and steady-state elongational vis-
cosity of monodisperse polystyrene melts investigated by 
Bach et al. (2003). In bidisperse polymer blends consisting 
of a long and a short-chain component as investigated by 
Nielsen et al. (2008), the interchain pressure is reduced in 
accordance with dynamic dilation of the tube. Implementa-
tion of the dilation effect into the evolution equation of the 
stretch led to a quantitative description of the elongational 
behavior of bidisperse polystyrene blends (Wagner 2011). 
Later, this extended interchain pressure (EIP) model was 
successfully used in modeling entangled polystyrene solu-
tions (Wagner 2014, 2015; Wagner et al. 2015; Narimissa 
et al. 2020a, 2020b) and melts of other polymers than poly-
styrene (Narimissa et al. 2021).

Alternatively, Yaoita et al. (2012) and Ianniruberto et al. 
(2012) proposed that the monotonic thinning behavior 
observed in the melt state is due to an alignment-induced 
reduction of the monomeric friction under fast elongational 
flow. According to this hypothesis, stretching of the chains 
in fast flows induces strong local anisotropy and results in 
a decrease of the (monomeric) friction coefficient of the 
chains. This should mainly affect entangled polymer melts 
since in solution the small molecules do not align. However, 
recent work by Huang et al. (2013b) suggested that in solu-
tions of polystyrene in oligomeric styrene, friction reduction 
may also take place via nematic interactions between the 
oligomers and the polymer molecules, and the importance 
of this process was suggested to increase with the size of the 
oligomers, i.e., longer oligomeric chains would increase fric-
tion reduction and thereby decrease the elongational viscos-
ity. Subsequently, an empirical nematic interaction param-
eter was included in the nonlinear tube model, defined as 
the ratio of the order parameter of the short molecules to 
the average order parameter of the system. The resulting 
model allowed obtaining a more accurate description of 
the properties of various polystyrene melts and solutions 
(Ianniruberto et al. 2020).

From the above, it is evident that the role of solvent 
molar mass on the reduction of extension hardening when 
going from polystyrene solutions in oligomeric styrene 
to polystyrene melts, is of prime interest in developing 
molecular constitutive equations for polymer melts and 
solutions and in advancing polymer physics. While 
Nielsen et  al. (2008) investigated bidisperse polymer 
blends consisting of 4 and 14% of a long-chain component 
with a molar mass of 390 kg/mol in a matrix of a short-
chain component with a molar mass of either 50 or 100 
kg/mol, Shahid (2018) and Shahid et al. (2019) explored 
systematically the transition from polymer solutions to 
polymer melts in uniaxial extension by means of diluting 
10% of long polystyrene chains (PS-820k) in matrices 
ranging from an unentangled styrene oligomer OS8.8k with 
a molar mass of 8.8 kg/mol to entangled polymer melts with 
different molar masses from ranging from 23 to 73 kg/mol. 
The elongation rates were selected in such a way that friction 
reduction is solely governed by the suggested long-chain 
matrix nematic interaction, i.e., the reciprocal Rouse times 
of the matrices exceed the elongation rates, so that the short 
chains should not stretch over the entire range of investigated 
strain rates. Based on their experimental results, the authors 
concluded that all PS blends have the same apparent steady-
state elongational viscosity when compared at the same 
distance in temperature from the glass transition temperature, 
and that as long as the matrix exceeds a “critical” molar 
mass (estimated as 4 kg/mol) the hypothetical nematic 
interaction of the long chains with the matrix does not exist 
or is at least constant and independent of the molar mass and 
entanglement state of the matrix molecules.

These investigations were made possible due to sub-
stantial progress in measuring the elongational viscosity of 
polymer melts and solutions up to high Hencky strains by 
use of the filament stretching rheometer with locally con-
trolled deformation and deformation rate developed by Has-
sager and coworkers (Huang et al. 2016a). By measuring 
the local diameter of the polymer sample during elongation, 
the true Hencky strain and strain rate can be determined 
and controlled, while by elongational rheometers prescrib-
ing the global deformation of the filament only nominal 
values of strain and strain rate can be obtained. A further 
achievement of the filament stretching rheometer as shown 
by Huang et al. (2016b, Huang and Hassager 2017) and 
Huang (2019) was that when the true Hencky strain rate 
is controlled rather than the nominal Hencky rate, the four 
failure zones of the so-called Malkin plot (Malkin and Petrie 
1997) (purely viscous zone, viscoelastic zone with failure by 
necking, rubbery zone, and glassy zone) are reduced to just 
two possible states: liquid or solid, and a clear distinction 
exists between liquid-like behavior (unlimited steady-state 
elongation) and solid-like behavior (brittle fracture). A quan-
titative criterion for brittle fracture of entangled polymer 
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liquids (Wagner et al. 2018) was recently extended by taking 
finite chain extensibility and polymer fraction of the solu-
tions into account (Wagner et al. 2021a, 2021b). Filament 
rupture follows from the scission of primary C–C bonds 
when the strain energy of an entanglement segment reaches 
the bond-dissociation energy of the covalent bond. Thermal 
fluctuations lead to a short-time concentration of the strain 
energy on one C–C bond of the entanglement segment, and 
the chain ruptures.

In this paper, we present a quantitative analysis of the 
elongational viscosity data of Shahid et al. (2019) of well-
characterized blends consisting of 10% mass fraction of 
monodisperse polystyrene PS-820k (molar mass of 820 kg/
mol) and 90% matrix polystyrenes with a molar mass of 
8.8, 23, 34, and 73 kg/mol, respectively. Modeling is based 
on the extended interchain pressure (EIP) model including 
the effects of finite chain extensibility, and on the recently 
developed fracture criterion for brittle fracture of polymer 
melts and solutions (Wagner et al. 2021a, 2021b).

Experimental data and LVE characterization

The molecular characteristics of the polystyrene samples and 
the blends prepared are summarized in Table 1 and the data 
are taken from Shahid (2018) and Shahid et al. (2019). The 
blends are named in the form of PS-820k/X, where 820k 
characterizes the molar mass of the high molar mass polysty-
rene with 10 mass % in the blend, and X the molar mass of 
the matrix styrene oligomer or polystyrene with 90% in the 
blend. The number of entanglements of the monodisperse 
melts was calculated from the ratio of the molar mass M to 
the entanglement molar mass Me,

In the blends, the number of long-chain/long-chain entan-
glements is given by

with ML being the molar mass of PS-820k and ϕ = 0.1the 
polymer fraction of the long chains in the blends. Follow-
ing Shahid et al. (2019), a value of Me = 15  kg/mol is used 
here. The number of entanglements of the short chains with 
long and short chains remains nearly constant at ZS = Z. 
The Rouse time, which is the longest relaxation time of an 
unentangled chain, is very important in elongational flow as 
polymer chains are presumed to be stretched when the flow 
rate exceeds the reciprocal of this characteristic time. In the 
tube model (Doi and Edwards 1978, 1979), this relaxation 
time is given as

(1)Z =
M

Me

(2)ZLL =
ML

Me

�

where τe is the relaxation time of a chain segment 
between entanglements. The value of τe depends on the iso-
Tg condition and a value of τe = 0.12 s at Te = Tg + 31.4 K 
was used by Shahid et al. (2019) leading to the Rouse times 
presented in Table 1. They assumed that the short chains 
start to stretch at a Weissenberg number Wi = 𝜀̇𝜏R = 1 , i.e., 
at elongation rates of 0.35, 1.59, 3.45, and 25 s−1 for the 
matrix polymers of molar mass equal to 73, 34, 23, and 8.8 
kg/mol, respectively. Therefore, in order to avoid stretching 
of the short components, the highest strain rate used was 
0.2 s−1. However, we note from our earlier analysis (Wagner 
et al. 2021b) of polystyrene solution data (André et al. 2021) 
that stretching starts already at Wi ≅ 1/3, i.e., at 𝜀̇ ≥ 0.1 s−1 
for PS-73k. Also given in Table 1 is the Graessley param-
eter Gr = Z

L
∕Z3

S
 with ZLbeing the total number of entangle-

ments of a chain of PS-820k with ZL = ML/Me in the melt 
state, largely independent of the matrix as long as the matrix 
chains are long enough to be entangled. At small values of 
Gr relaxation by reptation along the tube formed by long and 
short chains dominate, while at large values of the Graessley 
parameter, terminal relaxation via constraint release by the 
short chains is the dominant relaxation mechanism for the 
long chains (Struglinski and Graessley 1985).

Table 1 Characterization of polystyrene samples and blends

Molar mass[kg/mol] PDI [−] Z [−] Tg [°C] τR at Te °C [s]
820 1.02 54.7 106.6 359
73 1.08 5 105.6 2.9
34 1.11 2 103.3 0.63
23 1.09 1 92.4 0.29
8.8 1.10 0 94.6 0.04

Blend ZLL/ZS Gr Tg [°C] Te [°C]
PS-820k/73k 5/5 0.4 106.6 138
PS-820k/34k 5/2 6.8 104.7 136
PS-820k/23k 5/1 55 103.5 135
PS-820k/8.8k 5/0 - 98.6 130

Details of mechanical spectroscopy and elongational vis-
cosity measurements are presented in (Shahid 2018). Elon-
gational measurement using a VADER 1000 (Huang et al. 
2016a) were performed at iso-Tg temperatures Te, i.e., tem-
peratures with equal distance to the glass transition tempera-
ture Tg with Te = Tg + 31.4 K. Storage (G′) and loss modulus 
(G″) were measured at several temperatures between 120 
and 170 °C, and the resulting mastercurves were shifted to 
Te by time-temperature shifting. From the mastercurves of G′ 
and G″ as reported by Shahid (2018), we obtain parsimoni-
ous relaxation spectra G(t) with

(3)�R = Z2�e
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for characterization of the linear viscoelasticity (LVE) in 
the experimentally accessible window. The partial moduli gi 
and relaxation times τi as determined by the IRIS software 
(Winter and Mours 2006) are presented in Table 2 and result 
in excellent agreement with the linear-viscoelastic data of G′ 
and G″ as shown in Fig. 1. The mastercurves of G′ and G″ 
of PS-820k/8.8k are compared with those of PS-820k/23k 
(Fig. 1a), PS-820k/34k (Fig. 1b), and PS-820k/73k (Fig. 1c). 
The linear viscoelastic data clearly show a fast relaxation 
of the short matrixes at high frequencies, followed by the 
relaxation of the long chains at lower frequencies. The long 
chains in sample PS-820k/8.8k with about 5 entanglements 
show the indication of a rubbery plateau with two crossovers 
of G′ and G″ at a modulus of about 103 Pa. This rubbery pla-
teau gradually diminishes in the blends with longer matrix 
molecules of PS-23k (Fig. 1a) and PS-34k (Fig. 1b), and it 
disappears totally in the case of matrix PS-73k (Fig. 1c). 
Despite the fact that the same concentration of long chains 
is used for all blends, the terminal relaxation time increases 
with increasing molar mass of the matrix chains due to the 
entanglements formed between long and short chains and 
therefore the slower relaxation of the long chains. With the 
increasing molar mass of the matrix, a rubbery plateau is 
emerging at a modulus of about 105 Pa, and this signature 
of entangled chains is moving to lower frequencies with 
increasing molar mass of the matrix. For PS-820k/73k, the 
relaxation from the high modulus plateau is totally over-
shadowing the plateau of the long chains (Fig. 1c). How-
ever, the effect of the long chains is still clearly visible in 
Fig. 2, which shows the loss tangent δ as a function of the 
absolute value of the complex modulus G* at Te = Tg + 31.4 
K. The minimum at high G* indicates the plateau modu-
lus of PS melt at about GNm ≅ 2.5 ⋅ 105  Pa (Wagner et al. 
2021b), while the minimum at low G* represents the pla-
teau modulus of the diluted long chains of PS-820k with 
GN = GNmϕ2 ≅ 2.5 ⋅ 103  Pa. While the high G* minimum 
becomes deeper with the increasing molar mass of the 
matrix, the low modulus minimum is increasingly shallower 
due to the slower relaxation of the longer matrix chains. The 
relaxation modulus G (t) according to Eq. (4) shows a two-
step relaxation process (Fig. 3), the first step being associ-
ated with the relaxation of the matrix polymer, the second 
step with the relaxation of the PS-820k chains. The first step 
is shifted to shorter times with decreasing molar mass of the 
matrix until it merges with the transition from the glassy 
state in the case of matrix OS-8.8k. Even though the relaxa-
tion of the matrix chains is much faster than the relaxation 
of the PS-820k chains, the relaxation of the long chains is 
increasingly slowed down by entanglements with the matrix 
chains, when going from a matrix of OS-8.8k to PS-73k. 

(4)G(t) =
∑

i=1

gi exp
(
−t∕�i

) This is in line with the Graessley parameter Gr = ZL∕Z
3
S
 as 

presented in Table 2. While at large values of Gr relaxa-
tion occurs predominantly via constraint release by the short 
chains, reptation along the tube formed by long and short 
chains determines increasingly relaxation of the long chains 
at smaller values of this parameter.

Table 2 Discrete relaxation spectra from mastercurves of G′ and G″ at 
Te = Tg + 31.4 K obtained by IRIS (Winter and Mours 2006)

PS-820k/8.8k PS-820k/23k PS-820k/34k PS-820k/73k

gi [Pa] τi [s] gi [Pa] τi [s] gi [Pa] τi [s] gi [Pa] τi [s]

9.571e + 6 
3.042e − 4

2.708e + 7 
1.922e − 4

1.122e + 8 
4.783e − 5

2.933e + 7 
2.148e − 4

3.212e + 5 
2.120e − 2

6.434e + 5 
4.556e − 3

7.100e + 5 
4.925e − 3

7.133e + 5 
3.898e − 3

1.618e + 5 
3.542e − 2

2.734e + 5 
2.260e − 2

2.485e + 5 
2.579e − 2

3.107e + 5 
1.645e − 2

8.389e + 3 
3.649e − 1

1.708e + 5 
1.328e − 1

1.330e + 5 
1.353e − 1

1.736e + 5 
7.664e − 2

3.708e + 3 
1.686e + 0

5.073e + 4 
3.015e − 1

1.417e + 5 
6.266e − 1

8.534e + 4 
6.008e − 1

1.593e + 3 
9.013e + 0

1.091e + 4 
1.099e + 0

6.461e + 3 
5.783e + 0

5.672e + 4 
2.825e + 0

7.174e + 2 
4.443e + 1

3.567e + 3 
7.791e + 0

2.254e + 3 
3.823e + 1

7.452e + 4 
8.545e + 0

5.517e + 2 
1.606e + 2

1.214e + 3 
4.295e + 1

1.128e + 3 
3.385e + 2

4.173e + 3 
5.916e + 1

6.641e + 2 
7.424e + 2

7.751e + 2 
2.151e + 2

7.769e + 2 
1.786e + 3

1.607e + 3 
3.484e + 2

1.177e + 1 
1.140e + 4

6.759e + 2 
7.957e + 2

3.503e + 1 
7.185e + 3

7.852e + 2 
2.205e + 3

2.830e + 2 
3.567e + 3

3.610e + 2 
6.150e + 3

The extended interchain pressure (EIP) 
model and the fracture criterion

In the following, we give a short summary of the EIP model 
and the fracture criterion for monodisperse polymer melts 
and solutions. For details, we refer to the original publica-
tions (Wagner et al. 2021a, 2021b). As we will show, this is 
sufficient for modeling of the elongational viscosity of the 
bidisperse blends of PS-820k is considered long as the matrix 
polymer chains are not stretched.

The extended interchain pressure (EIP) model

The extended interchain pressure (EIP) model for monodis-
perse polymer melts and solutions is a generalized tube seg-
ment model with strain-dependent tube diameter (Wagner 
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Fig. 1   Comparison of data of 
G′ (full symbols) and G″ (open 
symbols) and fit (lines) by 
parsimonious relaxation spectra 
(Table 2) at Te = Tg + 31.4 K
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1990; Wagner and Schaeffer 1992; Wagner et al. 2001, 2003, 
2005; Narimissa et al., 2021). The extra stress tensor σ(t) at 
time t with consideration of finite chain extensibility effects 
(Rolon-Garrido et al. 2006) is given by a history integral of 
the form:

The strain measure SIA
DE

 represents the contribution to the 
extra stress tensor originating from the affine rotation of the 
tube segments assuming “independent alignment (IA)” (Doi 
and Edwards 1978, 1979), and is given by

with S(t, t') being the relative second order orientation 
tensor. u' u' is the dyad of a deformed unit vector u' = u' (t, 
t'),

(5)�(t) =
∫

�G(t − t’)

�t’
f� SIA

DE
(t, t’)dt’

(6)SIA
DE
(t, t’) ≡ 5

⟨
u’u’

u’2

⟩

o

= 5S(t, t’)

(7)�’ = F
−1
t

⋅ �

F
−1
t

= F
−1
t
(t, t’) is the relative deformation gradient ten-

sor and u' is the length of u'. The orientation average is 
indicated by <…>0,

i.e., an average over an isotropic distribution of unit 
vectors u.

λ = λ(t, t') represents the inverse of the relative tube 
diameter a/a0, and also the relative length of a deformed 
tube segment (Rolon-Garrido et al. 2006),

t′ indicates the time when the tube segment was created 
with equilibrium tube diameter a0 and equilibrium length l0.

In the Gaussian limit, the molecular stress function f, 
i.e., the relative tension in the chain, is equal to the tube 
stretch λ. However, this is valid only as long as λ <  < λ  max, 

(8)

(9)𝜆(t, t ́) =
a0

a(t, t ́)
=

l(t, t’)

l0

Fig. 2   Comparison of data 
(symbols) and fit (lines) of loss 
tangent δ as a function of the 
absolute value of the complex 
modulus G* by parsimonious 
relaxation spectra (Table 2) at Te 
= Tg + 31.4 K

⟨… ⟩
o
≡

1

4� �
[… ] sin �

o
d�

o
d�

o
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where � max ≅
√
N
e
 represents the maximum stretch (i.e., 

a fully extended chain), and Ne the number of Kuhn mon-
omers in an entanglement segment. Nonlinear elasticity 
caused by finite extensibility (FENE) is implemented in 
the EIP model in the following way:

c is a nonlinear spring coefficient, representing a rela-
tive Padé inverse Langevin function with (Cohen 1991)

In agreement with our earlier work (Wagner et  al. 
2021a, 2021b), we take the number of Kuhn steps per 
entanglement in polystyrene melt as Nem = 21.8, corre-
sponding to � max ≅

√
Nem∕� = 14.8 for a polystyrene 

solution with a polymer volume fraction of ϕ = 0.1. While 
S
IA

DE
 is determined directly by the deformation history 

according to Eqs. (6) and (7), λ is found as solution of 

(10)f = c(�)�

(11)c =

(
3 −

�2

�2
max

)
⋅

(
1 −

1

�2
max

)

(
3 −

1

�2
max

)
⋅

(
1 −

�2

�2
max

)

an evolution equation taking into account affine tube seg-
ment deformation balanced by Rouse relaxation and the 
interchain pressure:

The first term on the right-hand side describes affine 
deformation with κ being the deformation rate tensor, the 
second term Rouse relaxation, and the third term represents 
the interchain pressure contribution (Wagner et al. 2021a, 
2021b). We note that the interchain pressure term, which is 
limiting chain stretch, is proportional to the fourth power of 
the polymer fraction ϕ, and therefore solutions with lower 
ϕ show higher maximal stretches. Equation (12) reduces to 
the evolution equation of the EIP model of Narimissa et al. 
(2020a) in the Gaussian limit, i.e., when c = 1 and f = λ. 
Equations (5) and (12) represent the EIP model with finite 
chain extensibility and are solved numerically.

At high Weissenberg numbers Wi = 𝜀̇𝜏
R
 and at large 

deformations, i.e. when the equilibrium stretch is reached 

(12)

��

�t
= �(� ∶ S) −

� − 1

�R

(
1 −

2

3
�4

)
−

2�4

9�R
�2

(
�f 2 − 1

)

Fig. 3   Relaxation modulus G(t) 
as a function of time t as cal-
culated from relaxation spectra 
(Table 2) at Te = Tg + 31.4 K
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and therefore ∂λ/∂t = 0, it follows from Eq. (12) that the 
product of molecular stress f and stretch λ is proportional to 
the square root of Wi and inverse proportional to the square 
of the polymer fraction:

and the tensile stress is expected to reach an asymptotic 
value of

From Eq. (14), and considering that GN = GNmϕ2, the uni-
versal asymptotic relation for the high Wi tensile stress of 
melts and solutions of Narimissa et al. (2020a) is recovered

with GNmbeing the plateau modulus of the melt.

The fracture criterion

The thermal energy w eq at a temperature T of 403 K (130 
°C) is

with Boltzmann’s constant k = 1.38 ⋅ 10−23  J/K. On the 
other hand, the bond dissociation energy of a single carbon-
carbon bond in hydrocarbons is (Wagner et al. 2018)

with Avogadro’s number NA = 6.02 × 1023. Thus, the bond 
energy U is about 35 times larger than the thermal energy 
weq at 130 °C, which is why the polymer chain will not rup-
ture due to Brownian motion at equilibrium.

As explained by Wagner et al. (2021a, 2021b), the strain 
energy of a chain segment is taken as

with Nem being the number of Kuhn monomers of an 
entanglement segment in the melt. When the strain energy 
of the segment reaches the critical energy:

the total strain energy of the chain segment will be con-
centrated on one C–C bond by thermal fluctuations, and this 
bond then ruptures. Stretch and tension are relative quan-
tities depending on t and t′, and therefore the strain ener-
gyw = w(t, t') is also a relative quantity. Chain segments with 
long relaxation times, i.e., those preferably in the middle 

(13)f� = c�2 =
3

2
�−2

√
2Wi

(14)� = 5GNf� =
15

2
GN�

−2
√
2Wi

(15)� =
15

2
GNm

√
2Wi

(16)weq = 3 kT = 1.67 ∙ 10−20J

(17)U =
348 kJ

NA

= 5.78 ∙ 10−19J ≅ 35weq

(18)w
(
Nem

)
= 3kTf��

(19)wc = 3kTfc�c� = U

of the chain, will be the first to reach the critical energy wc 
and will fracture. As soon as the strain energy accumulated 
between the start-up of deformation and the time t = tc of 
fracture reaches the critical energy wc, a sufficient concentra-
tion of locally ruptured chains is reached, and crack initia-
tion will occur. Crack initiation is followed by crack growth, 
which leads within a very short time (about 200 ms accord-
ing to Huang et al. 2016b) to brittle fracture of the sample. 
At time t = t c, the critical Hencky strain at fracture, 𝜀

c
= 𝜀̇ t

c
 , 

is reached and the critical tensile stress at fracture, σc = σ(tc), 
is given by the stress equation (5).

From the fracture hypothesis defined by Eq. (19), the max-
imum achievable product of critical molecular stress fc and 
critical stretch λc is obtained (Wagner et al. 2021a, 2021b),

We called this fracture mode “entropic fracture” 
(Wagner et al. 2018), as it is caused by thermal fluctua-
tions, in contrast to the “enthalpic fracture” hypothesis 
of Lake and Thomas (1967) as modified by Mazich and 
Samus (1990). These authors assumed that all bonds are 
fully stretched at fracture and when a chain with N C–C 
bonds between two entanglement points ruptures, the 
strain energy wc = NU corresponding to the bond energy 
of all N C–C bonds in the entangled chain segment is 
dissipated.

Combining the fracture criterion of Eq. (20) with the 
asymptotic tensile stress at high Wi and large stretch accord-
ing to Eq. (14), we expect at sufficiently fast and large elon-
gations an asymptotic critical tensile stress σc at fracture,

From the first and last term of this identity and consid-
ering that GN = GNmϕ2, the asymptotic critical stress σc is 
obtained as

For ϕ = 0.1 and taking the plateau modulus of polystyrene 
melt as GNm = 2.5 ⋅ 105    Pa (Wagner et al. 2021a, 2021b), the 
asymptotic critical elongational stress growth coefficient �+

Ec
 

at fracture is given by

The reduced critical Weissenberg number Wic for the 
onset of fracture

(20)fc�c� = c�2
c
� =

U

3kT
≅ 35

(21)�c = 5GNfc�c =
15

2
GN�

−2
√
2Wic ≅ 5GN

U

3kT
�−1

(22)�c = 5GNm�
U

3kT
≅ 175GNm�

(23)𝜂+
Ec
(𝜀̇) ≅

175GNm𝜙
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=
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Pa s

(24)Wic =
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(
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3kT
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is obtained from the two last terms of Eq. (21). Wic is 
the minimum Weissenberg number for fracture to occur, 
i.e., fracture is expected only for Wi ≥ Wi c. For ϕ = 0.1 and 
the Rouse time τR = 359  s of PS-820k (Table 1), the critical 
elongation rate 𝜀̇

c
 for the onset of fracture is given by:

Thus, according to the fracture criterion, in the asymp-
totic limit of Eq. (21) fracture is expected to occur for 
𝜀̇ ≥ 0.008 s−1 ≅ 0.01 s−1.

Comparison of experimental data and model 
predictions

In the following, we compare predictions of the extended 
interchain pressure (EIP) model, Eqs. (5) and (12), and the 
fracture criterion, Eq. (20), with experimental evidence. 
Figure 4 presents the elongational stress growth coefficient 
�+
E
(t) as a function of time t for solution PS-820k/8.8k. 

Excellent agreement of data and predictions is seen for the 

(25)𝜀̇c ≅
272𝜙2

𝜏R
= 0.008 s−1

elongational stress growth coefficient, where predictions and 
experimental data are nearly indistinguishable, except at the 
lowest strain rate of 0.003 s−1. We note that the prediction 
for low strain rates is very sensitive to the long-time tail of 
the relaxation spectrum, which might not have been fully 
resolved by mechanical spectroscopy. While at elongation 
rates of 0.003 and 0.01 s−1, a steady-state elongational vis-
cosity is predicted, filament rupture at an elongation rate of 
0.2 s−1 is evident. The elongational stress growth coefficient 
at elongation rates of 0.03 and 0.06 s−1 shows a maximum 
and then a drop of the viscosity, which may be interpreted 
as a delayed fracture. At elongation rates of 0.09 and 0.01 
s−1 there is an indication of necking, i.e., above a certain 
deformation, the elongational stress growth coefficient �+

E
(t)

shows a distinctive kink to a lower slope of �+
E
(t) before the 

filament finally fails.
The fracture criterion of Eq (20) is found to be in gen-

eral agreement with experimental evidence, and fracture is 
seen to occur at elongation rates of 𝜀̇ > 0.01 s−1 in agree-
ment with Eq. (25) predicting that fracture occurs at elon-
gation rates 𝜀̇ ≥ 0.01 s−1 . Figure 4 shows the asymptotic 
critical stress growth coefficient �+

Ec
 at fracture according 

to Eq. (23). The asymptotic state of �+
Ec

 predicted is reached 

Fig. 4   Comparison of data 
(symbols) and predictions 
(lines) of elongational stress 
growth coefficient �+

E
(t) for 

blend PS-820k/8.8k at Te = 
130 °C. Short dotted line is 
prediction of �0

E
(t) , long dotted 

line is prediction of �+
E
(t) for 

𝜀̇ = 1 s
−1 . Short-long dotted 

line with dots indicates the 
asymptotic elongational stress 
growth coefficient �+

Ec
 at fracture 

according to Eq. (23)
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at 𝜀̇ > 0.1 s−1 , while at lower elongation rates, the stress 
growth coefficient is smaller due to relaxation processes. We 
conclude that for PS-820k/8.8k, data and predictions of the 
EIP model including the fracture criterion are in agreement 
with experimental accuracy, and we note that this modeling 
is based exclusively on linear-viscoelastic characterization, 
the Rouse time of PS-829k, and the ratio of strain energy to 
thermal energy.

The data of the elongational stress growth coefficient 
�+
E
(t) as a function of time t for blend PS-820k/23k are 

shown in Fig. 5. Comparison of data at Te = 135 °C and 
predictions of the EIP model for PS-820k/8.8k at Te = 130 
°C are presented in Fig. 5a. This comparison is possible as 
solution PS-820k/8.8k and blend PS-820k/23k were meas-
ured at iso-Tg conditions and therefore the Rouse time of the 
long chains in both matrices is exactly the same (Wagner 
2014, Shahid et al 2019). Good agreement of data and pre-
dictions is seen for the elongational stress growth coefficient 
at higher strains, while the linear-viscoelastic start-up of 
data and predictions disagrees considerably because of the 
higher matrix viscosity of PS23k in comparison to OS8.8k. 
As suggested by Shahid et al. (2021), the early stretching of 
the long chains of PS-820k may be masked by the linear-
viscoelastic contribution of the matrix chains of PS-23k. We 
take this difference in the linear-viscoelastic start-up of the 
elongational viscosities simplistically into account by adding 
the LVE contribution of PS-820k/M with M = 23 k to the 
�+
E
(t) prediction of PS-820k/8.8k, followed by subtracting 

the LVE contribution of PS-820k/8.8k, i.e.,

�+
E
(PS − 820k∕8.8k) is the elongational stress growth 

coefficient of PS-820k/8.8k based on the relaxation time 
spectrum of PS-820k/8.8k as presented in Fig. 1, and the 
LVE contributions �0

E
 are given by

with partial moduli giand relaxation times τi for the 
blend PS-820k/M (with M = 23 k) and the solution PS-
820k/8.8k (PS-820k/M with M = 8.8 k) as given in Table 2. 
We call Eq. (26) modeling approach “A” in the following. 

(26)
�+
E
(t) = �+

E
(PS − 820k∕8.8k)

+ �0
E
(PS − 820k∕M) − �0

E
(PS − 820k∕8.8k)

(27)�0
E
(PS − 820k∕M) = 3

∑

i

gi�i
(
1 − exp

(
−t∕�i

))
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Fig. 5   Comparison of data (symbols) and predictions (lines) of elon-
gational stress growth coefficient �+

E
(t) for blend PS-820k/23k at Te 

= 135 °C. Short dotted lines are predications of �0
E
(t) . a Full lines 

are predictions for PS-820k/8.8k from Eqs. (5) and (12); b and c full 
lines are predictions for PS-820k/23k from Eq. (26); long-short dot-
ted lines are predictions of Eqs. (5), (12), and (20) with relaxation 
spectrum of PS-820k/23k; ϕ = 0.1 (b) and ϕeff = 0.13(c)
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When accounting for the difference in the LVE behaviors of 
PS820k/23k and PS-820k/8.8k using Eq. (26), good agree-
ment between data of PS-820k/23k with not only the LVE 
predictions but also with the elongational stress growth coef-
ficient �+

E
(t) at all strains is obtained (full lines in Fig. 5b and 

5c), except at the strain rate of 0.003 s−1. We note also that 
the predictions of the stress growth coefficient are slightly 
shifted to the right of the data. These effects will become 
more significant with increasing molar mass of the matrix as 
shown below. It is a consequence of the fact that the relaxa-
tion of the long chains is slowed down by the short chains as 
shown in Fig. 3, and therefore the relaxation time spectrum 
of blend PS-820k/23k has an enhanced long-time tail com-
pared to PS-820k/8.8k.

Instead of correcting the LVE behavior by use of Eq. 
(27), we take alternatively the linear-viscoelastic interac-
tions between the long chains of PS-820k and the matrix 
chains of PS-23k into account and use the spectrum of PS-
820k/23k in the stress equation (5). Excellent agreement 
of data and predictions of the elongational stress growth 
coefficient for𝜀̇ ≥ 0.01 s−1 is obtained, and agreement for 
𝜀̇ = 0.003 s−1 is much improved (Fig. 5b). However, the 
steady-state elongational viscosity at 𝜀̇ = 0.01 s−1 is now 
overpredicted. This is due to the increased number of entan-
glements along the PS-820k chains, which are not only 
formed by entanglements of long chains with themselves, 
but also by interactions of long and short chains. According 
to the EIP model, an increased number of entanglements 
will lead to enhanced interchain pressure limiting maximal 
stretch (Narimissa et al. 2020a). We quantify the effect of 
the entanglements formed by the matrix polymer along the 
long chains of PS-820k in the following way: From Eq. (1) 
the total number of entanglements of a test chain of PS-820k 
is ZL = ML/Me in the melt state, largely independent of the 
matrix as long as the matrix chains are long enough to be 
entangled. The number of entanglements of the test chain 
with other long chains is from Eq. (2) ZLL = ϕ ZL, while the 
number of short chains being entangled with the test chain 
is given by ZLS = (1 − ϕ) ZL. The total mass of the matrix 
chains with molar mass MS being entangled with the test 
chain is therefore MLS = (1 − ϕ) ZL MS. We make the assump-
tion that the effect of entanglements of the test chain with the 
matrix chains on the interchain pressure can be represented 
by an equivalent number ZP of pseudo-PS-820k chains with 
the same total molar mass as the total molar mass of the 
short chains, i.e., ZPML ≡ MLS = (1 − ϕ)ZLMS. Thus, the total 
number of effective entanglements of the test chain is Zeff = 
ZLL + ZP = ZL[ϕ + (1 − ϕ)MS/ML], and the effective polymer 
fraction of PS-820k, ϕeff = Zeff/ZL, is given by

(28)�eff = � + (1 − �)MS∕ML

We take this effect of an increased number of entan-
glements of the long chains into account by replacing the 
polymer fraction ϕ = 0.1 in the stretch equation (12) and in 
the fracture criterion (20) by the effective polymer fraction 
ϕeff ≥ 0.1 of Eq. (28) and call this modeling approach “B”. 
Equation (28) constitutes a linear mixing rule which does not 
depend on the entanglement molar mass Me, and features the 
correct asymptotic values of ϕeff = 1 for MS = ML, i.e., when 
the “matrix” consists of long chains, and ϕeff = ϕ for MS → 0, 
i.e., when the matrix is not entangled, such as in the case of 
OS-8.8k. For matrix PS-23k, Eq. (28) results in a value of 
ϕeff = 0.13, and nearly quantitative agreement of data and 
predictions is achieved as shown in Fig. 5c. We note that 
the exact value of the polymer fraction has only an insignifi-
cant influence on the elongational stress growth coefficient, 
which is largely independent of ϕ as seen by comparing the 
start-up viscosities of Fig. 5b to 5c. The interchain pres-
sure term in the stretch Eq. (12) has only an effect at large 
stretches, and together with the fracture criterion of Eq. (20) 
determines the value of the maximal elongational viscosity.

Similarly, the data of the elongational stress growth coef-
ficient �+

E
(t) as a function of time t for blend PS-820k/34k 

are shown in Fig. 6a. The data are in good agreement with 
predictions of the EIP model for PS-820l/8.8k at higher 
strains, while the disagreement of LVE data and predictions 
increases further due to the higher matrix viscosity of PS34k 
compared to OS8.8k. When taking the difference in the LVE 
behaviors of PS820k/34k and PS-820k/8.8k into account 
by Eq. (26) with �0

E
(PS − 820k∕M) = �0

E
(PS − 820k∕34k) 

(model approach A), good agreement between data of PS-
820k/34k and predictions is again obtained for the elonga-
tional stress growth coefficient �+

E
(t) , except at the strain rate 

0.003 s−1 (Fig. 6b and 6c). Again we note that predictions 
are shifted to the right of the experimental data.

Modeling approach B, i.e., using the spectrum of PS-
820k/34k in the stress equation (5) results in the excellent 
agreement of data and predictions for the elongational stress 
growth coefficient for 𝜀̇ ≥ 0.01 s−1 , where predictions (long-
short dotted lines) go through the experimental data, and 
improved agreement for 𝜀̇ = 0.003 s−1 (Fig. 6b). But again, 
the steady-state viscosity at 𝜀̇ = 0.01 s−1 is significantly 
overpredicted. When replacing the polymer fraction ϕ = 0.1 
in the stretch equation (12) as well as in the fracture crite-
rion (20) by the effective polymer fraction of ϕeff = 0.14 as 
obtained from Eq. (28), nearly quantitative agreement of 
data and predictions is achieved within experimental accu-
racy (Fig. 6c).

Comparison of data (symbols) and predictions (lines) 
of the elongational stress growth coefficient �+

E
(t) for 

blend PS-820k/73k are shown in Fig. 7. Although there 
is a large discrepancy between data of PS-820k/73k and 
predictions for PS-820k/8.8k in the LVE and the start-up 
regime, qualitative agreement of data and predictions is 
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still observed at higher strains (Fig. 7a). Modeling approach 
A, i.e., accounting for the difference in the LVE behav-
iors of PS820k/73k and PS-820k/8.8k by use of Eq. (26) 
with �0

E
(PS − 820k∕M) = �0

E
(PS − 820k∕73k) , leads to 

largely improved agreement of data and predictions except 
at the strain rate of 0.003 s−1 (Fig. 7b and 7c). Modeling 
approach B, i.e., using the spectrum of PS-820k/73k in the 
stress equation (5) results in excellent agreement of data 
and predictions for the elongational stress growth coeffi-
cient at elongational rates of 0.06 s−1 ≥ 𝜀̇ ≥ 0.01 s−1 and 
qualitative agreement for 𝜀̇ = 0.003 s−1 and 𝜀̇ ≥ 0.09 s−1 
(Fig. 7b), but the maxima of the elongational stress growth 
coefficient are strongly overpredicted. When replacing the 
polymer fraction ϕ = 0.1 in the stretch equation (12) and in 
the fracture criterion (20) by an effective polymer fraction 
of ϕeff = 0.18resulting from Eq. (28), improved agreement of 
data and predictions is achieved (Fig. 7c). For 𝜀̇ ≥ 0.09 s−1 , 
strain hardening is predicted to start significantly earlier than 
observed experimentally, which is related to the stretching 
of the matrix chains as expected for Wi ≥ 1/3 corresponding 
to 𝜀̇ ≥ 0.1 s−1.

Conclusion

The elongational viscosity data of a well-characterized set of 
bidisperse polystyrene blends consisting of 10% mass frac-
tion of monodisperse polystyrene PS-820k (molar mass of 
820 kg/mol) and 90% matrix polystyrene with molar masses 
of 8.8, 23, 34, and 73 kg/mol, respectively, were analyzed 
by the extended interchain pressure (EIP) model along with 
the finite chain extensibility and entropic fracture criterion 
for brittle fracture of polymer systems (Wagner et al. 2021a, 
2021b). Modeling based exclusively on the linear-viscoe-
lastic characterization of PS820k/8.8k, the Rouse time of 
PS-820k, and the ratio between strain energy and thermal 
energy results in general agreement of experimental data 
and predictions of the maximal viscosity, and confirms the 
qualitative conclusions of Shahid et al. (2021) that strain 
hardening of the blends is mainly determined by the stretch-
ing of the PS-820k chains in the experimental window, inde-
pendent of the molar mass of the matrix. The same behavior 
was observed earlier by Nielsen et al. (2008) for two blends 
of 14% PS390k (390 kg/mol) with either 86% of PS50k 
(50 kg/mol) or 86% of PS100k (100 kg/mol). Both blends, 
PS390k/50k and PS390k/100k show the same steady-state 
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Fig. 6   Comparison of data (symbols) and predictions (lines) of elon-
gational stress growth coefficient �+

E
(t)for blend PS-820k/34k at Te = 

136 °C. Short dotted line is predication of �0
E
(t) . a Full lines are pre-

dictions for PS-820k/8.8k from Eqs. (5) and (12); b and c full lines 
are predictions for PS-820k/34k from Eq. (26); long-short dotted 
lines are predictions of Eqs. (5), (12), and (20) with relaxation spec-
trum of PS-820k/23; ϕ = 0.1 (b) and ϕeff = 0.14(c)
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elongational viscosity at sufficiently large 𝜀̇ , which is obvi-
ously determined by the stretching of the high molar mass 
chains of PS390k, while the start-up behavior is influenced 
by the different linear-viscoelastic extensional stress growth 
coefficients of PS50k and PS100k (see Fig. 3 of Narimissa 
et al. 2020a). For the bidisperse blends of PS-820k and lower 
molar mass polystyrenes investigated here, the simple addi-
tion/subtraction of �0

E
(t) according to Eq. (26) of the mod-

eling approach A has no effect on the stretching of the long 
chains but results in good (though not quantitative) agree-
ment of experiments and predictions of the elongational 
stress growth coefficient. This confirms the conjecture of 
Shahid et al. (2021) that early stretching of the long chains 
of PS-820k is masked by the linear-viscoelastic contribution 
of the matrix chains.

In contrast to modeling approach A, which corrects only 
the linear-viscoelastic start-up of the blends, but uses the 
spectrum of PS-820k/8.8k for calculation of the nonlinear 
viscoelastic behavior of the long chains, modeling approach 
B takes into account the linear-viscoelastic interaction of 
long (PS820k) and short chains (PS23k, PS34k, and PS73k) 
by use of the corresponding relaxation spectra of the blends 
in the stress equation (5). The additional entanglements 
between long and short chains result in longer relaxation 
times of the long chains as shown in Fig. 3, and this has 
a considerable influence on the nonlinear elongational 
behavior especially at the lowest elongation rate of 0.003 
s−1. However, the linear-viscoelastic long-short chain inter-
actions lead also to a small but significant improvement of 
the predictions of the elongational stress growth coefficient 
at higher elongation rates with predictions using modeling 
approach B being in excellent quantitative agreement with 
the experimental data. At higher stretches, the higher inter-
chain pressure caused by the additional long-short entan-
glements limits maximal stretch of the long chains, and 
consequently similar maximal viscosities as for approach 
A are obtained. The additional entanglements of the long 
chains with the shorter matrix chains have a similar effect 
on the maximal stretch as a larger fraction of long chains in 
the binary blends, and this effect is larger for longer matrix 
chains. We quantified the enhanced interchain pressure 
by introducing an effective polymer fraction ϕeff ≥ 0.1 by 
a linear mixing rule according to Eq. (28), which results 
in ϕeff = 0.13 for PS820k/23k, ϕeff = 0.14 for PS820k/34k, 
and ϕeff = 0.18 for PS820k/73k. The limit of modeling 
approach B is reached when stretching of the matrix chains 
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Fig. 7   Comparison of data (symbols) and predictions (lines) of elon-
gational stress growth coefficient �+
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(t) for blend PS-820k/73k at Te = 
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E
(t) . a Full lines are pre-

dictions for PS-820k/8.8k from Eqs. (5) and (12); b and c full lines 
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starts at Wi ≥ 1/3 corresponding to 𝜀̇ ≥ 0.1 s−1  for blend 
PS-820k/73k. For larger Wi, the stretching of both the long 
chains and the short matrix chains has to be considered, with 
is outside the scope of this work.

This analysis also extends earlier findings of the suitabil-
ity of the EIP model and the entropic fracture criterion for 
the modeling of the rheology and failure of monodisperse 
polymer melts and solutions (Wagner et al. 2021a, 2021b) 
to bidisperse blends of a high and lower mass polystyrenes 
as long as the lower mass matrix polymer is not stretched in 
elongational flow. The essential features of the EIP model 
and the fracture criterion are (1) nonlinear reptation dynam-
ics is modeled by a history integral of coupled stretch and 
orientation of temporary entanglement segments, thus avoid-
ing pre-averaging of stretch and orientation (Narimissa and 
Wagner 2019); (2) stretch and stretch relaxation of entangle-
ment segments are accounted for by an evolution equation 
of the tube diameter, which includes the effects of affine 
deformation, Rouse relaxation, and interchain pressure. Both 
Rouse relaxation and interchain pressure are governed by 
the Rouse time; (3) when the strain energy of a chain seg-
ment reaches the bond energy U of one carbon-carbon bond, 
the chain fractures and the polymer filament fail by chain 
scission. Chain segments with long relaxation times, i.e., 
those preferably in the middle of the chain, will be the first 
to reach the critical energy and will fracture. Chain seg-
ments closer to the ends of the chain, which due to reptation 
processes have shorter relaxation times and see less stretch 
and tension are less likely to fracture. For bidisperse poly-
styrene blends consisting of a 10% mass fraction of mono-
disperse polystyrene PS-820k, the critical elongation rate 
for the onset of fracture is predicted to be 𝜀̇

c
≥ 0.008 s−1 . 

This critical value, as well as the stress growth coefficients 
at fracture agree with experimental evidence within experi-
mental accuracy.
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