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Abstract
The blend morphology model developed by Wong et al. (Rheologica Acta, 2019), based on Peters et al. (J Rheol 45(3):659–
689, 2001), is used to investigate the development of the polydispersity of the disperse polymer blend morphology in
complex flow. First, the model is extended with additional morphological states. The extended model is tested for simple
shear flow, where it is found that the droplet size distribution does not simply scale with the shear rate, because this
scaling does not hold for coalescing droplets. Subsequently, the model is applied to Poiseuille flow, showing formation of
distinct layers, which occurs in realistic pressure-driven flows. Finally, the model is applied on an eccentric cylinder flow,
where histograms are made of the average droplet size throughout the domain. It is observed that outer cylinder rotation
results in narrow distributions where the small droplets are relatively large, whereas inner cylinder rotation results in broad
distributions where the small droplets are significantly smaller than in the case of outer cylinder rotation. Eccentricity seems
to only have a minor effect if the maximum shear rate is held constant. The flow profile and history in combination with the
maximum shear rate strongly determine how the polydisperse droplet size distribution develops.

Keywords Polymer blends · Numerical · Droplet morphology

Introduction

A common method for creating polymer materials with
targeted properties is to blend multiple homopolymers. The
majority of polymer blends are immiscible, because mixing
long polymer chains is thermodynamically unfavorable,
leading to a multiphase structure (Lipatov 2002; Tucker
and Moldenaers 2002). Depending on the volume fractions
of the blend constituents, there can be a disperse or
co-continuous morphology. In this work, we focus on
modelling disperse blends. The morphology undergoes
changes due to deformation, breakup and coalescence.
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Controlling coalescence is critical for the final droplet
morphology (Vermant et al. 2004; Zou et al. 2014).

Modelling the development of the droplet morphology
has been a topic of ongoing research for a long time,
though there appears to have been a period around 2000–
2010 when this topic was not studied intensively, probably
due to the fact that many synthetic polymer blends have
already been successfully commercialized (Fortelný and
Juza 2019). Recent interest can be attributed to the
attempts to commercialize blends of bio-polymers in the
near future (Fortelný and Juza 2012, 2014, 2017, 2019).
Many authors have performed modelling and experimental
work on the deformation and breakup of single droplets,
which is reviewed by Stone (1994) and Minale (2010).
Early work for small deformation and Newtonian liquids
has been performed by Taylor (1932) and Taylor (1934).
Tomotika (1935) analytically investigated the breakup of
an infinitely long viscous filament embedded within a
matrix of another viscous liquid. Cox (1969) generalized
the description of the droplet deformation to general time-
dependent linear flow fields. Batchelor (1970) introduced
the concept of modelling the droplet shape with an interface
tensor, describing the droplet surface evolving under the
influence of flow and interfacial tension, which was later
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generalized in the well-known Doi-Ohta model (Doi and
Ohta 1991). Maffettone and Minale (1998) developed
another model that describes the morphology with a
shape tensor. Ellipsoidal drop shape predictions have been
verified by three-dimensional visualization by Guido and
Greco (2001). Droplet deformation and breakup have been
investigated experimentally by Grace (1982), Bentley and
Leal (1986b), Bentley and Leal (1986a), Stone et al. (1986),
Grizzuti and Bifulco (1997), Vinckier et al. (1997), and Iza
and Bousmina (2000). Coalescence has been modelled by
Chesters (1991). Development of a model to describe the
morphology of immiscible Newtonian blends undergoing
morphological changes from the initial structure to the
final structure after deformation, breakup and coalescence
has been done by Peters et al. (2001) and Almusallam
et al. (2004). Based on Peters et al. (2001), Wong et al.
(2019) have developed a numerical model to simulate the
monodisperse blend morphology development in complex
flow geometries.

For the material properties of the solidified polymer blend,
it is not only important to know the droplet size, but also
the droplet size distribution (polydispersity) (Wu 1988;
Premphet and Paecharoenchai 2002; Caserta et al. 2004;
Diop and Torkelson 2015). The objective of this study is to
describe the development of polydisperse droplet size distri-
butions in complex flow geometries using the work from
Wong et al. (2019). We first introduce a number of extensions
to this model and then use the extended model to investigate
the shear rate dependence of the polydispersity in simple
shear flow and the formation of distinct layers in Poiseuille
flow. Finally, we use eccentric cylinder flow as an example of
complex flow and show how polydispersity can be influenced
through alterations to the geometry and flow protocol.

Morphologymodel

In this section, we begin by summarizing the features of
our previous blend morphology model (Wong et al. 2019).
This is followed by three extensions to our original model.
Subsequently, we show the equations of this extended
model. Finally, we show the set of equations as they are
solved in our numerical framework.

Recap of the previousmodel

If we consider a blend consisting of a single droplet and
assume the droplet to be ellipsoidal, we can quantify the
model using the radius of the unstretched droplet R0,
the stretch ratio β = L/B = L/2R0, where L is the
major axis and B is the minor axis of the ellipsoidal
droplet respectively, and the orientation vector m. In
practical blends, the number of droplets is very large,

which makes it computationally unattractive to track every
droplet individually. We follow the approach of Peters
et al. (2001) and model the morphology macroscopically.
Droplets are locally grouped together in populations, that
are described by an average R0, β and m, along with the
number of droplets per unit volume Nd. There is one droplet
population for every spatial point x. The morphology over
a whole geometry is described by macroscopic fields of
the average population variables R0(x), β(x), m(x) and
Nd(x). These variables evolve under the influence of the
background velocity field u(x). We calculate this flow
field using the Stokes flow equations and assume that
the morphology does not couple back to the flow field
calculation. The morphology contributes an extra stress
term to the equation for conservation of momentum. This
extra stress can be split into an elastic term and a viscous
term. The viscous term is taken into account by using
an effective matrix viscosity instead of the pure matrix
viscosity. We neglect the elastic term, and assume that this
contribution is negligible in the cases that we are interested
in, i.e., closed domains with no free surfaces. We aim to
model the morphology development in practical mixers and
in these situations, it is usually preferable to obtain as small
as possible droplet sizes through rapid filament stretching.
This implies that we are mostly dealing with very high
capillary numbers and relatively small time scales. In the
case of very high capillary numbers, where the stresses from
the background flow field dominate the interfacial stresses
of the microstructure, the interfaces tend to passively follow
the flow. Interfacial stresses tend to become active at larger
time scales, when droplets are very small. In this situation,
the microstructure evolves relatively slowly. In our study
of practical mixers, we are mostly not interested in these
time scales. In short, in case of very high capillary numbers
and relatively small time scales, we believe it is a valid
assumption to neglect the elastic stress contribution of the
microstructure on the momentum conservation equation.

In our original model, we first described the stretch ratio
β and undeformed droplet radius R0 with the following
partial differential equations:

∂β

∂t
+ (u · ∇)β = f1, (1)

∂R0

∂t
+ (u · ∇)R0 = f2, (2)

where f1 and f2 are semi-empirical functions based on
others’ modelling and experimental work on droplet defor-
mation, breakup and coalescence. Our model exhibits dis-
continuous jumps in directions perpendicular to streamlines.
Numerically, this leads to the occurrence of the Gibbs phe-
nomenon, where the solution shows oscillatory behavior
around the discontinuity. Consequently, this may lead to
negative values forR0 and β, which is unphysical and makes
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the numerical simulations stop. We found that using the log-
arithmic variables v = log(R0) and s = log(β) in the model
and findR0 and β by exponentiation, improved that stability
of the model substantially (Wong et al. 2019). With the log-
arithmic variables, the partial differential equations become:

∂s

∂t
+ (u · ∇)s = 1

β
f1, (3)

∂v

∂t
+ (u · ∇)v = 1

R0
f2, (4)

with the extra division in the right-hand side coming from
the chain rule of differentiating a natural logarithm.

We describe the orientation vector m as the eigenvector
corresponding to the largest eigenvalue of the conformation
tensor c = b·bT , where b is the contravariant decomposition
of c and is described by a Giesekus model, following the
approach by Hütter et al. (2018). It can be thought of as
something similar to the deformation gradient tensor from
continuum mechanics with an additional relaxation term.
The tensor c has a meaning similar to the Finger tensor from
continuum mechanics. We calculate b using:

∂b

∂t
+ (u · ∇)b = Q, (5)

Q = L · b + 1

2τG
[(1− αG)I − (1− 2αG)c − αGc2] · b−T ,

(6)

which is precisely the well-known Giesekus-model, but
written in terms of the b-tensor instead of the more
conventional conformation tensor.

The fourth morphology variable, the number of droplets
per unit volume Nd, is not described as an independent field
variable, but is determined using conservation of volume
based on R0:

4

3
πR3

0 (t0) Nd (t0) = 4

3
πR3

0 (t) Nd (t) . (7)

The right-hand side functions f1 and f2 depend on
the morphological state, which depends on the capillary
number. For shear flow, this is given by:

Ca = μmγ̇ R0

σ
, (8)

where μm is the dynamic viscosity of the matrix phase, γ̇

is the shear rate, R0 is the radius of the unstretched droplet
and σ is the interfacial tension between the two fluid phases.
In our case, the matrix surrounding a droplet contains other
droplets. To take this into account, we replace μm with
an effective matrix viscosity μe, as defined by Choi and
Schowalter (1975):

μe = μm

[
1 + φ

5λ + 2

2(λ + 1)

(
1 + φ

5(5λ + 2)

4(λ + 10)

)]
, (9)

where φ is the volume fraction of the droplet phase in
the total fluid mixture and λ is the viscosity ratio of the

pure components. We define an effective viscosity ratio
according to:

λe = μd

μe
, (10)

where μd is the viscosity of the droplet phase. In Wong
et al. (2019), we took four morphological states into
account, namely: coalescence, necking, filament stretching
and dynamic filament breakup.

Modifications to themorphologymodel

In this work, we make three additions to the blend morphology
model. The first addition is making a distinction between
droplets and filaments. In the original model, the morpho-
logical state was only determined by the most recent local
capillary number, so in theory a long filament could be
advected into a lower shear rate region and instantaneously
exhibit binary breakup (necking), which is not physical. We
classify any droplet population with a stretch ratio β larger
than 5 as filaments. This choice is made because, following
Peters et al. (2001), we assigned β = 4 for the case of neck-
ing (Wong et al. 2019), so β > 5 can only be reached if there
was Ca ≥ κCacrit (filament stretching) in the recent history.

The second addition consists of two additional morpho-
logical states, namely static filament and static filament
breakup. This had been missing from our original model. It
is important to have a state for static filaments, in case the flow
would be stopped. Suppose long filaments have been cre-
ated through the state of filament stretching, which occurs
at large capillary numbers. Stopping the flow would result
in a capillary number of 0, which would make the droplet
population undergo coalescence. Coalescence immediately
following filament stretching would be unphysical.

The third addition to our original model is a more detailed
classification of the shear and elongational components of
a complex flow. In our previous work, we assumed κ = 2
and Cacrit to be only the shear flow part of the Grace
curve. This was obviously done for simplicity, but this
needs to be improved upon, because many practical flow
problems involve significant elongational flow. Taking only
the upper limit of the Grace curve (the shear flow part) will
likely mispredict whether or not a droplet (population) will
experience breakup.

Extendedmorphologymodel

A new step in the simulation procedure is to test whether
a filament should be classified as stretching or quiescent.
We quantify this using the stretching efficiency ef, which is
defined according to Ottino (1989):

ef = D : mm√
D : D

, (11)
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where D = 1
2 (∇u + (∇u)T ). The stretching efficiency

can be viewed as a ratio between the realized elongational
rate and the maximum obtainable elongational rate when
the filament would be perfectly aligned with the flow
direction with the maximum deformation. This can be seen
as follows. Firstly, the numerator D : mm corresponds to
the elongational rate that a stretching droplet experiences in
its axial direction. This dyadic product can be interpreted as
follows: the tensor D is a three-dimensional mathematical
object that contains all the spatial components of the strain
rate. The dyadic product selects the strain rate component
pointing in the direction of m on a surface of which the
normal vector points in the direction of m, in other words,
we have obtained the stretching rate in the axial direction
of the elongated droplet. This direction does not necessarily
have to be the direction of principle strain rate, which is the
direction in which the flow field exerts the largest strain rate.
The magnitude of this principle strain rate is equal to the
denominator in the definition of the stretching efficiency,
namely

√
D : D. Therefore, the stretching efficiency is

the ratio between the realized elongational rate and the
maximum obtainable elongational rate.

In order to describe a quiescent filament (static filament)
and filament breakup under quiescent conditions (static
filament breakup), we introduce two additional field
variables. These are the filament radius before breakup Rf

and the Rayleigh disturbance amplitude αf (the subscript
“f” stands for “filament”), both of which determine when
a quiescent filament becomes unstable and breaks up.
As demonstrated in our previous work, discontinuities in
the field variables in the direction perpendicular to the
streamlines leads to the Gibbs phenomenon, where the
solution shows oscillations around the discontinuity. These
oscillations may lead to negative values for the field
variables. Therefore, we describeRf and αf with logarithmic
variables vf = log(Rf) and af = log(αf). They are described
by the following partial differential equations:

∂vf

∂t
+ (u · ∇)vf = 1

Rf
f3, (12)

∂af

∂t
+ (u · ∇)af = f4, (13)

where f3 and f4 are right-hand side functions that
depend on the morphological state. Note that there is
no multiplication by 1

αf
in Eq. (13). This is because the

Rayleigh disturbance amplitude αf is described with an
exponential function (Tomotika 1935), so the differential
equation for the logarithmic af is written in such a way
that there is no division by itself in the right-hand side, in
contrast with the other quantities β, R0 and Rf.

In our previous work (Wong et al. 2019), we assumed
for simplicity that Cacrit and κ were always equal to the
values for simple shear flow, as given by Grace (1982).

However, it is known that droplets cannot break up in shear
flow for λe > 4, whereas the same droplets could be
broken up by extensional flow. This example demonstrates
the importance of taking the Grace curve for (planar)
extensional flow into account as well. The Grace curve gives
the critical value Cacrit as a function of the viscosity ratio
above which the deforming droplet becomes unstable and
will eventually break up. The curves are given for the two
extreme cases of simple shear flow and planar extensional
flow. To reiterate, for simple shear flow, κ = 2 and the
critical capillary number is given by De Bruijn (1989):

log10(Cacrit) = −0.506 − 0.0994(log10(λe))

+0.124(log10(λe))
2 − 0.115

log10(λe) − 0.6107
, (14)

and for planar extensional flow, κ = 5 and the critical
capillary number is given by:

log10(Cacrit) = 0.0331(log10(λe) − 0.5)2 − 0.699. (15)

In complex flow, we calculate the critical capillary number
by interpolating between these two expressions. To do this,
we need a quantity to describe the amount of shear and
extension that is present in the velocity field. We use the
ratio of the scalar deformation rate Ds and scalar vorticity
�s, as defined by Hulsen (1988):

Ds =
√

− det
(
L + LT

)
, (16)

�s =
√
det

(
L − LT

)
, (17)

ζ = �s

Ds
, (18)

where L = (∇u)T is the velocity gradient tensor. If
this number is ζ = 1, shear flow is dominant. If ζ < 1,
then extension is dominant, with ζ = 0 representing pure
extension. Lastly, for ζ > 1, rotation is dominant, but we
assume the Grace curve for simple shear to hold for this
regime. In reality, when rotation is dominant, no Grace
curve exists, because a rotating droplet does not deform
and therefore does not break up. This also means that
our assumption is not important, because when rotation is
dominant, the local flow conditions will not require the
Grace curve to be called upon. Using the quantity ζ , we
interpolate complex flow types according to:

κ = 2ζ + 5 (1 − ζ ) (19)

Cacrit = ζCacrit,shear + (1 − ζ )Cacrit,extension (20)

As was mentioned before, the right-hand side functions
f1, f2, f3 and f4 depend on the morphological state.
The criteria for the six considered morphological states
are shown in Fig. 1, which shows the solution procedure.
The filament breakup criterion uses the filament radius
R. For this, we assume that a stretched filament can be
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approximated as a cylinder, with equal volume as an initially
spherical droplet with radius R0. It is defined as:

R = R0

√
2

3β
. (21)

The blue boxes indicate the original model fromWong et al.
(2019) and the yellow boxes indicate the extensions from
this work.

In the following subsections, the right-hand side func-
tions are shown for every morphological state individually.

Coalescence

In the case of coalescence, the equation for f2 remains the
same as in Wong et al. (2019). In this state, f3 = 0 and
f4 = 0. We made a change to the equation for the logarithm
of the stretch ratio s. The equations for coalescence are:

f1 = 1

τc
(β+ − β), (22)

f2 = exp

(
−

√
3R0

4hcrit
λeCa

3/2
)

4

3π
γ̇ φR0, (23)

f3 = 0, (24)

f4 = 0, (25)

with β+ given by:

β+ =
(
1 + D

1 − D

)2/3

, (26)

where D = (L − B)/(L + B) is the dimensionless
drop deformation parameter. Coalescence will be successful
when the film thickness is reduced to a critical value hcrit,
as given by Chesters (1991):

hcrit =
(

AhReq

8πσ

)1/3

, (27)

where Ah is the Hamaker constant and Req is the equivalent
radius of the two differently sized droplets. In this work,
it is assumed that Req = R0. The expression for f2 is
derived by Peters et al. (2001), using the calculation of
the droplet radius during coalescence from Janssen (1993).
The value of β+ is the value that the stretch ratio β would
discontinuously jump to according to the Peters model. In
our previous work, we used the expression from Cox (1969):

D = 5(19λe + 16)

4(λe + 1)
√

(19λe)2 + (20/Ca)2
. (28)

This expression is not valid for small values of the viscosity
ratio λe. It can be derived that for small λe, D ≈ Ca.
Coalescence occurs at Ca < Cacrit. According to Grace
(1982), Cacrit � 1 for small values of λe. This meansD ≥ 1
would be a common occurrence, which leads to a negative
base in the exponent of Eq. (26). This is unphysical and we
update our model with the more general expression given by
Choi and Schowalter (1975):

D = 19λe + 16

16(λe + 1)
√
1 + Z2

Ca

(
1 + φ

5(5λe + 2)

4(λe + 1)

)
, (29)

Z = (19λe + 16)(2λe + 3)

40(λe + 1)
Ca

(
1+ φ

5(19λe + 16)

4(λe + 1)(2λe + 3)

)
.

(30)

For small values of λe, this results in:

Z = 9

8
Ca

(
1 + 80

12
φ

)
, (31)

D = 1√
1 + Z2

Ca

(
1 + 5

2
φ

)
, (32)

so:

D ∼ Ca√
1 + Ca2

. (33)

Fig. 1 Updated flow chart of the
solution procedure
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The result is smaller than 1, so there will not be a problem
with Eq. (26) for small values of λe.

Necking

For the case of necking, we use the same equations as in
Wong et al. (2019), following Peters et al. (2001), with the
addition of f3 = 0 and f4 = 0:

f1 = 1

τn
(β+ − β), (34)

f2 = −3.91 · 10−3λ−0.45
e Ca−1

critγ̇ R0, (35)

f3 = 0, (36)

f4 = 0, (37)

with τn a numerical smoothing parameter and

β+ = 4. (38)

Filament stretching

For filament stretching, f1 and f2 are again the same as
before, with the addition of f4 = 0 and an additional
expression for f3:

f1 =
β3 + 2

3λe
+ 5

12
− g2

g1Caext
− g2

4λeCaext

β3 + 3

4
+ 1

2λe
+ 4λe

3g1
− 2

3g1

βD : mm, (39)

f2 = 0, (40)

f3 = 1

τf
(R − Rf), (41)

f4 = 0, (42)

with

Caext = μe(D : mm)R0

σ
, (43)

g1 = 1

log(2β1.5)
+ 3

2(log(2β1.5))2
, (44)

g2 = β6 + 2β3 − 3

2β5.5
. (45)

The expression for f1 has been derived by Stegeman et al.
(1999).

Dynamic filament breakup

Dynamic filament breakup is given by the same equations
as in Wong et al. (2019) for the state of filament breakup,
based on Tjahjadi and Ottino (1991):

f1 = 1

τb
(β+ − β), (46)

f2 = 1

τb
(R+

0 − R0), (47)

f3 = 0, (48)

f4 = 0, (49)

with τb a numerical smoothing parameter and

β+ = 1.5, (50)

R+
0 =

(
3π

2

)1/3

Rcrit. (51)

Static filament

In the newly introduced state of a static filament, the droplet
size and stretch ratio do not change. The only change occurs
in the Rayleigh disturbance amplitude αf, so only f4 is not
zero:

f1 = 0, (52)

f2 = 0, (53)

f3 = 0, (54)

f4 = σ�m

2μeRf
, (55)

where �m is the dimensionless disturbance growth rate as
given by Tomotika (1935).

Static filament breakup

The second newly introduced morphological state of static
filament breakup is described by the following equations:

f1 = 1

τs
(β+ − β), (56)

f2 = 1

τs
(R+

0 − R0), (57)

f3 = 0, (58)

f4 = 0, (59)

with

β+ = 1, (60)

R+
0 = Rf

(
3π

2xm

)1/3

, (61)

where xm is the dominant dimensionless disturbance
wavelength as given by Tomotika (1935) and τs a
numerical smoothing parameter set equal to the estimated
time required for breakup of a filament under quiescent
conditions (Janssen 1993):

τs = 2μeRf

σ�m
log

(√
2/3Rf

α0

)
. (62)

Polydispersity

The goal of this work is to describe the development of
polydisperse droplet size distributions in complex flows.
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We model the distribution of droplet size with a probability
density function p, as defined by:

Va→b

Vtot
=

∫ Rb
0

Ra
0

p(R0)dR0, (63)

where Vtot is the total volume of the disperse phase and
Va→b is the volumetric fraction of droplets with a radius
in the interval between Ra

0 and Rb
0 . We discretize this

distribution into a number of bins, where the value of p is
assumed to be constant within a bin width.

Probability distribution prediction using discrete bins

We start from a distribution of droplet sizes and assume
there is a finite maximum Rmax

0 and minimum Rmin
0 that are

not exceeded during flow. The total probability is initially:
∫ Rmax

0

Rmin
0

pinit(R0)dR0 = 1, (64)

i.e., the area under the curve pinit(R0) is 1. As a result
of the flow field, the distribution will be different, but we
still assume all droplets to be within the finite interval
[Rmin

0 , Rmax
0 ]. In order to predict p(R0), we divide the

interval [Rmin
0 , Rmax

0 ] into a number of intervals:

[Ri−1
0 , Ri

0], i = 1, 2, ..., N (65)

where R0
0 = Rmin

0 and RN
0 = Rmax

0 . Within a single
interval we approximate the probability function with a
constant value per interval pi , with i = 1, 2, ..., N . We
aim for conservation of total probability, i.e., we aim for
conservation of:∫ Rmax

0

Rmin
0

p(R0)dR0 = 1, (66)

Therefore, we initialize with:

pi
init(R

i
0 − Ri−1

0 ) =
∫ Ri

0

Ri−1
0

pinit(R0)dR0, (67)

or:

pi
init = 1

(Ri
0 − Ri−1

0 )

∫ Ri
0

Ri−1
0

pinit(R0)dR0, (68)

The algorithm for the transfer from pi
init, i = 1, 2, ..., N to

pi, i = 1, 2, ..., N must preserve total probability, which
means:

N∑
i=1

pi(Ri
0 − Ri−1

0 ) =
N∑

i=1

pi
init(R

i
0 − Ri−1

0 ),

=
∫ Rmax

0

Rmin
0

pinit(R0)dR0,

= 1. (69)

Numerical procedure

We first select a range of droplet sizes R0 that contains
all the initial droplet sizes: [Rmin

0,init, R
max
0,init]. Then we divide

this interval into npoly bin values. Note that N ≥ npoly,
because all droplets that become smaller through breakup
and larger through coalescence should be captured by the
entire interval [Rmin

0 , Rmax
0 ] that we take into consideration.

Every subpopulation is simulated separately according to
the solution procedure as is shown in Fig. 1. They are
assumed to be independent and not influencing each other.
This means that different subpopulations do not interact,
which is a strong assumption. We expect this to matter
relatively little in the early stages, when droplets are
mainly stretching into long filaments. These interactions are
expected to be most relevant in the case of coalescence.
Coalescence between unequally sized droplets can be
described by using an average droplet size (Janssen 1993).
We would then have to calculate interactions between every
subpopulation with every other subpopulation, which we
chose not to implement due to the large computational
cost and because we are mostly interested in shorter time
scales at which coalescence is relatively insignificant. After
simulating every individual subpopulation, a certain initial
distribution pinit is chosen, and the available monodisperse
simulations are then used to postprocess how the selected
shape of p develops over time and space. The procedure for
calculating the distribution p is as follows:

– Start from a certain initial pinit, for example, a constant
value over a certain range of R0 values.

– Calculate the initial values for Vi

Vtot
in every bin.

– For every time step, determine the new bins where every
initial subpopulation has moved to and add the original
value of the relative volume of the subpopulation to the
new bin.

– After all the relative volumes Vi

Vtot
have been added up,

the new distribution p is calculated by dividing all the
bin values of the relative volume by the bin interval
lengths (Ri+1

0 − Ri
0).

In this work, we always choose pinit to be a constant value
over the range specified by Rmin

0,init and Rmax
0,init and zero

outside of this range. As should hold for any probability
density function, the integral of p over the entire domain is
always equal to 1, because the sum of all relative volumes is
equal to 1.

Numerical implementation

The blend model has been implemented in a finite element
framework, which solves the blend morphology in space
and time according to the flow chart in Fig. 1. The velocity
is solved with quadratic polynomial basis functions and the
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pressure is solved with linear polynomial basis functions
according to Stokes flow equations. This is solved once
in the beginning, since we assume steady state flow and
no feedback from the blend morphology on the flow field.
The deformation rate tensor is extracted from the velocity
solution and plugged into the blend morphology model.
The morphology variables are solved with linear polynomial
basis functions. The time integration is first-order semi-
implicit, which means that the right hand side functions f1
to f4 are evaluated explicitly using the known morphology
quantities from the previous time step. The advection term
is solved implicitly and stabilized using Streamline-Upwind
Petrov-Galerkin (SUPG) test functions. The details are are
described by Wong et al. (2019). This procedure is followed
for every subpopulation independently at every time step,
since we assume no interaction between them.

Simple shear flow

Influence of shear rate

We use the same simulation parameters (see Table 1) as in
our previous work (Wong et al. 2019), as was taken from
Peters et al. (2001).

To investigate the effect of the shear rate γ̇ on the
polydisperse droplet size distribution, we study an example
of simple shear flow with npoly = 100 subpopulations in
the range between Rmin

0,init = 10−7 m and Rmax
0,init = 10−4 m

and three shear rate values of γ̇ = 5 s−1, γ̇ = 25 s−1 and
γ̇ = 125 s−1. The 100 subpopulations are initialized with
values of R0 that are spaced logarithmic equidistant within
the specified range.

In this study, we investigate whether increasing the shear
rate merely speeds up the same polydispersity development
or actually exhibits different kinetics. A higher shear rate is
expected to speed up the droplet breakup processes, so to be
able to compare the kinetics of the three shear rates, the time
variable must be non-dimensionalized. By multiplying the
time with the shear rate we obtain the dimensionless strain
γ̇ t . The three shear rates are simulated for 160 strain units

Table 1 Simulation parameters

Quantity Symbol Value Unit

Volume fraction φ 0.1 –

Droplet viscosity μd 86 Pa s

Matrix viscosity μm 196 Pa s

Interfacial tension σ 0.0023 N/m

Initial disturbance α0 4.66 · 10−9 m

Hamaker constant Ah 10−20 J

and histograms are made for γ̇ t = 20, γ̇ t = 40, γ̇ t = 80
and γ̇ t = 160 (see Fig. 2).

Comparing the three shear rates, there are a few
similarities and differences. For γ̇ t = 20, it is observed
that for all three cases, droplets that are slightly smaller or
slightly larger than the Grace curve value quickly gather in
a single bin that contains the Grace curve value.

For γ̇ t = 40, differences in the coalescence behavior
are observed. In the case of γ̇ = 125 s−1, no coalescence
is observed, because the Grace curve value is smaller than
the smallest droplet size of R0 = 10−7 m in the initial
distribution, therefore all droplets exhibit breakup for this
shear rate. In the case of γ̇ = 25 s−1 coalescence seems
to occur relatively strongly, as all the droplets smaller than
the Grace curve value rapidly enlarge and join the single
bin containing the Grace curve value. For the case of
γ̇ = 5 s−1, coalescence is observed to occur much slower,
which is expected because a lower shear rate results in a
lower collision frequency of the small droplets.

Scaling of dR0
dt

with γ̇ is not observed when coalescence
occurs. By “scaling”, we mean that increasing the shear
rate γ̇ by a factor of five does not speed up coalescence
by a factor of five. The observation that the coalescence
kinetics for a higher shear rate are not simply the scaled up
version of those for a lower shear rate can be explained by
the reciprocal shear rate 1/γ̇ not being the correct timescale
for non-dimensionalization in the case of coalescence. The
shear rate is only the correct timescale when deformation is
dominant over the interfacial tension (Ca ≥ Cacrit), which
is the opposite of the conditions for coalescence.

For both γ̇ t = 40 and γ̇ t = 80, it is observed that
the droplets that are slightly larger than the Grace curve
value behave similarly. These droplets are in the necking
regime, which scales with the shear rate γ̇ , so this part of the
distribution does indeed scale with the dimensionless strain
unit γ̇ t . Lastly, for γ̇ t = 160, it is observed that the very
large droplets still either have only decreased to a specific
value or have remained the same size.

This is a consequence of the description of stretching
or static filaments in our model. The large droplets are
all in the regime of Ca ≥ κCacrit, which means they
initially undergo filament stretching. The relatively small
droplets in this regime exhibit the conventional sequence of
filament stretching, followed by dynamic filament breakup
and necking towards the Grace curve value (see Fig. 3). The
other droplets follow a pattern such as the example shown
in Fig. 4. Filament stretching is cut short because the shear
flow has rotated the droplet so much away from the direction
of greatest deformation by the flow field that the stretching
efficiency ef is considered low enough to enter the part of
the flow chart of static filament and static filament breakup.
This large rotation is caused by describing the deformation
affinely (τG is taken very large). We speculate that this too
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(a) (b)

(c) (d)

Fig. 2 Droplet size distribution in simple shear for npoly = 100. Top: γ̇ = 5 s−1. Middle: γ̇ = 25 s−1. Bottom: γ̇ = 125 s−1. (a) γ̇ t = 20, (b)
γ̇ t = 40, (c) γ̇ t = 80, (d) γ̇ t = 160

Fig. 3 Development of R0 in the sequence of filament stretching
followed by dynamic filament breakup and necking towards the Grace
curve value

Fig. 4 Development of R0 in the sequence of filament stretching
followed by it becoming a static filament and eventually undergoing
static filament breakup
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small droplet angle can be mitigated by tuning the Giesekus
relaxation parameter τG.

A limitation of our model is that the final droplet size
that arises from static filament breakup can be larger than
κR0,crit. In reality, the droplets should again deform and
break up, but our model does not capture this effect, because
the b-tensor is never reset, so the amount of deformation
and orientation vector m of these daughter droplets is not
described accurately. Resetting the b-tensor and the effect
this has on the morphology is beyond the scope of this
paper. Because the orientation vector remains unchanged,
the stretching efficiency also remains unchanged and our
model can therefore not describe a second round of filament
stretching. We do not propose a solution to this limitation at
this point, because this issue does not seem to arise in our
later simulations in complex flow (eccentric cylinder flow),
so we assume that this is not an issue for flow problems that
are not purely shear flow.

Poiseuille flow

Poiseuille flow is a model problem for practically relevant
flow problems that are pressure-driven and exhibit a layered
droplet morphology. We simulate a rectangular domain with
Nx = 2 and Ny = 99 rectangular biquadratic elements,
where −1 ≤ y ≤ 1m. The flow rate is V̇ = 10

3 m2/s, which
results in shear rates in the range of 0≤ γ̇ ≤ 5 [s−1]. To
demonstrate the layeredness of the polydisperse morphol-
ogy, we visualized the droplet size distribution with npoly =
100 along the cross-section (the y-direction of the domain
(see Fig. 5a) at time t = 12 s, with Rmin

0,init = 10−7 m and

Rmax
0,init = 10−5 m. Several distinctive regimes can be rec-

ognized. In the core, there is a region where Ca > Cacrit,
where coalescence occurs, but this is a slow process, so not
much change is observed at such a small time scale. Slightly
beyond the dashed curve, which represents Ca = Cacrit
according to the local shear rate, some droplets have begun

(a) (b)

(c) (d)

Fig. 5 (a) Maximum, minimum and mean R0 along the cross-section
in Poiseuille flow at t = 12 s. The dashed curves represent the droplet
size that is predicted by the simple shear Grace curve based on the

local shear rate. (b) Histogram of R0 at y = 0.1m. (c) Histogram of
R0 at y = 0.5m. (d) Histogram of R0 at y = 0.9m
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to breakup (decrease in size) due to necking. When looking
at even larger values of y, a flat region is observed where
droplets are stretching into filaments. At the largest values
of y (near the walls of the domain), a sharp decrease of
droplet size is observed due to dynamic filament stretching.

Histograms have been made of the droplet size distribu-
tions at three positions, namely y = 0.1m, y = 0.5m and
y = 0.9m (see Fig. 5). At y = 0.1m, the majority of the
population has not changed significantly at this time scale.
At y = 0.5m, it is seen that the largest droplets have not yet
changed in size, so are still undergoing filament stretching,
while the smaller droplets that are closer to the Grace curve
have started to accumulate around the predicted value from
both sides via coalescence and necking. At y = 0.9m, it is
seen that the largest droplets have all broken up via filament
stretching, which is a fast process and it is also seen that
the smallest droplets at this position are larger than those in
the distribution at y = 0.5m, because here smaller droplets
are experiencing coalescence under the influence of a larger
shear rate. This Poiseuille example has demonstrated how
small variations in the shear rate profile can lead to a drasti-
cally different layered morphology in a pressure-driven flow
situation.

Eccentric cylinder flow

Problem description andmodel validation

The eccentric cylinder flow problem consists of a smaller
cylinder with radius Rinner positioned off-center within a
larger cylinder with radius Router, with the distance between
their center points being given by the eccentricity ε (see
Fig. 6). The two cylinders can rotate independently, with
angular velocities of �inner and �outer, respectively.

Fig. 6 Schematic overview of the eccentric cylinder geometry

We first use this geometry to do a qualitative validation
of our blend morphology model for a complex flow problem
that combines shear and extensional flow. To this end, we
make use of the experiments performed by Tjahjadi and
Ottino (1991) on droplets stretching and breaking up in
an eccentric flow setup. It is technically an example of
distributive mixing, whereas we study dispersive mixing,
but we chose this example of a flow that is more complex
than simple shear flow to qualitatively validate where the
large and small droplets appear and the effect of varying
the viscosity ratio. The matrix phase is corn syrup 1632
with a dynamic viscosity of μm = 32.9 Pa s. The droplet
phase is a mixture of No. 40 oxidized castor oil and 1-
Bromonaphtalene, mixed in varying ratios to obtain a dyna-
mic viscosity μd for a specified viscosity ratio, λ = 0.010
for case 1 and λ = 0.40 for case 2. We use for our two
cases the same droplet and pure matrix phase viscosities as
Tjahjadi and Ottino (1991), but it has to be noted that our
calculations actually do not use the pure matrix viscosity,
but the effective matrix viscosity μe. The geometry is
described by the outer cylinder radius Router = 7.62 cm,
inner cylinder radius Rinner = 2.54 cm and eccentricity
ε = 2.29 cm. Tjahjadi and Ottino (1991) use one initial
drop with a radius of approximately 0.5 cm. In our model
we cannot look at a situation with only one drop, and we
initialize across the entire domain monodisperse droplet
populations with an average droplet size of R0,init = 0.5 cm.
The applied flow protocol consists of a specified number of
periods, where a period consists of: first 1

4 period clockwise
rotation of the inner cylinder with �inner = − 1

2 s
−1,

followed by 1
2 period counterclockwise rotation of the

outer cylinder with �outer = 1
6 s

−1, continuing with another
1
4 period clockwise rotation of the inner cylinder with
�inner = − 1

2 s
−1. We simulate two periods, with one period

corresponding to 150 s. The results for the case of λ = 0.010
are shown in Fig. 7 and for the case of λ = 0.40 are shown
in Fig. 8.

Qualitative similarities are nicely observed between the
experiment and simulation. The dark blue regions in the
simulations with the small droplets correspond almost
exactly with the regions in the experiments that contain
the small droplets generated from filament breakup. These
regions contain particle trajectories along which relatively
large shear rates are experienced throughout the flow
history. On the other hand, the red regions in the simulations
with the large droplets correspond almost exactly with
the regions in the experiments that are completely devoid
of droplets. These regions experience mostly small shear
rates and therefore, breakup does not occur there. In the
experiments, these regions are empty, because the timescale
is too short for any droplets to migrate there. It is also
interesting to note that our simulations successfully capture
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Fig. 7 Comparison between the
experiment by Tjahjadi and
Ottino (1991) (Figure 13, with
permission from J. Fluid Mech.)
and the simulation of the
unstretched droplet size R0 in
(m) with our model after two
periods for viscosity ratio
λ = 0.010. (a) Experiment. (b)
Simulation

the quality that λ = 0.40 results in much smaller droplets
than λ = 0.010, which is to be expected based on the Grace
curve that predicts smaller critical capillary numbers Cacrit,
which is the value separating coalescence from breakup,
around λ = 1. With this, we have qualitatively validated our
blend model for an example of a complex flow.

Polydispersity and element-area weighted
histograms

In the subsequent sections, we investigate the distribution
of the mean value of R0 throughout the whole domain,
with Rinner = 0.03m, Router = 0.1m and ε = 0.03m,
except in “Influence of ε”. We do that by generating
the probability density p in every node in the mesh,
then calculating the mean R0 in every node, then finally
generating histogram data of these nodal values to find the
global mean value of R0 for every time step. However,
this is not a fair comparison, because the computational
mesh in such problems is usually not uniform, but denser
near the inner cylinder and coarser near the outer cylinder.

Therefore, many more nodes from the inner part of the
domain are sampled for the histogram data. We try to
mitigate this issue by weighing the nodal values using
the area of the surrounding mesh elements. The resulting
histogram data is more mesh-independent, because the
outer region has fewer nodes than the inner region. The
weighted histograms represent a more uniform sampling of
the morphology variables throughout the entire domain.

Influence of npoly

In this section, we investigate the influence of the value of
npoly on the polydisperse droplet populations. We simulate
the case of rotating the outer cylinder with �outer = 1 s−1,
with R0 initially distributed logarithmically between
Rmin
0,init = 10−7 m and Rmax

0,init = 10−4 m. For the evolv-
ing polydispersity, we focus on the point midway between
the bottom of the outer and inner cylinder. This region has
the highest shear rates, so it is expected that most dynam-
ical processes occur here. The distribution of R0 after 10
rotations of the outer cylinder is shown in Fig. 9.

Fig. 8 Comparison between the
experiment by Tjahjadi and
Ottino (1991) (Figure 13, with
permission from J. Fluid Mech.)
and the simulation of the
unstretched droplet size R0 in
(m) with our model after two
periods for viscosity ratio
λ = 0.40. (a) Experiment. (b)
Simulation
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Fig. 9 Distribution of R0 in sample point midway between the bottom of the outer and inner cylinder after 10 rotations of the outer cylinder. Top
row: npoly = 25, npoly = 50 and npoly = 100. Bottom row: npoly = 200, npoly = 400 and npoly = 800

We cannot compare the distributions with an exact
solution and it is computationally extremely expensive to
generate a sufficiently fine distribution to serve as pseudo-
exact solution, so we compare the volume-averaged R0

within this sample point (see Fig. 10).
It is observed that taking npoly = 100 subpopulations

appears to be good enough to describe the polydisperse

Fig. 10 Mean R0 in sample point midway between the bottom of the
outer and inner cylinder as function of the number of rotations of the
outer cylinder

distribution. In the remaining simulations, we always take
npoly = 100, Rmin

0,init = 10−7 m and Rmax
0,init = 10−4 m, with

equidistant logarithmic spacing within this interval.

Influence of�outer

In this section, we study the influence of the rotational
speed of the outer cylinder �outer on the distribution
of the mean R0 of the polydisperse droplet populations
throughout the domain. The mesh consists of 35,008 nodes
and 17,312 triangular elements, with quadratic interpolation
for the velocity and linear interpolation for the pressure and
blend morphology variables. The case of �outer = 1 s−1 is
compared to the case of �outer = 2 s−1 and �outer = 0.5 s−1.
The temporal evolution of the global mean value of R0 is
shown in Fig. 11, with weighted histograms of four values
of the time shown in Fig. 15.

As expected, it is seen that droplets break up faster
for higher �outer, due to the larger shear rates throughout
the domain for the same flow pattern. Larger shear rate
values lead to larger values for the capillary number Ca,
which leads to faster stretching and thinner filaments before
breakup, resulting in smaller droplet sizes after breakup.
Another consequence of a larger �outer is that advection is
faster, so the influence of regions with large shear rates is
propagated faster throughout the domain. From the four his-
tograms, it is observed that the last three frames (t ≥ 90 s)
of �outer = 2 s−1 are almost identical, so as expected, for
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Fig. 11 Global mean of R0 as function of time for varying �outer

large �outer, the droplet size distribution quickly reaches its
final state, which is determined by the values of Cacrit. It
is important to note that the entire distribution consists of
relatively small droplets.

This is in contrast with the reference case of
�outer = 1 s−1, where it is clearly seen that at first (t = 90 s),
a relatively wide distribution is created. The bigger droplets
still need more time to stretch and break up, but eventually
they do break up and the distribution narrower. Interestingly,
in the case of �outer = 0.5 s−1, the width of the distribution
seems to be nearly constant in the later stages of the process
(t ≥ 90 s). This is because the shear rates are so low that it
takes a very long time to break up the larger droplets, while
the same low shear rates also cannot break up droplets to

Fig. 12 Global mean of R0 as function of time for varying �inner

Fig. 13 Global mean of R0 as function of time for varying ε

sizes as small as those of �outer = 1 s−1 and �outer = 2 s−1.
Therefore, the range of the distribution stays relatively the
same, but the mean value is constantly decreasing over time.

Influence of�inner

In this section, we study the influence of the rotational speed
of the inner cylinder �inner on the distribution of the mean
R0 of the polydisperse droplet populations throughout the
domain. The case of �outer = 1 s−1 is compared to the
case of �inner = 1 s−1 and �inner = 2.815 s−1. The value
of �inner = 2.815 s−1 was chosen such that the maximum
shear rate corresponds exactly to the maximum shear rate
in the reference case. The temporal evolution of the global

Fig. 14 Global mean of R0 as function of time for �outer = 1 s−1,
�inner = 3 s−1 and the time-periodic alternating case between�outer =
1 s−1 and �inner = −3 s−1
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mean value of R0 is shown in Fig. 12, with weighted
histograms of four values of the time shown in Fig. 16.

It is seen that �inner = 1 s−1 is very weak and takes
a very long time for any significant change to take place.
In the case of �inner = 2.815 s−1, it is seen that a very
broad distribution is created, though a significant fraction
of the distribution remains on the large side near the initial
value. The large droplets that do not seem to break up are
in the regions with low shear rates. The flow profile in
the case of only rotating the inner cylinder is such that
droplets are advected along trajectories with almost constant
shear rates. Therefore, droplets that begin in low shear rate
regions will never experience high shear rates anywhere
along their particle trajectories, so they do not experience
any change. The shear rates are too low to deform the

droplets, but the droplets are too large for coalescence. The
droplets that do break up appear to form a very broad and
relatively flat distribution. This is because this flow profile
results in an almost linear progression of the shear rate
away from the inner cylinder, with the highest values near
the inner cylinder and and the lowest values near the outer
cylinder.

Other simulations that are not shown here have shown
this same trend, where rotating the inner cylinder results in
a relatively broad and flat distribution with a peak near the
initial value, and where rotating the outer cylinder results
in a relatively narrow distribution around a certain droplet
size. The minimum droplet size resulting from rotating the
inner cylinder is much smaller than from rotating the outer
cylinder, because those droplets are formed in the region of

(a) (b)

(c) (d)

Fig. 15 Normalized histogram of the mean R0 of the nodal polydisperse droplet populations for varying �outer. (a) t = 45 s. (b) t = 90 s. (c)
t = 150 s. (d) t = 300 s
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highest shear rate and due to the flow profile, they never
experience smaller shear rates, so will not experience any
significant coalescence to become larger droplets.

Influence of ε

In this section, we study the influence of the eccentric-
ity of the inner cylinder ε on the distribution of the
mean R0 of the polydisperse droplet populations through-
out the domain. The mesh of the two cases with ε =
0.05m consists of 32,260 nodes and 15,938 quadratic tri-
angular elements. The case of �outer = 1 s−1 and ε = 0.03m
is compared to the case of �outer = 1 s−1 and ε = 0.05m
and �outer = 0.5396 s−1 and ε = 0.05m. The value of
�outer = 0.5396 s−1 was chosen such that the maximum
shear rate corresponds exactly to the maximum shear

rate in the reference case. The temporal evolution of
the global mean value of R0 is shown in Fig. 13, with
weighted histograms of four values of the time shown
in Fig. 17.

At first sight, it may seem that increasing the eccentricity
leads to faster break up and smaller droplets, but this is in
fact a result of the increased maximum shear rate that results
from this change to the flow geometry. This is illustrated by
the results from�outer = 0.5396 s−1 and ε = 0.05m, which
is the case where the maximum shear rate is exactly matched
to the reference case. In this case, the histograms at all times
are very similar to the reference case in shape and magni-
tude. This suggests that the distribution of the mean R0

of the polydisperse populations is mostly determined by
the combination of the maximum shear rate and the flow
profile.

(a) (b)

(c) (d)

Fig. 16 Normalized histogram of the mean R0 of the nodal polydisperse droplet populations for varying �inner. (a) t = 45 s. (b) t = 90 s. (c)
t = 150 s. (d) t = 300 s
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Influence of a chaotic flow protocol

In this section, we study the influence of alternatingly
rotating the outer and inner cylinder on the distribution
of the mean R0 of the polydisperse droplet populations
throughout the domain. The case of �outer = 1 s−1 is
compared to the case of �inner = 3 s−1 and a time-
periodic case that alternates between �outer = 1 s−1 and
�inner = −3 s−1. A positive rotational speed is defined as
counterclockwise rotation and a negative rotational speed is
defined as a clockwise rotation.

The flow protocol is the same as the one given by
Tjahjadi and Ottino (1991), but with higher values for the
rotational speeds. We define the flow field according to
�inner = −3 s−1 for 0 ≤ t ≤ 37.5 s, �outer = 1 s−1 for

37.5< t ≤ 112.5 s, �inner = − 3 s−1 for 112.5< t ≤ 187.5 s,
�inner = 1 s−1 for 187.5< t ≤ 262.5 s and �inner = − 3 s−1

for 262.5< t ≤ 300 s. The temporal evolution of the global
mean value of R0 is shown in Fig. 14, with weighted
histograms of four values of the time shown in Fig. 18.

The time-periodic protocol seems to take the best aspects
of both individual flow profiles. From the outer rotating
cylinder, it takes the property of breaking the larger droplets
earlier than in the case of the inner rotating cylinder. From
the inner rotating cylinder, it takes the property of creating
a much smaller minimum droplet size compared to the case
of the outer rotating cylinder. In the last frame, it is observed
that the chaotic flow protocol has the very small droplet
sizes without the stagnant large droplets (Figs. 15, 16, 17
and 18).

(a) (b)

(c) (d)

Fig. 17 Normalized histogram of the mean R0 of the nodal polydisperse droplet populations for varying ε. (a) t = 45 s. (b) t = 90 s. (c) t = 150 s.
(d) t = 300 s
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(a) (b)

(c) (d)

Fig. 18 Normalized histogram of the mean R0 of the nodal polydisperse droplet populations for �outer = 1 s−1, �inner = 3 s−1 and the
time-periodic alternating case between �outer = 1 s−1 and �inner = −3 s−1. (a) t = 45 s. (b) t = 90 s. (c) t = 150 s. (d) t = 300 s

Conclusions

The extended blend model was first applied to simple
shear flow, where it was found that the polydispersity
distribution does not simply scale with the shear rate,
because this scaling does not hold for the small droplets
that exist in the coalescence regime. The model was then
applied to Poiseuille flow, showing formation of a layered
blend morphology. Subsequently, the model was applied
on eccentric cylinder flow, where histograms were made
of the average droplet size throughout the domain. It was
observed that outer cylinder rotation results in narrow
distributions where the small droplets are relatively large,

whereas inner cylinder rotation results in broad distributions
where the small droplets are significantly smaller than
in the case of outer cylinder rotation. Outer cylinder
rotation broke up droplets sooner than inner cylinder
rotation if the maximum shear rate was held constant.
Eccentricity did not seem to have any significant effect
if the maximum shear rate was held constant. A time-
periodic chaotic flow protocol, based on Tjahjadi and
Ottino (1991), turned out to break up the large droplets
effectively like outer cylinder rotation, yet also obtain the
very small droplets after breakup like inner cylinder rotation
does, seemingly avoiding coalescence of the very small
droplets.
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List of symbols

Symbol Quantity Unit

af Logarithm of α log(m)
ef Stretching efficiency –
fi Morphology model right-hand side function Depends on i

gi Filament stretching auxiliary expression –
hcrit Critical film thickness m
i Index –
npoly Number of polydispersity modes –
p Droplet size probability distribution function –
s Logarithm of β –
t Time s
v Logarithm of R0 log(m)
xm Dimensionless disturbance wavelength –
y Channel transverse coordinate m
Ah Hamaker constant J
B Minor axis of ellipsoidal droplet m
Ca Capillary number –
Cacrit Critical capillary number –
Caext Extensional capillary number –
D Dimensionless drop deformation parameter –
Ds Scalar rate of deformation s−1

L Major axis of ellipsoidal droplet m
N Number of bins –
Nd Number of droplets per unit volume m−3

R Filament radius m
R0 Undeformed droplet radius m
Rf Filament radius before breakup m
V Volume m3

α Disturbance amplitude m
α0 Initial disturbance amplitude m
αG Giesekus α-parameter –
β Stretch ratio –
γ̇ Shear rate s−1

ε Eccentricity m
ζ Shear-elongation interpolation parameter –
κ Empirical parameter –
λ Viscosity ratio of pure blend constituents –
λe Effective viscosity ratio –
μd Dynamic viscosity of disperse phase Pa s
μe Effective matrix dynamic viscosity Pa s
μm Dynamic viscosity of pure matrix phase Pa s
σ Interfacial tension N/m
τb Smoothing timescale dynamic filament breakup s
τc Smoothing timescale coalescence s
τf Smoothing timescale filament stretching s
τG Giesekus timescale s
τn Smoothing timescale necking s
τs Smoothing timescale static filament breakup s
φ Volume fraction –
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Symbol Quantity Unit

� Scalar vorticity s−1

�inner Angular velocity inner cylinder s−1

�inner Angular velocity outer cylinder s−1

�m Dimensionless disturbance growth rate –
b Contravariant decomposition of c –
c Conformation tensor –
m Orientation vector –
u Velocity m/s
x Spatial coordinates m
D Symmetric part of deformation rate tensor s−1

I Unity tensor –
L Velocity gradient tensor s−1

Q Right-hand side of Giesekus model –
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