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Abstract
In view of the increasing attention to the time responses of complex fluids described by power-laws in association with
the need to capture inertia effects that manifest in high-frequency microrheology, we compute the five basic time-response
functions of in-series or in-parallel connections of two elementary fractional derivative elements known as the Scott-Blair
(springpot) element. The order of fractional differentiation in each Scott-Blair element is allowed to exceed unity reaching
values up to 2 and at this limit-case the Scott-Blair element becomes an inerter—a mechanical analogue of the electric
capacitor that its output force is proportional only to the relative acceleration of its end-nodes. With this generalization,
inertia effects may be captured beyond the traditional viscoelastic behavior. In addition to the relaxation moduli and the
creep compliances, we compute closed-form expressions of the memory functions, impulse fluidities (impulse response
functions) and impulse strain-rate response functions of the generalized fractional derivative Maxwell fluid, the generalized
fractional derivative Kelvin-Voigt element and their special cases that have been implemented in the literature. Central
to these calculations is the fractional derivative of the Dirac delta function which makes possible the extraction of
singularities embedded in the fractional derivatives of the two-parameter Mittag-Leffler function that emerges invariably in
the time-response functions of fractional derivative rheological models.
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Introduction

Phenomenological constitutive models containing differ-
ential operators of non-integer order (fractional derivative
models) have been proposed in mechanics, geosciences,
electrical networks and biology over the last decades
(Gemant 1936, 1938; Scott Blair 1944, 1947; Scott
Blair et al. 1947; Scott Blair and Caffyn 1949; Caputo
and Mainardi 1971; Rabotnov 1980; Bagley and Torvik
1983a, 1983b; Koeller 1984; Koh and Kelly 1990; Friedrich
1991; Glöckle and Nonnenmacher 1991, 1994; Makris
and Constantinou 1991; Schiessel et al. 1995; Makris
1997a; Gorenflo and Mainardi 1997; Challamel et al. 2013;
Atanackovic et al. 2015; Westerlund and Ekstam 1994;
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Lorenzo and Hartley 2002; Suki et al. 1994; Puig-de-
Morales-Marinkovic et al. 2007; and references reported
therein). Given that fractional derivative operators are lin-
ear differential operators, the time-dependent behavior of
mechanical, electrical or biological networks can be com-
puted with frequency domain techniques in association with
the Fourier or Laplace transforms (Le Page 1961; Papoulis
1962; Bracewell 1965; Mainardi 2010).

There are several cases however, where the linear
network that is described with a fractional derivative
constitutive law is embedded in a wider system that behaves
nonlinearly. As an example, seismic protection devices
or rail pads which have been described with fractional
derivative constitutive models (Koh and Kelly 1990; Makris
and Constantinou 1991; Makris 1992; Zhu et al. 2015)
belong to a structure or a vehicle-track system that may
exhibit an overall nonlinear response. In this case the overall
system response needs to be computed in the time-domain;
therefore, a time-domain representation of the behavior of
the individual components (devices) is needed. A time-
domain representation is possible either by expressing
the fractional derivatives with a time-series expansion, or
by computing the basic time-response functions of the
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embedded linear networks and proceeding with an integral
formulation to compute the overall system response.

When constitutive models with fractional-order deriva-
tives are involved, the numerical evaluation of the fractional
derivative of a function is computationally demanding,
partly because the fractional derivatives of the “through”
and “across” variables of the linear network (stress, force,
current = through variables and strain, displacement, voltage
= across variables) need to be expressed via the Grünwald-
Letnikov definition of the fractional derivative of order q ∈
R

+ of a continuous function f (t) (Oldham and Spanier
1974; Samko et al. 1974; Miller and Ross 1993; Podlubny
1998).

dqf (t)

dtq
= Dqf (tj ) =

lim
n→∞

1

�(−q)

(
tj

n

)−q n−1∑
k=0

�(k − q)

�(k + 1)
f

(
tj − k

tj

n

)
, q ∈ R

+ (1)

where �(·) is the Gamma function and R
+ is the set of

positive real numbers.
The Grünwald-Letnikov definition given by Eq. (1) indi-

cates that a large number of terms (n → ∞) may be needed
to meet satisfactory convergence and the computational
effort may be intense (Makris 1992; Miller and Ross 1993).
Accordingly, an integral formulation after deriving the basic
time-response functions of the embedded linear networks
that involve fractional differential operators emerge as an
attractive alternative. Expressions of the relaxation modulus
and the creep compliance of selective fractional deriva-
tive viscoelastic models have been presented by Smit and
De Vries (1970), Koeller (1984), Friedrich (1991), Glöckle
and Nonnenmacher (1991), Glöckle and Nonnenmacher
(1994), Heymans and Bauwens (1994), Suki et al. (1994),
Schiessel et al. (1995), Palade et al. (1996), Djordjević
et al. (2003), Craiem and Magin (2010), Mainardi (2010),
Mainardi and Spada (2011), and Hristov (2019). The present
work builds upon the aforementioned studies and constructs
additional time-response functions such as the memory
function, the impulse fluidity (impulse response function)
and the impulse strain-rate response function of the general-
ized fractional Maxwell fluid and the generalized fractional
Kelvin-Voigt element which are in series or in parallel con-
nections of two elementary fractional derivative elements
known as the Scott-Blair (springpot) model (Scott Blair
1944; 1947). Special cases of these generalized fractional
derivative models are the spring–Scott-Blair in-series or par-
allel connections that have been used by Suki et al. (1994)
to express the pressure–volume relation of the lung tissue
viscoelastic behavior and subsequently used by Puig-de-
Morales-Marinkovic et al. (2007) to model the viscoleastic
behavior of human red blood cells. The springpot–dashpot
in-series or parallel connections are rheological models have

been used to capture the high-frequency behavior of semi-
flexible polymer networks (Gittes and MacKintosh 1998;
Atakhorrami et al. 2008; Domı́nguez-Garcı́a et al. 2014) or
the behavior of viscoelastic dampers for the vibration and
seismic isolation of structures (Makris 1992; Makris and
Constantinou 1992; Makris and Deoskar 1996).

The memory function of the elementary Scott-Blair
(springpot) element is central in this work, since it is
the fractional derivative of the Dirac delta function which
is merely the kernel appearing in the convolution of the
Riemann-Liouville definition of the fractional derivative of
a function. This finding shows that the fractional derivative
of the Dirac delta function is finite everywhere other than at
the singularity point and it is the inverse Fourier transform
of (iω)q with q ∈ R

+. It emerges as a key function in
the derivation of the time-response functions of generalized
fractional derivative rheological models, since it makes
possible the extraction of the singularities embedded in the
fractional derivatives of the two-parameter Mittag-Leffler
function.

Basic time-response functions of linear
phenomenological models

This paper studies the integral representation of linear
phenomenological constitutive models (linear networks) of
the form[

M∑
m=0

am

dpm

dtpm

]
τ(t) =

[
N∑

n=0

bn

dqn

dtqn

]
γ (t) (2)

where τ(t) and γ (t) are the time-histories of the stress
and the small-gradient strain, am and bn are real-
valued frequency-independent coefficients and the order of
differentiation, pm and qn are real, positive non-integer
numbers (usually rational fractions). A definition of the
fractional derivative of order q is given through the
convolution integral

I qγ (t) = 1

�(q)

∫ t

c

γ (ξ)(t − ξ)q−1dξ (3)

where �(q) is the Gamma function and γ (t) is an n times
differentiable function. When the lower limit, c = 0, the
integral given by Eq. (3) is often referred to as the Riemann-
Liouville fractional integral (Oldham and Spanier 1974;
Samko et al. 1974; Miller and Ross 1993; Podlubny 1998).
The above integral converges only for q > 0, or in the case
where q is a complex number, the integral converges for
R(q) > 0. Nevertheless, by a proper analytic continuation
across the line R(q) = 0, and provided that the function
γ (t) is n times differentiable, it can be shown that the
integral given by Eq. (3) exists for n−R(q) > 0 (Riesz et al.
1949). In this case the generalized (fractional) derivative of
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order q ∈ R
+ exists and is defined as

dqγ (t)

dtq
= I−qγ (t) = 1

�(−q)

∫ t

0−
γ (ξ)

(t − ξ)q+1
dξ , q ∈ R

+

(4)

where R
+ is the set of positive real numbers and the lower

limit of integration, 0−, may engage an entire singular
function at the time origin such as γ (t) = δ(t −0) (Lighthill
1958; Mainardi 2010). Eq. (4) indicates that the fractional
derivative of order q of γ (t) is essentially the convolution
of γ (t) with the kernel t−q−1/�(−q) (Oldham and Spanier
1974; Samko et al. 1974; Miller and Ross 1993; Mainardi
2010). The Riemann-Liouville definition of the fractional
derivative of order q ∈ R

+ given by Eq. (4), where the
lower limit of integration is zero, is central in this work
since the strain and stress histories, γ (t) and τ(t), are causal
functions, being zero at negative times.

Linear viscoelastic materials, such as those described
with Eq. (2), obey the so-called Boltzmann superposition
principle—that the output response history can be obtained
as the convolution of the input history after being
convolved with the corresponding time-response function.
The basic time-response functions can be obtained either
by imposing an impulse or a unit-step excitation on the
constitutive model, or by inverting in the time-domain the
corresponding frequency-response functions of the real-
parameter constitutive model. Such techniques are well
known in the literature of rheology (Ferry 1980; Bird et al.
1987; Tschoegl 1989), structural mechanics (Harris and
Crede 1976; Veletsos and Verbic 1974; Makris 1997b) and
automatic control (Bode 1945; Reid 1983; Triverio et al.
2007).

The linearity of Eq. (2) permits its transformation in the
frequency domain

τ(ω)

[
M∑

m=0

am(iω)pm

]
= γ (ω)

[
N∑

n=0

bn(iω)qn

]
(5)

where, i = √−1 = imaginary unit, τ(ω) = ∫ ∞
−∞ τ(t)e−iωtdt

and γ (ω) = ∫ ∞
−∞ γ (t)e−iωtdt are the Fourier transforms of

the stress and strain histories and (iω)qγ (ω) is the Fourier
Transform of the fractional derivative of order q of the time
function, γ (t) (Oldham and Spanier 1974; Koh and Kelly
1990; Mainardi 2010; Samko et al. 1974; Miller and Ross
1993; Podlubny 1998)

F
{

dqγ (t)

dtq

}
=

∫ ∞

−∞
dqγ (t)

dtq
e−iωtdt = (iω)qγ (ω) (6)

Eq. (5) is expressed as

τ(ω) = [G1(ω) + iG2(ω)] γ (ω) (7)

where G(ω) = G1(ω) + iG2(ω) is the complex dynamic
modulus of the constitutive model (Ferry 1980; Bird et al.

1987; Giesekus 1995).

G(ω) = G1(ω) + iG2(ω) =

N∑
n=0

bn(iω)qn

M∑
m=0

am(iω)pm

(8)

and is a frequency-response function that relates a stress
output to a strain input. The stress, τ(t), in Eq. (2) can be
computed in the time domain with the convolution integral

τ(t) =
∫ t

0
M(t − ξ)γ (ξ)dξ (9)

where M(t − ξ) is the memory function of the model
(Bird et al. 1987; Veletsos and Verbic 1974; Makris 1997b),
defined as the resulting stress at time t due to an impulsive
strain input at time ξ (ξ < t), and is the inverse Fourier
transform of the complex dynamic modulus

M(t) = 1

2π

∫ ∞

−∞
G(ω)eiωtdω (10)

The inverse of the complex dynamic modulus is the complex
dynamic compliance (Pipkin 1986; Giesekus 1995)

J (ω) = J1(ω) + iJ2(ω) = 1

G(ω)
=

M∑
m=0

am(iω)pm

N∑
n=0

bn(iω)qn

(11)

which is a frequency-response function that relates a
strain output to a stress input. In structural mechanics the
equivalent of the complex dynamic compliance is known as
the dynamic flexibility, often expressed with H(ω) (Clough
and Penzien 1970). Accordingly, the strain history in Eq. (2)
can be computed in the time domain via a convolution
integral

γ (t) =
∫ t

0
φ(t − ξ)τ (ξ)dξ (12)

where φ(t − ξ) is the impulse fluidity (Giesekus 1995),
defined as the resulting strain history at time t due to an
impulsive stress input at time ξ(t < ξ), and is the inverse
Fourier transform of the dynamic compliance, J (ω)

φ(t) = 1

2π

∫ ∞

−∞
J (ω)eiωtdω (13)

In structural mechanics, the equivalent of the impulse fluid-
ity at the force–displacement level is known as the impulse
response function, h(t), which is the kernel appearing in
the Duhamel integral (Clough and Penzien 1970; Velet-
sos and Verbic 1974; Makris 1997b). Expressions of the
impulse fluidity of the Hookean solid, the Newtonian fluid,
the Kelvin-Voigt solid and the Maxwell fluid have been pre-
sented by Giesekus (1995); whereas, for the three-parameter
Poyinting-Thomson solid and the three- parameter Jeffreys
fluid have been presented by Makris and Kampas (2009).
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Another useful frequency-response function of a linear
constitutive model is the complex dynamic viscosity,
η(ω) = η1(ω) + iη2(ω), which relates a stress output to a
strain-rate input

τ(ω) = [η1(ω) + iη2(ω)] γ̇ (ω) (14)

where γ̇ (ω) = iωγ (ω) is the Fourier transform of the
strain-rate history. In structural mechanics, the equivalent of
the complex dynamic viscosity at the force-velocity level
is known as the mechanical impedance, Z(ω) = Z1(ω) +
iZ2(ω) (Harris and Crede 1976). The term impedance and
its notation, Z(ω), have also been used to express the
pressure–volume-rate relation of the lung tissue viscoelastic
behavior of human and selective animal lungs (Suki et al.
1994). For the linear viscoelastic model given by Eq. (2),
the complex dynamic viscosity (impedance) of the model is

η(ω) = η1(ω) + iη2(ω) =

N∑
n=0

bn(iω)qn

M∑
m=0

am(iω)pm+1

(15)

The stress τ(t) in Eq. (2) can be computed in the time
domain with an alternative convolution integral

τ(t) =
∫ t

0
G(t − ξ)

dγ (ξ)

dξ
dξ (16)

where G(t − ξ) is the relaxation modulus of the constitutive
model defined as the resulting stress at the present time, t ,
due to a unit-step strain at time ξ (ξ < t) and is the inverse
Fourier transform of the complex dynamic viscosity

G(t) = 1

2π

∫ ∞

−∞
η(ω)eiωtdω (17)

Expressions for the relaxation modulus, G(t), of the
various simple viscoelastic models are well-known in the
literature (Ferry 1980; Bird et al. 1987; Tschoegl 1989;
Giesekus 1995). Expressions for the relaxation modulus of
simple fractional derivative viscoelastic models have been
presented by Smit and De Vries (1970), Koeller (1984),
Friedrich (1991), Glöckle and Nonnenmacher (1991),
Glöckle and Nonnenmacher (1994), Suki et al. (1994),
Schiessel et al. (1995), Palade et al. (1996), Djordjević
et al. (2003), Puig-de-Morales-Marinkovic et al. (2007),
Mainardi (2010), Craiem and Magin (2010), Mainardi and
Spada (2011), Jaishankar and McKinley (2013), and Hristov
(2019).

The inverse of the complex dynamic viscosity is the
complex dynamic fluidity (Giesekus 1995)

φ(ω) = φ1(ω) + iφ2(ω) = 1

η(ω)
=

M∑
m=0

am(iω)pm+1

N∑
n=0

bn(iω)qn

(18)

which is a frequency-response function that relates a strain-
rate output to a stress input. In structural mechanics the
equivalent of the complex dynamic fluidity at the velocity-
force level is known as the mechanical admittance or
mobility (Harris and Crede 1976). The strain-rate history,
γ̇ (t), can be computed in the time domain via the
convolution integral

γ̇ (t) = dγ (t)

dt
=

∫ t

0
ψ(t − ξ)τ (ξ)dξ (19)

where ψ(t − ξ) is the impulse strain-rate response function
defined as the resulting strain-rate output at time t due to an
impulsive stress input at time ξ(ξ < t) and is the inverse
Fourier transform of the dynamic fluidity

ψ(t) = 1

2π

∫ ∞

−∞
φ(ω)eiωtdω (20)

Together with the relaxation modulus, G(t − ξ) that
appears as a kernel in Eq. (16), the other most popular
time-response function in experimental stress analysis is
the creep compliance, J (t − ξ) (Ferry 1980; Pipkin 1986;
Tschoegl 1989; Bird et al. 1987), that is defined as the
resulting strain, γ (t), at the present time t due to a unit-step
stress at time ξ(ξ < t) and is the inverse Fourier transform
of the complex creep function, C(ω)

J (t) = 1

2π

∫ ∞

−∞
C(ω)eiωtdω (21)

The complex creep function, C(ω), is the ratio of the cyclic
strain output γ (ω), over the cyclic stress-rate input τ̇ (ω)

(Mason et al. 1997; Mason 2000; Evans et al. 2009; Makris
2019).

C(ω) = γ (ω)

τ̇ (ω)
= 1

iω
J (ω) (22)

Accordingly, the strain history in Eq. (2) can be computed
in the time domain with an alternative convolution integral

γ (t) =
∫ t

0
J (t − ξ)

dτ(ξ)

dξ
dξ (23)

All five time-response functions given by Eqs. (10), (13),
(17) and (21) are causal time-response functions—that is
they are zero at negative times. This means that their Fourier
transform vanishes at negative times and it becomes one-
sided. For instance, the complex dynamic viscosity, η(ω),
that is the Fourier transform of the relaxation modulus,
G(t), is

η(ω) =
∫ ∞

−∞
G(t)e−iωtdt =

∫ ∞

0
G(t)e−iωtdt (24)

The one-sided integral on the right-hand side of Eq. (24)
that results from the causality of the time-response function,
(G(t) = 0 when t < 0), is essentially the Laplace transform
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of the time-response function (Le Page 1961)

η(s) = L {G(t)} =
∫ ∞

0
G(t)e−stdt (25)

where s = iω is the Laplace variable and L indicates
the Laplace transform operator. Accordingly, the frequency-
response functions given by Eqs. (8), (11), (15), (18)
and (22) are Laplace pairs with their corresponding time-
response functions given by Eqs. (10), (13), (17) and (21),
which are summarized in Table 1 when a strain input,
strain-rate input, stress input or stress-rate input is imposed.

The fractional derivative of the Dirac delta
function

Following the observations by Nutting (1921), that the
stress response of several fluid-like materials to a step-
strain decays following a power law (τ (t) = G(t) ∼ t−q

with 0 < q < 1) and the early work of Gemant (1936)
and Gemant (1938) on fractional differentials; Scott Blair
(1944) and Scott Blair (1947) pioneered the introduction of
fractional calculus in viscoelasticity. With analogy to the
Hookean spring, in which the stress is proportional to the
zero-th derivative of the strain and the Newtonian dashpot,
in which the stress is proportional to the first derivative of
the strain, Scott Blair (1944), Scott Blair (1947), Scott Blair
et al. (1947), and Scott Blair and Caffyn (1949) proposed the
springpot element—that is an element in between a spring
and a dashpot with constitutive law

τ(t) = Kq

dqγ (t)

dtq
(26)

where q is a positive real number, 0 ≤ q ≤ 1,
Kq is a phenomenological material parameter with units
[M][L]−1[T]q−2 (say Pa-secq ) and dqγ (t)/dtq is the
fractional derivative of the strain-history defined by Eq. (4).

For the elastic Hookean spring with elastic modulus, G,
its memory function as defined by Eq. (10) is M(t) =
Gδ(t − 0)—that is the zero-order derivative of the Dirac
delta function; whereas, for the Newtonian dashpot with

viscosity, η, its memory function is M(t) = η
dδ(t−0)

dt
—

that is the first-order derivative of the Dirac delta function
(Bird et al. 1987, see also Table 2). Since the springpot
element defined by Eq. (26) with 0 ≤ q ≤ 1 is a constitutive
model that is in between the Hookean spring and the
Newtonian dashpot, physical continuity suggests that the
memory function of the springpot model given by Eq. (26)

shall be of the form of M(t) = Kq
dqδ(t−0)

dtq
—that is the

fractional derivative of order q of the Dirac delta function
(Oldham and Spanier 1974; Podlubny 1998).

The fractional derivative of the Dirac delta function
emerges directly from the property of the Dirac delta

function (Lighthill 1958)∫ ∞

−∞
δ(t − ξ)f (t)dt = f (ξ) (27)

By following the Riemann-Liouville definition of the
fractional derivative of a function given by the convolution
appearing in Eq. (4), the fractional derivative of order q ∈
R

+ of the Dirac delta function is

dqδ(t − ξ)

dtq
= 1

�(−q)

∫ t

0−
δ(τ − ξ)

(t − τ)1+q
dτ , q ∈ R

+ (28)

and by applying the property of the Dirac delta function
given by Eq. (27); Eq. (28) gives

dqδ(t − ξ)

dtq
= 1

�(−q)

1

(t − ξ)1+q
, q ∈ R

+ (29)

Equation (29) offers the remarkable result that the fractional
derivative of the Dirac delta function of any order q ∈{
R

+ − N
}

is finite everywhere other than at t = ξ ; whereas,
the Dirac delta function and its integer-order derivatives are
infinite-valued, singular functions that are understood as a
monopole, dipole and so on; and we can only interpret them
through their mathematical properties as the one given by
Eq. (27). Figure 1 plots the fractional derivative of the Dirac
delta function at ξ = 0

dqδ(t − 0)

dtq
= 1

�(−q)

1

t1+q
with q ∈ R

+, t > 0 (30)

The result of Eq. (30) is identical to the alternative definition
of the nth (n ∈ N0) derivative of the Dirac delta function
presented by Gel’fand and Shilov (1964) with a proper

interpretation of the quotien 1
tn+1 as a limit at t = 0.

dnδ(t − 0)

dtn
= 1

�(−n)

1

tn+1
with n ∈ N0 (31)

where N0 is the set of positive integers including zero.
The result for the fractional derivative of the Dirac delta

function given by Eq. (30) is also compared with the well-
known results in the literature for the fractional derivative
of the constant unit function f (t) = 1 (Oldham and Spanier
1974; Samko et al. 1974; Miller and Ross 1993; Podlubny
1998).

Dr1 = t−r

�(1 − r)
, r ∈ R

+ and t > 0 (32)

For r ∈ N, Dr1 = 0 due to the poles of the Gamma
function at 0, −1, and −2 and the classical results are
recovered. Clearly, in Eq. (32) time needs to be positive
(t > 0); otherwise, the result of Eq. (32) would be a
complex number when r ∈ {

R
+ − N

}
. Accordingly, a more

formal expression of equation Eq. (32) within the context of
generalized functions is

DrU(t − 0) = 1

�(1 − r)

1

t r
, r ∈ R

+, t > 0 (33)
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Table 1 Basic frequency-response functions and their corresponding causal time-response functions in linear viscoelasticity and linear network
analysis. Because the time-response functions listed in the right column are zero at negative times, their Fourier transform shown in the left column
is also a Laplace transform with variable s = iω
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Fig. 1 Plots of the fractional derivative of the Dirac delta function
of order q ∈ {

R
+ − N

}
, which are the 1 + q order derivative of

the constant 1 for positive times. The functions are finite everywhere
other than the time origin, t = 0. The figure shows that the fractional
derivatives of the singular Dirac delta function and these of the
constant unit at positive times are expressed with the same family of
functions

where U(t − 0) is the Heaviside unit-step function at the
time origin (Lighthill 1958).

For the case where r > 1, 1 − r = −q with q ∈ R
+;

therefore 1 + q = r > 1. Accordingly, for r > 1, Eq. (33)
can be expressed as

d1+q

dt1+q
U(t − 0) = dq

dtq

[
dU(t−0)

dt

]

= dq

dtq
δ(t − 0) = 1

�(−q)
1

t1+q , q ∈ R
+, t > 0 (34)

and the result of Eq. (30) is recovered. In Eq. (34) we used

that δ(t − 0) = dU(t−0)
dt

(Lighthill 1958).

Time-response functions of the Scott-Blair
(springpot) element

The memory function, M(t) appearing in Eq. (9), of the
Scott-Blair (springpot when 0 ≤ q ≤ 1) element expressed
by Eq. (26) results directly from the definition of the
fractional derivative expressed with the Reimann-Liouville
integral given by Eq. (4). Substitution of Eq. (4) into
Eq. (26) gives

τ(t) = Kq

�(−q)

∫ t

0

γ (ξ)

(t − ξ)q+1
dξ , q ∈ R

+ (35)

By comparing Eq. (35) with Eq. (9), the memory function,
M(t), of the Scott-Blair (springpot when 0 ≤ q ≤ 1)
element is merely the kernel of the Riemann-Liouville

convolution multiplied with the material parameter Kq

M(t) = Kq

�(−q)

1

tq+1
= Kq

dqδ(t − 0)

dtq
, q ∈ R

+ (36)

where the right-hand side of Eq. (36) is from Eq. (30).
Eq. (36) shows that the memory function of the springpot
element is the fractional derivative of order q ∈ R

+ of
the Dirac delta function as was anticipated by using the
argument of physical continuity given that the springpot
element interpolates the Hookean spring and the Newtonian
dashpot.

In this study we adopt the name “Scott-Blair element”
rather than the more restrictive “springpot” element given
that the fractional order of differentiation q ∈ R

+ is allowed
to take values larger than one. For instance when 1 ≤ q ≤ 2
the Scott-Blair element represents an element that is in
between a dashpot and an inerter.

An “inerter” is a linear mechanical element where at
the force-displacement level the output force is proportional
only to the relative acceleration of its end-nodes (terminals)
(Smith 2002; Papageorgiou and Smith 2005; Makris and
Moghimi 2018) and complements the classical elastic
spring and viscous dashpot. In a stress–current/strain-rate–
voltage analogy, the inerter is the mechanical analogue of
the electric capacitor and its constant of proportionality
is the distributed inertance, mR , with units of [M] [L]−1

(say Pa-sec2). Recent studies on Brownian motion showed
that the ballistic regime of Brownian particles suspended
in a linear, isotropic, viscoelastic material can be modeled
by appending to the viscoelastic material an inerter with
distributed inertance mR = m

6πR
, where m and R are

the mass and radius of the suspended particle (bead),
respectively (Makris 2020). When q = 2, the memory
function of the Scott-Blair element given by Eq. (36) gives

M(t) = K2

�(−2)

1

t3
= mR

d2δ(t − 0)

dt2
(37)

which is the memory function of the inerter (Makris 2017)
and K2 = mR is its distributed inertance. The result offered
by Eq. (37) is in agreement with the Gel’fand and Shilov
(1964) alternative definition of the Dirac delta function and
its integer-order derivatives offered by Eq. (31). Figure 2
shows schematically the Scott-Blair element that is in
between a spring (K0 = G) and a dashpot (K1 = η) when
0 ≤ q ≤ 1 or in between a dashpot (K1 = η) and an inerter
(K2 = mR) when 1 ≤ q ≤ 2. Glöckle and Nonnenmacher
(1991), Glöckle and Nonnenmacher (1993), and Glöckle
and Nonnenmacher (1994) studied the relaxation behavior
of fractional derivative rheological models by implementing
the Fox H-function and presented plots of the relaxation
modulus of the spring–Scott-Blair element by allowing the
fractional derivative of the Scott-Blair element to reach
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Fig. 2 The Scott-Blair element
with constitutive law τ(t) = Kq

dqγ (t)/dtq is an element in
between a spring (K0 = G) and
a dashpot (K1 = η) when
0 ≤ q ≤ 1 (springpot element)
or an element in between a
dashpot (K1 = η) and an inerter
(K2 = mR) when 1 ≤ q ≤ 2.
For probe particles with mass m

and radius R undergoing
Brownian motion when
suspended in fluids their
distributed inertance is mR =

m
6πR

with units [M] [L]−1

(Makris 2020)

values up to 2 (0 ≤ q ≤ 2) a decade before Smith (2002)
introduced the inerter and its direct equivalence to the
electric capacitor. In this way Glöckle and Nonnenmacher
(1994) have shown plots of the relaxation modulus of what
we now call the inerto-elastic fluid (Makris 2017).

Equations (6) and (7) indicate that the complex dynamic
modulus G(ω) = G1(ω)+iG2(ω) of the Scott-Blair element
given bt Eq. (26) is

G(ω) = τ(ω)

γ (ω)
= Kq(iω)q (38)

and its inverse Fourier transform is the memory function,
M(t), as indicated by Eq. (10). With the introduction of the
fractional derivative of the Dirac delta function expressed by
Eq. (29) or Eq. (36), the definition of the memory function
given by Eq. (10) offers a new (to the best of our knowledge)
and most useful result regarding the Fourier transform of the
function F(ω) = (iω)q with q ∈ R

+

F−1(iω)q = 1
2π

∫ ∞
−∞(iω)qeiωtdω

= dqδ(t−0)
dtq

= 1
�(−q)

1
tq+1 , q ∈ R

+, t > 0 (39)

In terms of the Laplace variable s = iω (see equivalence of
Eqs. (24) and (25)), Eq. (39) gives that

L−1 {
sq

} = dqδ(t − 0)

dtq
= 1

�(−q)

1

tq+1
, q ∈ R

+, t > 0

(40)

where L−1 indicates the inverse Laplace transform operator
(Le Page 1961; Mainardi 2010). While the right-hand side
of Eq. (39) or Eq. (40) is non-zero only when q ∈ {

R
+ − N

}
and assuming that we are not aware of the Gel’fand and
Shilov (1964) definition of the Dirac delta function and its
integer order derivatives given by Eq. (31); the validity of
Eq. (39) can be confirmed by investigating its limiting cases.
For instance, when, q = 0, (iω)q = 1; and Eq. (39) yields
that 1

2π

∫ ∞
−∞ eiωtdω = δ(t − 0); which is the correct result.

When q = 1, Eq. (39) yields that

1

2π

∫ ∞

−∞
iωeiωtdω = dδ(t − 0)

dt
(41)

Clearly, the function F(ω) = iω is not Fourier integrable
in the classical sense, yet the result of Eq. (41) can be

confirmed by evaluating the Fourier transform of dδ(t−0)
dt

together with the properties of the higher-order derivatives
of the Dirac delta function (Lighthill 1958)∫ ∞

−∞
dnδ(t − 0)

dtn
f (t)dt = (−1)n

dnf (0)

dtn
(42)

By virtue of Eq. (42), the Fourier transform of dδ(t−0)
dt

is
∫ ∞

−∞
dδ(t − 0)

dt
e−iωtdt = −(−iω)e−iω0 = iω (43)

therefore, the functions iω and dδ(t−0)
dt

are Fourier pairs, as
indicated by Eq. (39).

More generally, for any q = n ∈ N, Eq. (39) yields that

1

2π

∫ ∞

−∞
(iω)neiωtdω = dnδ(t − 0)

dtn
(44)

By virtue of Eq. (42), the Fourier transform of dnδ(t−0)
dtn

is
∫ ∞

−∞
dnδ(t − 0)

dtn
eiωtdt = (−1)n(−iω)n = (iω)n (45)

showing that the functions (iω)n and dnδ(t−0)
dtn

are Fourier
pairs, which is a special result (for q ∈ N0) of the more
general result offered by Eq. (39). Consequently, fractional
calculus and the memory function of the Scott-Blair element
offer an alternative avenue to reach the Gel’fand and Shilov
(1964) definition of the Dirac delta function and its integer
order derivatives given by Eq. (31).

The complex dynamic compliance, J (ω), of the Scott-
Blair element as defined by Eq. (11) is the inverse of the
complex dynamic modulus given by Eq. (38)

J (ω) = γ (ω)

τ(ω)
= 1

Kq

1

(iω)q
(46)

In terms of the Laplace variable, s = iω, the impulse
fluidity (impulse response function), φ(t), of the Scott-Blair
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element is given by

φ(t) = L−1 {J (s)}
= L−1

{
1

Kq

1

sq

}
= 1

Kq

1

�(q)

1

t1−q
U(t−0), q ∈R

+(47)

The expression for the impulse fluidity (impulse response
function) of the Scott-Blair element given by Eq. (47)
has been also presented by Lorenzo and Hartley (2002).
At the limit case where q = 1, Eq. (47) gives φ(t) =
1

K1

1
�(1)

1
t0 U(t − 0) = 1

K1
U(t − 0), which is the impulse

fluidity of the Newtonian fluid with viscosity η = K1

(see Table 2). When q = 2, Eq. (47) gives φ(t) =
1

K2

1
�(2)

tU(t − 0) = 1
K2

tU(t − 0), which is the impulse
fluidity of the inerter with inertance mR = K2 (Makris
2017; 2018).

The complex dynamic viscosity (impedance), η(ω), of
the Scott-Blair element as defined by Eq. (15) derives
directly from Eq. (26) by using that γ̇ (s) = sγ (s) with
s = iω. Accordingly, in the Laplace domain, the Scott-
Blair element given by Eq. (26) is expressed as τ(s) =
Kqsq−1γ̇ (s) and therefore, the complex dynamic viscosity,
η(s), of the Scott-Blair element is

η(s) = Kq

1

s1−q
, q ∈ R

+ (48)

For the springpot element (0 ≤ q ≤ 1) which is a special
case of the Scott-Blair element (q ∈ R

+) the quantity 1 −
q > 0, and the relaxation modulus, G(t), of the springpot
element is offered by the classical result available in Tables
of Laplace transforms (Erdélyi 1954)

G(t) = L−1 {η(s)} = L−1
{
Kq

1
s1−q

}

= Kq
1

�(1−q)
1
tq

U(t − 0), 0 < q < 1 (49)

The result offered by Eq. (49) is well known to the literature
(Smit and De Vries 1970; Koeller 1984; Friedrich 1991;
Heymans and Bauwens 1994; Suki et al. 1994; Schiessel
et al. 1995; Palade et al. 1996; Craiem and Magin 2010;
Mainardi 2010). For the case where q > 1 (say Scott-
Blair element that is in between a dashpot and an inerter,
1 ≤ q ≤ 2), the Laplace transform offered by the right-hand
side of Eq. (49) does not exist in the classical sense and one
has to use the result of Eq. (40). Accordingly for q > 1,
the complex dynamic viscosity of the Scott-Blair element is
η(s) = Kqsq−1 and Eq. (40) yields

G(t) = L−1
{
Kqsq−1

} = Kq

�(−q+1)
1

tq−1+1 U(t − 0)

= Kq

�(1−q)
1
tq

U(t − 0), q > 1 (50)

Interestingly, the result offered by Eq. (50) for q > 1
is identical to the classical result offered by Eq. (49) for
0 ≤ q < 1; therefore, Eq. (49) is the expression of
the relaxation modulus of the Scott-Blair element for any
q ∈ R

+. At the limit case where q = 0, Eq. (49) gives

G(t) = K0
1

�(1)
1
t0 U(t − 0) = K0U(t − 0) which is

the relaxation modulus of the Hookean spring with elastic
modulus G = K0 (see Table 2). When q = 1, Eq. (50)
becomes the Dirac delta function, δ(t − 0), according to the
definition given by Eq. (31) (Gel’fand and Shilov 1964);
therefore, G(t) = K1δ(t − 0) which is the relaxation
modulus of the Newtonian dashpot with viscosity η = K1

(see Table 2). When q = 2, Eq. (50) yields G(t) = K2
�(−1)

1
t2

= K2
dδ(t−0)

dt
which is the relaxation modulus of the inerter

with inertance mR = K2 (Makris 2017; 2018).
The complex dynamic fluidity (admittance), φ(ω), of the

Scott-Blair element as defined by Eq. (18) is the inverse of
its complex dynamic viscosity given by Eq. (48)

φ(s) = 1

Kq

s1−q , 0 < q < 1 (51)

For the special case of the springpot element (0 ≤ q ≤ 1),
1 − q ≥ 0, the impulse strain-rate response function of the
springpot element is offered with the help of Eq. (40)

ψ(t) = L−1 {φ(s)} = L−1
{

1
Kq

s1−q
}

= 1
Kq

1
�(−1+q)

1
t2−q U(t − 0), 0 ≤ q ≤ 1 (52)

For the case where q > 1 (say the Scott-Blair element
that is in between a dashpot and an inerter: 1 < q < 2)
the complex dynamic fluidity of the Scott-Blair element

is φ(s) = 1
Kq

1
sq−1 , and its inverse Laplace transform

is offered from the classical result available in Tables of
Laplace transforms (Erdélyi 1954)

ψ(t) = L−1 {φ(s)} = L−1
{

1
Kq

1
sq−1

}

= 1
Kq

1
�(−1+q)

1
t2−q U(t − 0), q > 1 (53)

The classical result offered by Eq. (53) for q > 1 is identical
to the result of Eq. (52) for 0 < q < 1; therefore Eq. (53) is
the expression of the impulse strain-rate response function
of the Scott-Blair element for any q ∈ R

+. For the limit
cases where q = 0 and Kq = G or q = 1 and Kq = η,

Eq. (53) results by virtue of Eq. (31) that ψ(t) = 1
G

dδ(t−0)
dt

or ψ(t) = 1
η
δ(t − 0) which are respectively the impulse

strain-rate response functions of the Hookean spring or the
Newtonian dashpot, as shown in Table 2. For the limit case

where q = 2, Eq. (53) results, ψ(t) = 1
K2

U(t − 0) which is
the impulse strain-rate response function of the inerter with
inertance mR = K2 (Makris 2017; 2018).

The complex creep function, C(ω), of the Scott-Blair
element as defined by Eq. (22) derives directly from Eq. (46)

given that C(s) = J (s)
s

with s = iω. Accordingly, the
complex creep function, C(s), of the Scott-Blair element is

C(s) = 1

Kq

1

sq+1
, q ∈ R

+ (54)
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Given that q + 1 > 0, the creep compliance of the Scott-
Blair element is offered by the classical results available in
Tables of Laplace transforms (Erdélyi 1954)

J (t) = L−1 {C(s)} = L−1
{

1
Kq

1
sq+1

}

= 1
Kq

1
�(q+1)

tqU(t − 0), q ∈ R
+ (55)

The expression given by Eq. (55) has been presented by
Koeller (1984), Friedrich (1991), Heymans and Bauwens
(1994), and Schiessel et al. (1995). For the limit cases when
q = 0 and Kq = G or q = 1 and Kq = η, Eq. (55) results

that J (t) = 1
G

U(t − 0) or J (t) = 1
η
tU(t − 0) which are

respectively the creep compliances of the Hookean spring
or the Newtonian dashpot shown in Table 2.

The five causal time-response functions of the Scott-Blair
(springpot) element computed in this section (Eqs. (36),
(47), (49), (52) and (55)) are summarized in Table 2
next to the known time-response function of the Hookean
spring, the Newtonian dashpot, the Kelvin-Voigt solid
and the Maxwell fluid (Harris and Crede 1976; Bird
et al. 1987; Giesekus 1995; Makris 1997b) which are
included to validate the limit-cases of the results derived
for the generalized fractional derivative rheological models
examined in this work.

Two-parameter fractional derivative
rheological models

Upon we introduced the fractional derivative of the
Dirac delta function and derived the causal time-response
functions of the elementary Scott-Blair element expressed
by Eq. (26); this study proceeds with the derivation of the
time-response functions of the two-parameter generalized
fractional Maxwell fluid and generalized fractional Kelvin-
Voigt element. The generalized fractional Maxwell fluid
consists of two Scott-Blair elements connected in series
as shown in Fig. 3 (left); while the generalized fractional
Kelvin-Voigt element consists of two Scott-Blair elements
connected in parallel as shown in Fig. 3 (right).

Because of the linearity of the Scott-Blair element,
the basic response functions of the fractional rheological
models showed in Fig. 3 follow the same superposition
rules that govern the basic response functions of classical

linear networks. For instance, the complex dynamic
compliance (dynamic flexibility), complex dynamic fluidity
(admittance) and complex creep function (any transfer
function that has a strain or a strain-rate on its numerator)
of the generalized fractional Maxwell fluid (in-series
connection) are the summation of the corresponding
dynamic compliances, dynamic fluidities or complex creep
functions of the individual Scott-Blair elements. The
outcome of this superposition is reflected in the resulting
causal time-response functions which are the impulse
fluidity (impulse response function), impulse strain-rate
function and creep compliance (retardation function).

Similarly, the complex dynamic modulus (dynamic
stiffness) and complex dynamic viscosity (impedance—that
is any transfer function that has a stress on its numerator)
of the generalized fractional Kelvin-Voigt element (in-
parallel connection) are the summation of the corresponding
dynamic moduli or dynamic viscosities of the individual
Scott-Blair elements. The outcome of this superposition
is reflected in the resulting causal time-response functions
which are the memory function and the relaxation modulus.

A function that is central in the derivation of the time-
response functions of the fractional derivative rheological
models examined in this study is the two-parameter Mittag-
Leffler function (Erdélyi 1953; Podlubny 1998; Haubold
et al. 2011; Gorenflo et al. 2014)

Eα, β(z) =
∞∑

j=0

zj

�(jα + β)
, α > 0, β > 0 (56)

The evaluation of some time-response functions of the gen-
eralized fractional derivative rheological models examined
in this paper involves the fractional derivative of the Mittag-
Leffler function and this may result to negative values of
β (β < 0, see Eq. (59)). When this happens, the singu-
larities embedded in the resulting Mittag-Leffler function
are extracted using the recurrence relation (Erdélyi 1953;
Haubold et al. 2011)

Eα, β(z) = 1

�(β)
+ zEα, α+β(z) (57)

Of interest in this paper are the fractional integral and
the fractional derivative of the function Υα, β(t) =
tβ−1Eα, β

(
− 1

λ
tα

)
, which is the product of a power law with

the Mittag-Leffler function. When α = β, this function is

Fig. 3 The generalized
fractional Maxwell fluid (left)
and the generalized fractional
Kelvin-Voigt element (right)
with p, q ∈ R

+
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also known as the Rabotnov function (Rabotnov 1980). The
fractional integral of Υα, β(t) is

1

�(q)

∫ t

0
(t − ξ)q−1ξβ−1Eα, β

(
−1

λ
ξα

)
dξ

=I q

[
tβ−1Eα, β

(
−1

λ
tα

)]
= tβ+q−1Eα, β+q

(
−1

λ
tα

)
(58)

while its fractional derivative is

dq

dtq

[
tβ−1Eα, β

(
−1

λ
tα

)]
= tβ−q−1Eα, β−q

(
−1

λ
tα

)

(59)

In the event that β − q < 0, the Mittag-Leffler function
appearing on the right-hand side of Eq. (59) is replaced with
the identity from the recurrence relation Eq. (57)

dq

dtq

[
tβ−1Eα, β

(
−1

λ
tα

)]

= 1

�(β−q)

1

t1+q−β
− 1

λ
tα+β−q−1Eα, α+β−q

(
−1

λ
tα

)
(60)

Recognizing that according to Eq. (30) the first term in the

right-hand side of Eq. (60) is dq−β

dtq−β δ(t − 0), Eq. (60) is
expressed as

dq

dtq

[
tβ−1Eα, β

(
−1

λ
tα

)]

= dq−β

dtq−β
δ(t − 0) − 1

λ
tα+β−q−1Eα, α+β−q

(
−1

λ
tα

)
(61)

where the singularity dq−β

dtq−β δ(t − 0) has been extracted
from the right-hand side of Eq. (59) and now, the second
index of the Mittag-Leffler function has been increased to
α + β − q. In the event that α + β − q remains negative
(α + β − q < 0), the Mittag-Leffler function appearing
on the right-hand side of Eq. (60) or Eq. (61) is replaced
again by virtue of the recurrence relation Eq. (57) until all
singularities are extracted.

Time-response functions of the generalized
fractional Maxwell fluid

With reference to Fig. 3 (left), the stress, τ(t) (through
variable), is common in both Scott-Blair elements that are
connected in series. With this configuration

τ(t) = Kp

dpγ1(t)

dtp
, p ∈ R

+ (62)

and at the same time

τ(t) = Kq

dq (γ (t) − γ1(t))

dtq
, q ∈ R

+ (63)

where γ1(t) = nodal displacement of the internal node 1.
Without loss of generality we assume p < q and we take

the q − p > 0 fractional derivative of Eq. (62)

dq−p

dtq−p
τ(t) = Kq

dq−p

dtq−p

dpγ1(t)

dtp
= Kp

dqγ1(t)

dtq
(64)

Substitution of
dqγ1(t)

dtq
given by Eq. (64) into Eq. (63) gives

τ(t) + Kq

Kp

dq−p

dtq−p
τ(t) = Kq

dqγ (t)

dtq
(65)

Equation (65) has been presented by Friedrich (1991) and
Schiessel et al. (1995) and was used by Jaishankar and
McKinley (2013) to describe the interfacial rheological
properties between bovine serum albumin (BSA) and
Acacia gum solutions. When q = 1, the generalized
fractional Maxwell model given by Eq. (65) reduces to
a springpot–dashpot in-series connection—a model that
was proposed by Makris (1992), Makris and Constantinou
(1991), and Makris and Constantinou (1992) to describe the
behavior of viscoelastic fluid dampers that find applications
in vibration and seismic isolation (Makris and Deoskar
1996). When p = 0, the fractional Maxwell model given by
Eq. (65) reduces to a spring–Scott-Blair in-series connection
(Mainardi and Spada 2011).

By using r = q − p > 0 and λr = Kq/Kp, the Fourier
transform of Eq. (65) gives

τ(ω)
[
1 + λr(iω)r

] = Kq(iω)qγ (ω) (66)

and the dynamic modulus, G(s) with s = iω of the
generalized fractional Maxwell fluid given by Eq. (65) is

G(s) = Kq

sq

1 + λrsr
= Kp

sq

sr + Kp/Kq

(67)

The inverse Laplace transform of Eq. (67) is evaluated with
the convolution integral (Le Page 1961)

M(t) = L−1 {G(s)}
= L−1 {F(s)H(s)} = ∫ t

0 f (t − ξ)h(ξ)dξ (68)

where according to Eq. (40),

f (t) = L−1 {F(s)}
= L−1 {

Kpsq
} = Kp

�(−q)

1

tq+1
, q ∈ R

+ (69)

and

h(t) = L−1 {H(s)} = L−1
{

1

sr + Kp/Kq

}

= t r−1Er , r

(
−Kp

Kq

tr
)

, r < q ∈ R
+ (70)

where Eα, β(z) is the Mittag-Leffler function defined by
Eq. (56). Substitution of the results of Eqs. (69) and (70)
into the convolution given by Eq. (68), the memory function
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of the generalized fractional derivative Maxwell fluid is

M(t) = L−1 {G(s)}
= Kp

�(−q)

∫ t

0

1

(t−ξ)q+1

1

ξ1−r
Er , r

(
−Kp

Kq

ξr

)
dξ (71)

Equation (71) shows that the memory function, M(t), of
the generalized fractional Maxwell model is merely the
fractional derivative of order q (see Eq. (4)) of the function
given by Eq. (70) (r = q − p)

M(t) = Kp
dq

dtq

[
1

t1−q+p Eq−p, q−p

(
−Kp

Kq
tq−p

)]

= Kp
1

t1+p Eq−p, −p

(
−Kp

Kq
tq−p

)
(72)

where the right-hand side of Eq. (72) was obtained by using
the result of Eq. (59) with β = q − p.

Given that the second index of the Mittag-Leffler
function appearing in the right-hand side of Eq. (72)
is negative (−p < 0), the singularity embedded in
the memory function, M(t), of the generalized fractional
Maxwell model is extracted by virtue of Eq. (61) with β =
q − p

M(t) = Kp

[
dp

dtp
δ(t − 0)

− Kp

Kq

1

t1+2p−q
Eq−p, q−2p

(
−Kp

Kq

tq−p

)]
(73)

In the event that q − 2p remains negative (q − 2p < 0),
application once again of the recurrence relationship given
by Eq. (57) to the MIttag-Leffler function appearing in the
right-hand side of Eq. (73) gives

M(t) = Kp

[
dp

dtp
δ(t − 0) − Kp

Kq

d2p−q

dt2p−q
δ(t − 0)

+
(

Kp

Kq

)2 1

t1+3p−2q
Eq−p, 2q−3p

(
−Kp

Kq

tq−p

)]
(74)

where now the next singularity d2p−q

dt2p−q δ(t − 0) has been
extracted. In the event that 2q − 3p remains negative, this
procedure will be repeated until the second index of the
Mittag-Leffler function appearing in the right-hand side of
the memory function, M(t), is positive and in this way
all singularities will have been extracted. Accordingly, a
general expression that incorporates Eqs. (73) and (74) is

M(t) = Kp

⎡
⎣ n∑

j=1

(
−Kp

Kq

)j−1 dp+(j−1)(p−q)δ(t − 0)

dtp+(j−1)(p−q)

+
(

−Kp

Kq

)n 1

t1+p−n(q−p)

× Eq−p, n(q−p)−p

(
−Kp

Kq

tq−p

)]
(75)

where n ∈ N is the lowest integer needed so that nq − (n +
1)p > 0.

Special Cases: 1. Spring–Scott-Blair element in-series (p =
0, r = q − p = q ∈ R

+, Kp = G). In this case where
p = 0, we use the result for the memory function, M(t),
offered by of Eq. (73)

M(t) = G

[
δ(t − 0) − G

Kq

1

t1−q
Eq, q

(
− G

Kq

tq
)]

, q ∈ R
+

(76)

Alternatively, for this special case where p = 0, the
singularity δ(t −0) embedded in M(t) as shown by Eq. (76)
can be extracted by expanding the dynamic modulus G(s)

given by Eq. (67) (r = q −p = q and KP = G) into partial
fractions

G(s) = G

[
1 − G

Kq

1

sq + G/Kq

]
, q ∈ R

+ (77)

By virtue of Eq. (70) in association with that L−1 {1} =
δ(t − 0), the inverse Laplace transform of Eq. (77) gives
precisely the result of Eq. (76). When q = 1 and Kq =
η, the dynamic modulus given by Eq. (77) reduces to
that of the classical Maxwell model. In this case Eq. (76)

gives M(t) = G
[
δ(t − 0) − G

η
E1, 1

(
−G

η
t
)]

. Using the

identity that E1, 1(z) = E1(z) = ez, together with
η/G = λ = relaxation time, we obtain the memory
function of the classical Maxwell model (p = 0, q =
1), M(t) = G

[
δ(t − 0) − 1

λ
e−t/λ

]
, which is the classical

result appearing in Table 2. When q = 2, Kq = K2 =
mR

(
with units [M] [L]−1

)
is the distributed inertance of

an inerter connected in-series with a Hookean spring with
elastic constant G. In this case Eq. (76) gives

M(t) = G

[
δ(t − 0) − G

mR

tE2, 2

(
− G

mR

t2
)]

(78)

By using that G
mR

= ω2
R , where ωR is the rotational

frequency of a spring–inerter in-series connection (Makris
2017; 2018) together with the identity

E2, 2

(
−ω2

Rt2
)
= sinh(iωRt)

iωRt

= 1

ωRt

eiωRt − e−iωRt

2i
= 1

ωRt
sin(ωRt), (79)

Equation (78) reduces to M(t) =
G [δ(t − 0) − ωR sin(ωRt)], which is the memory func-
tion of a spring–inerter connected in-series (Makris 2017).
Figure 4 (left) plots the normalized finite part of Eq. (76),
M(t)
G

−δ(t − 0), for various values of q as a function of

the dimensionless time
[

G
Kq

tq
]1/q

and shows that when

q > 1, the memory function offered by Eq. (76) is capa-
ble to capture inertia effects in the rheological network
as these manifested in high-frequency microrheology
(Domı́nguez-Garcı́a et al. 2014; Indei et al. 2012).
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Fig. 4 Left: Normalized finite part of the memory function,[
Kq

G

]1/q [
M(t)
G

− δ(t − 0)
]

of the spring–Scott-Blair in-series fluid for

values q = 0.5, 1, 1.5, 1.8 and 2 as a function of the dimension-

less time
[

G
Kq

tq
]1/q

. For q ≤ 1 the time-response functions exhibit a

monotonically decreasing behavior; whereas for q > 1, they exhibit
an oscillatory behavior capable to capture inertia effects. Right: Nor-
malized memory function of the springpot–dashpot in-series fluid. For
p = 0.2 and p = 0.4, Eq. (80) was used; whereas for p = 0.6, Eq. (81)
was used

2. Springpot–Dashpot in-series (q = 1, r = q − p =
1 − p, Kq = η). For this case where q = 1 and 0 ≤ p ≤ 1,
we first use Eq. (73)

M(t) = Kp

[
dp

dtp
δ(t − 0)

− Kp

η

1

t2p
E1−p, 1−2p

(
−Kp

η
t1−p

)]
, 0≤p≤1 (80)

Equation (80) is valid for values of 0 ≤ p < 1/2. In
the event that p ≥ 1/2, the second index of the Mittag-
Leffler function remains negative and we need to use the
next expression for the memory function given by Eq. (74)

M(t)=Kp

[
dp

dtp
δ(t − 0) − Kp

η

d2p−1

dt2p−1
δ(t − 0)

+
(
Kp

η

)2 1

t3p−1
E1−p, 2−3p

(
−Kp

η
t1−p

)]
, 0≤p≤1 (81)

Figure 4 (right) plots the normalized memory function

of the springpot–dashpot in-series fluid
[

η
Kp

] 1+p
1−p M(t)

Kp
for

various values of p as a function of the dimensionless time[
Kp

η
t1−p

] 1
1−p

. For p = 0.2 and p = 0.4, Eq. (80) was used;

whereas for p = 0.6, Eq. (81) was used.
The complex dynamic compliance J (s) = 1/G(s)

derives directly from Eq. (67) in which r = q − p and λr =
Kq/Kp

J (s) = 1

Kq

1 + λrs
q−p

sq
= 1

Kp

1

sp
+ 1

Kq

1

sq
(82)

The impulse fluidity (impulse response function), φ(t),
is the superposition of the impulse fluidities of the two
Scott-Blair elements connected in-series

φ(t) = L−1 {J (s)} =
[

1

Kp

1

�(p)

1

t1−p

+ 1

Kq

1

�(q)

1

t1−q

]
U(t − 0), 0<p < q ∈ R

+ (83)

Special Cases: 1. Spring–Scott-Blair element in-series (p =
0, r = q − p = q ∈ R

+, Kp = G). In the case where
p = 0, the first term in the bracket of Eq. (83) becomes the
Dirac delta function δ(t−0) according to Eq. (31) (Gel’fand
and Shilov 1964). Consequently, for p = 0 and Kp = G in
association with Eq. (31), Eq. (83) yields

φ(t) = 1

G
δ(t − 0)+ 1

Kq

1

�(q)

1

t1−q
U(t − 0), q ∈ R

+ (84)

which is the superposition of the impulse fluidities of the
Hookean spring and that of the Scott-Blair (springpot)
element shown in Table 2. When q = 2, Kq = K2 = mR ,

Eq. (84) gives φ(t) = 1
G

δ(t − 0)+ 1
mR

tU(t − 0), which is
the impulse fluidity of a spring–inerter in-series connection
(Makris 2017).

2. Springpot–Dashpot in-series (q = 1, r = q − p =
1 − p, Kq = η). In this case where q = 1, Eq. (83) yields

φ(t) =
[

1

Kp

1

�(p)

1

t1−p
+ 1

η

]
U(t − 0) (85)

which is the superposition of the impulse fluidities of the
springpot element and that of a dashpot. For the classical
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limit when p = 0, Kp = G, q = 1 and Kq = η,

Eq. (84) yields φ(t) = 1
G

δ(t − 0)+ 1
η
U(t − 0) which is the

impulse fluidity (impulse response function) of the classical
Maxwell model shown in Table 2.

The complex dynamic viscosity (impedance), η(s), of the
generalized Maxwell fluid derives directly from Eq. (67),
since η(s) = G(s)/s

η(s) = Kp

sq−1

sr + Kp/Kq

=Kp

sr−(1−p)

sr + Kp/Kq

, r =q −p > 0

(86)

The relaxation modulus, G(t), is the inverse Laplace
transform of Eq. (86)

G(t) = L−1 {η(s)} = L−1

{
Kp

sr−(1−p)

sr + Kp/Kq

}

= Kp

1

tp
Er , 1−p

(
−Kp

Kq

tr
)

, t > 0 (87)

and by replacing r = q − p,

G(t) = Kp

1

tp
Eq−p, 1−p

(
−Kp

Kq

tq−p

)
, 0 < p < q ∈ R

+

(88)

The expression given by Eq. (88) has been presented by
Friedrich (1991), Schiessel et al. (1995), and Palade et al.
(1996) and was employed by Jaishankar and McKinley
(2013)

Special Cases: 1. Spring–Scott-Blair element in-series (p =
0, r = q − p = q ∈ R

+, Kp = G). In this case where
p = 0, Eq. (88) reduces to

G(t) = G Eq, 1

(
− G

Kq

tq
)

= G Eq

(
− G

Kq

tq
)

, q ∈ R
+ (89)

The result of Eq. (89) has been presented by Koeller (1984),
Schiessel et al. (1995), and Mainardi and Spada (2011).

When q = 1, the Mittag-Leffler function E1

(
−G

η
t
)

reduces to the exponential function e−t/λ where λ = η/G =
relaxation time; and Eq. (89) gives the relaxation modulus
of the classical Maxwell model G(t) = Ge−t/λ. When
q = 2, Kq = K2 = mR and G

K2
= G

mR
= ω2

R . By

virtue of the identity E2, 1
(−ω2

Rt2
) = E2

(−ω2
Rt2

) =
cos(ω2

Rt), Eq. (89) reduces to G(t) = G cos(ωRt) which
is the relaxation modulus of a spring–inerter connected in-
series (Makris 2017). The emerging of the cosine function
(oscillatory behavior) when q = 2 has been reported by
Glöckle and Nonnenmacher (1994) after examining the
solutions of the Fox H-function that is related to the Mittag-
Leffler function. The oscillatory behavior of the relaxation
modulus, G(t), when q = 2 is the result of the continuous
exchange of potential and kinetic energies between the
spring (p = 0) and the inerter (q = 2). Figure 5 (left) plots
the relaxation modulus given by Eq. (89) for various values

of q as a function of the dimensionless time
[

G
Kq

tq
]1/q

.

Fig. 5 Left: Normalized relaxation modulus
G(t)
G

of the spring–
Scott-Blair in-series fluid for values q = 0.5, 1, 1.5, 1.8 and 2 as

a function of the dimensionless time
[

G
Kq

tq
]1/q

. For q ≤ 1, the

time-response functions exhibit a monotonically decreasing behavior;
whereas for q > 1, they exhibit an oscillatory behavior capable to
capture inertia effects. Figure 4 (left) has been presented by Glöckle

and Nonnenmacher (1994) by merely allowing q to assume values
larger than 1, about a decade before the concept of the inerter and its
equivalence to the electric capacitor was established by Smith (2002).
Right: Normalized relaxation modulus of the springpot–dashpot in-
series fluid for values of p = 0, 0.2, 0.5 and 0.8 as a function of the

dimensionless time
[

Kp

η
t1−p

] 1
1−p

with 0 ≤ p ≤ 1
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2. Springpot–Dashpot in-series (q = 1, r = q − p =
1 − p, Kq = η). In this case where q = 1, Eq. (88) reduces
to

G(t) = Kp

1

tp
E1−p, 1−p

(
−Kp

η
t1−p

)
, 0 ≤ p ≤ 1 (90)

Figure 5 (right) plots the normalized relaxation modulus,
G(t), of the springpot–dashpot in-series element for various
values of p (0 ≤ p ≤ 1).

The complex dynamic fluidity (admittance), φ(s), of the
generalized fractional Maxwell fluid is the inverse of the
complex dynamic viscosity given by Eq. (86)

φ(s) = 1

Kp

sr + Kp/Kq

sq−1

= 1

Kp

s1−p + 1

Kq

s1−q , r = q − p > 0 (91)

The impulse strain-rate response function of the generalized
fractional Maxwell fluid, ψ(t), is the superposition of the
impulse strain-rate response functions of the two Scott-Blair
elements connected in-series

ψ(t) = L−1 {φ(s)} =
[

1

Kp

1

�(−1 + p)

1

t2−p

+ 1

Kq

1

�(−1+q)

1

t2−q

]
U(t−0), 0<p<q ∈R

+ (92)

Special Cases: 1. Spring–Scott-Blair element in-series (p =
0, r = q − p = q ∈ R

+, Kp = G). In this case where
p = 0, the first term in the bracket of Eq. (92) becomes
equal to the first derivative of the Dirac delta function,
dδ(t−0)

dt
, according to Eq. (31). Consequently for p = 0 and

Kp = G, in association with Eq. (31), Eq. (92) yields

ψ(t) = 1

G

dδ(t − 0)

dt
+ 1

Kq

1

�(−1 + q)

1

t2−q
U(t − 0) (93)

2. Springpot–Dashpot in-series: (q = 1, r = q − p =
1 − p, Kq = η). In this case where q = 1, the second term
in the bracket of Eq. (92) becomes equal to the Dirac delta
function, δ(t − 0), according to Eq. (31). Consequently for
q = 1 and Kq = η, in association with Eq. (31), Eq. (92)
yields

ψ(t) = 1

Kp

1

�(−1 + p)

1

t2−p
U(t − 0) + 1

η
δ(t − 0) (94)

The complex creep function, C(ω), of the generalized
fractional Maxwell fluid derives directly from Eq. (82)
given that C(s) = J (s)/s

C(s) = 1

Kq

1 + λrs
q−p

s1+q
= 1

Kp

1

s1+p
+ 1

Kq

1

s1+q
(95)

The creep compliance (retardation function), J (t), is the
superposition of the creep compliances of the two Scott-
Blair elements connected in-series.

J (t) = L−1 {C(s)}
=

[
1

Kp

tp

�(p + 1)
+ 1

Kq

tq

�(q + 1)

]
U(t − 0) (96)

The expression given by Eq. (96) has been presented by
Friedrich (1991), Schiessel et al. (1995), Jaishankar and
McKinley (2013), and Hristov (2019).

Special Cases: 1. Spring–Scott-Blair element in-series (p =
0, r = q − p = q ∈ R

+, Kp = G). In this case where
p = 0, Eq. (96) reduces to

J (t) =
[

1

G
+ 1

Kq

tq

�(q + 1)

]
U(t − 0) (97)

The result of Eq. (97) has been presented by Koeller (1984),
Schiessel et al. (1995), and Mainardi and Spada (2011).

2. Springpot–Dashpot in-series (q = 1, r = q − p =
1 − p, Kq = η). In this case where p = 1, Eq. (96) reduces
to

J (t) =
[

1

Kp

tp

�(p + 1)
+ 1

η
t

]
U(t − 0) (98)

For the classical limit when p = 0, Kp = G, q = 1 and

Kq = η, Eq. (96) yields J (t) =
[

1
G

+ 1
η
t
]
U(t −0) which is

the creep compliance of the classical Maxwell fluid shown
in Table 2.

The five causal time-response functions of the gener-
alized fractional Maxwell fluid together with the time-
response functions for the special cases of the spring–
Scott-Blair element in-series connection (p = 0) and
the springpot–dashpot in-series connection (q = 1) are
summarized in Table 3.

Time-response function of the generalized
fractional Kelvin-Voigt element

The parallel connection of the two Scott-Blair elements
shown in Fig. 3 (right) exhibits a solid-like behavior only
when p = 0 or q = 0. In any other situation where p > 0
and q > 0, the generalized fractional Kelvin-Voigt element
shown in Fig. 3 (right) exhibits a fluid-like behavior since it
results in infinite deformation under a static load. In view of
this behavior the term “generalized” fractional Kelvin-Voigt
element is used for the viscoelastic model shown in Fig. 3
(right) with constitutive law

τ(t) = Kp

dpγ (t)

dtp
+ Kq

dqγ (t)

dtq
, p, q ∈ R

+ (99)

When p = 0, the generalized fractional Kelvin-Voigt
element given by Eq. (99) reduces to a spring–Scott-Blair
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element parallel connection—a model that was proposed by
Suki et al. (1994) to express the pressure–volume relation of
the lung tissue viscoelastic behavior of human and selective
animal lungs. The same spring–Scott-Blair element was
subsequently used by Puig-de-Morales-Marinkovic et al.
(2007) to model the viscoelastic behavior of the human red
blood cells. When (0 ≤ p ≤ 1 and q = 1) the generalized
fractional Kelvin-Voigt element given by Eq. (99) reduces
to a springpot–dashpot parallel connection—a model that
has been used to capture the high-frequency behavior of
semiflexible polymer networks (Gittes and MacKintosh
1998; Atakhorrami et al. 2008; Domı́nguez-Garcı́a et al.
2014).

Because of the parallel arrangement of the two Scott-
Blair elements, the memory function, M(t), of the gen-
eralized fractional Kelvin-Voigt element is the summation
of the memory functions of the two individual Scott-Blair
elements given by Eq. (36)

M(t) =
[

Kp

�(−p)

1

tp+1
+ Kq

�(−q)

1

tq+1

]
U(t − 0)

= Kp

dpδ(t − 0)

dtp
+ Kq

dqδ(t − 0)

dtq
(100)

Special Cases: 1. Spring–Scott-Blair element in parallel
(p = 0, q ∈ R

+, Kp = G).

M(t) = Gδ(t − 0) + Kq

�(−q)

1

tq+1
U(t − 0) (101)

2. Scott-Blair–Dashpot in parallel (p ∈ R
+, q = 1, Kq =

η).

M(t) = Kp

�(−p)

1

tp+1
U(t − 0) + η

dδ(t − 0)

dt
(102)

For the classical limit when p = 0, Kp = G, q = 1 and

Kq = η, Eq. (100) yields M(t) = Gδ(t − 0) + η
dδ(t−0)

dt
which is the memory function of the classical Kelvin-Voigt
solid shown in Table 2. When q = 2 and Kq = K2 = mR ,

Eq. (101) yields M(t) = Gδ(t − 0) + mR
d2δ(t−0)

dt2 , which
is the memory function of the inerto-elastic solid (Makris
2017).

The complex dynamic compliance, J (ω) =
γ (ω)/τ(ω), derives directly from the Fourier transform
of Eq. (99), τ(ω) = [

Kp(iω)p + Kq(iω)q
]
γ (ω) and by

using the Laplace variable s = iω

J (s) = γ (s)

τ (s)
= 1

Kpsp + Kqsq

= 1

Kp

1

sp
(

1 + Kq

Kp
sq−p

)

= 1

Kq

1

sp
(
sr + Kp

Kq

) , with p, r ∈ R
+ (103)

where without loss of generality we set r = q −p > 0. The
inverse Laplace transform of Eq. (103) is evaluated with the
convolution integral given by Eq. (68), where

f (t) = L−1 {F(s)} = L−1
{

1

Kq

1

sp

}

= 1

Kq

1

�(p)
tp−1, p ∈ R

+ (104)

and h(t) = L−1 {H(s)} is given by Eq. (70). Substitution
of the results of Eqs. (104) and (70) into the convolution
integral given by Eq. (68), the impulse fluidity (impulse
response function) of the generalized fractional Kelvin-
Voigt element is

φ(t) = L−1 {J (s)}
= 1

Kq

1

�(p)

∫ t

0
(t−ξ)p−1ξ r−1Er , r

(
−Kp

Kq

ξr

)
dξ (105)

Equation (105) shows that the impulse fluidity, φ(t), of
the generalized Kelvin-Voigt model is merely the fractional
integral of order p (see Eq. (3)) of the function given by
Eq. (70) (r = q − p)

φ(t) = 1
Kq

Ip
[

1
t1−p+q Eq−p, q−p

(
−Kp

Kq
tq−p

)]

= 1
Kq

1
t1−q Eq−p, q

(
−Kp

Kq
tq−p

)
(106)

where the right-hand side of Eq. (106) was evaluated by
using the general result offered by Eq. (58) with α = β =
q − p.

Special Cases: 1. Spring–Scott-Blair element in parallel
(p = 0, q ∈ R

+, Kp = G). In this case, Eq. (106) for p =
0 gives

φ(t) = 1

Kq

1

t1−q
Eq, q

(
− G

Kq

tq
)

, q ∈ R
+ (107)

At the same time, the reader recognizes that for p = 0,
the coefficient of the fractional integral given by Eq. (105)

vanishes since 1
�(0)

= 0. Nevertheless, the first term under

the integral [�(p)(t − ξ)]−1 is the definition of the Dirac
delta function given by Eq. (31) (Gel’fand and Shilov 1964).
Accordingly, Eq. (105) reduces to

φ(t) = 1
Kq

∫ t

0 δ(ξ − t) 1
ξ1−q Eq, q

(
− G

Kq
ξq

)
dξ

= 1
Kq

1
t1−q Eq, q

(
− G

Kq
tq

)
, q ∈ R

+ (108)

which is the same result offered by Eq. (107). When q = 1,
Kq = K1 = η, the impulse fluidity given by Eq. (108) gives

φ(t) = 1
η
E1, 1

(
−G

η
t
)

. Using the identity of the Mittag-

Leffler function that E1, 1(z) = E1(z) = ez, together
with η/G = λ = relaxation time, φ(t) = 1

η
e−t/λ which

is the impulse fluidity of the classical Kelvin-Voigt solid
shown in Table 2. When q = 2, Kq = K2 = mR is the
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distributed inertance of an inerter connected in parallel with
a spring with elastic constant G. In this case Eq. (108) gives

φ(t) = 1
mR

tE2, 2

(
− G

mR
t2

)
. By using that G

mR
= ω2

R , where

ωR is the rotational frequency of a spring–inerter parellel
connection together with the identity given by Eq. (79),
φ(t) = 1

mRωR
sin(ωRt), which is the impulse fluidity of a

spring–inerter parallel connection (Makris 2017). Eq. (108)
is re-written in its dimensionless form

[
Kq

G

]1/q

Gφ(t) =
[

G

Kq

tq
]1−1/q

Eq, q

(
− G

Kq

tq
)

, q ∈ R
+

(109)

The plots of the right-hand side of Eq. (109) with a negative
sign are depicted in Fig. 4 (left) for values of q = 0.5, 1, 1.5,

1.8 and 2 as a function of the dimensionless time
[

G
Kq

tq
]1/q

.

2. Scott-Blair–Dashpot in parallel (p ∈ R
+, q = 1,

Kq = η). In this case where q = 1, the fractional integral
of Eq. (106) gives

φ(t) = 1
η
Ip

[
1
tp

E1−p, 1−p

(
−Kp

η
t1−p

)]

= 1
η
E1−p

(
−Kp

η
t1−p

)
(110)

The result of Eq. (110) is valid only for 0 ≤ p ≤ 1
(springpot–dashpot connection in parallel). When p = 1,

Kp = K1 = η1 and according to Eq. (110), φ(t) = 1
η

E0

(
−η1

η

)
, which in association with the identity

E0(−z) = 1
1+z

, Eq. (110) yields φ(t) = 1
η+η1

U(t − 0),
which is the impulse fluidity of two dashpots connected in
parallel. When p > 1 the impulse fluidity of the Scott-
Blair element–dashpot parallel connection can be obtained

by returning to Eq. (103) and setting q = 1 and Kq = η

J (s) = 1

Kp

1

s
(
sp−1 + η/Kp

) = 1

η

η/Kp

s
(
sp−1 + η/Kp

)
(111)

For p − 1 ≥ 0, the inverse Laplace transform of Eq. (111)
is known

φ(t) = L−1 {J (s)} = L−1
{

1
η

η/Kp

s(sp−1+η/Kp)

}

= 1
η

[
1 − Ep−1

(
− η

Kp
tp−1

)]
, 1 ≤ p ∈ R (112)

Eq. (112) offers the impulse fluidity of the Scott-Blair
element–dashpot parallel connection when p ≥ 1. When
p = 1, Kp = K1 = η1 and according to Eq. (112), φ(t) =
1
η

[
1 − E0

(
− η

η1

)]
which in association with the identity

E0(−z) = 1
1+z

, Eq. (112) yields φ(t) = 1
η+η1

U(t −
0), which is the result of Eq. (110) for p = 1 and the
continuity of the two solutions is established. When p =
2, Kp = K2 = mR , φ(t) = 1

η

[
1 − E1

(
− η

mR
t
)]

=
1
η

[
U(t − 0) − e

− η
mR

t
]
, which is the impulse fluidity of a

dashpot–inerter parallel connection (Makris 2017).
Figure 6 plots the dimensionless impulse fluidity, ηφ(t),

of the Scott-Blair–dashpot parallel connection for values of
p = 0, 0.5, 1, 1.5 and 2 by employing Eq. (110) when
0 ≤ p ≤ 1 and Eq. (112) for 1 ≤ p.

Given the parallel connection of the two Scott-Blair
elements, the relaxation modulus, G(t), of the generalized
fractional Kelvin-Voigt element is the summation of the
relaxation moduli of the two individual Scott-Blair elements
given by Eq. (49)

G(t) =
[

Kp

�(1 − p)

1

tp
+ Kq

�(1 − q)

1

tq

]
U(t − 0) (113)

Fig. 6 Normalized impulse fluidity (impulse response function) of the Scott-Blair–dashpot parallel connection. The left plots are for 0 ≤ p ≤ 1
(springpot–dashpot in parallel), whereas the right plots are for the Scott-Blair–dashpot fluid with p > 1
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Special Cases: 1. Spring–Scott-Blair element in parallel
(p = 0, q ∈ R

+, Kp = G)

G(t) =
[
G + Kq

1

�(1 − q)

1

tq

]
U(t − 0) (114)

The result of Eq. (114) has been first presented by Koeller
(1984).

2. Scott-Blair–Dashpot in parallel (q = 1, Kq = η)

G(t) = Kp

1

�(1 − p)

1

tp
U(t − 0) + ηδ(t − 0) (115)

The Dirac delta function in the right-hand side of Eq. (115)
emerges by virtue of Eq. (31) for n = 0.

The complex dynamic fluidity (admittance), φ(s), of the
generalized fractional Kelvin-Voigt element derives directly
from Eq. (103) by using that γ̇ (s) = sγ (s)

φ(s) = 1

Kq

s

sp

1

sq−p + Kp

Kq

= 1

Kq

s1−p 1

sr + Kp

Kq

, r = q − p > 0 (116)

The inverse Laplace transform of Eq. (116) is evaluated with
the convolution integral given by Eq. (68), where according
to Eq. (40)

f (t) = L−1 {F(s)} = L−1
{

1

Kq

s1−p

}

= 1

Kq

1

�(−1 + p)

1

t2−p
U(t − 0), 0 < p ∈ R

+ (117)

and h(t) = L−1 {H(s)} is given by Eq. (70). Substitution
of the results of Eqs. (117) and (70) into the convolution
integral given by Eq. (68), the impulse strain-rate response
function of the generalized fractional Kelvin-Voigt element
is

ψ(t) = L−1 {φ(s)} = 1

Kq

1

�(1 − p)

×
∫ t

0

1

(t − ξ)2−p
ξr−1Er , r

(
−Kp

Kq

ξr

)
dξ (118)

Equation (118) shows that the impulse strain-rate function,
ψ(t), of the generalized Kelvin-Voigt element is merely the
fractional derivative of order 1 − p (see Eq. (4)) of the
function given by Eq. (70). After replacing r with q − p,
Eq. (118) gives

ψ(t) = 1

Kq

d1−p

dt1−p

[
1

t1−q+p
Eq−p, q−p

(
−Kp

Kq

tq−p

)]

= 1

Kq

tq−2Eq−p, q−1

(
−Kp

Kq

tq−p

)
, 0 < p < q ∈ R

+ (119)

where the right-hand side of Eq. (119) was obtained by
using the result of Eq. (59) where β = q − p. The right-
hand side of Eq. (119) is valid for q > 1. For the case where

0 ≤ q ≤ 1 (springpot–Scott-Blair element in parallel), the
singularity embedded in the impulse strain-rate response
function, ψ(t), of the generalized fractional Kelvin-Voigt
element is extracted by virtue of Eq. (61) with β = q − p

ψ(t) = 1

Kq

[
d1−q

dt1−q
δ(t − 0)

− Kp

Kq

1

t2−2q+p
Eq−p, 2q−p−1

(
−Kp

Kq

tq−p

)]
(120)

In the event that 2q−p−1 remains negative (2q−p−1 < 0)

application once again of the recurrence relation Eq. (57) on
the MIttag-Leffler function appearing on the right-hand side
of Eq. (120) gives

ψ(t) = 1

Kq

[
d1−q

dt1−q
δ(t − 0) − Kp

Kq

d1−2q+p

dt1−2q+p
δ(t − 0)

+
(

Kp

Kq

)2 1

t2−3q+2p
Eq−p, 3q−2p−1

(
−Kp

Kq

tq−p

)]
(121)

where now the second singularity d1−2q+p

dt1−2q+p δ(t−0) has been
extracted. In the event that 3q − 2p − 1 remains negative,
this procedure can be repeated until the second index of the
MIttag-Leffler function appearing on the right-hand side of
the impulse strain-rate response function, ψ(t), is positive
and all the singularities will have been extracted.

Special Cases: 1. Spring–Scott-Blair element in parallel
(p = 0, q ∈ R

+, Kp = G)

ψ(t) = 1
Kq

d
dt

[
1

t1−q Eq, q

(
− G

Kq
tq

)]

= 1
Kq

tq−2Eq, q−1

(
− G

Kq
tq

)
(122)

Again the right-hand side of Eq. (122) is valid for q > 1.
For the case when 0 ≤ q ≤ 1 (spring–springpot in parallel)
we use Eq. (120) with p = 0

ψ(t) = 1

Kq

[
d1−q

dt1−q
δ(t − 0)

− G

Kq

1

t2−2q
Eq, 2q−1

(
− G

Kq

tq
)]

(123)

In the event that q ≤ 0.5 (2q − 1 ≤ 0), the expression for
ψ(t) offered by Eq. (121) needs to be used with p = 0.

2. Springpot–Dashpot in parallel (q = 1, Kq = η,
0 ≤ p ≤ 1). In this case we need to use directly Eq. (120)
with q = 1

ψ(t) = 1

η

[
δ(t − 0) − Kp

η

1

tp
E1−p, 1−p

(
−Kp

η
t1−p

)]

(124)

The complex creep function, C(ω), of the generalized
fractional Kelvin-Voigt element derives directly from
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Fig. 7 Left: Normalized creep compliance, GJ(t), of the spring–
Scott-Blair element in parallel for values q = 0.2, 0.5, 1, 1.5 and 2

as a function of the dimensionless time
[

G
Kq

tq
]1/q

. Right: Normalized

creep compliance,
[

Kp

η

] 1
1−p

ηJ (t), of the springpot–dashpot element

in parallel for values of p = 0, 0.2, 0.4, 0.6 and 0.8 as a function of the

dimensionless time
[

Kp

η
t1−p

] 1
1−p

Eq. (103) gives that C(s) = J (s)/s

C(s) = γ (s)

τ̇ (s)
= 1

Kq

1

s1+p(sr + Kp

Kq
)
, with p, r ∈ R

+

(125)

and r = q − p > 0.
The inverse Laplace transform of Eq. (125) is evaluated

with the convolution integral given by Eq. (68) where

f (t) = L−1 {F(s)} = L−1
{

1

Kq

1

s1+p

}

= 1

Kq

1

�(1 + p)
tp, p ∈ R

+ (126)

and h(t) = L−1 {H(s)} is given by Eq. (70). Substitution
of the results of Eqs. (126) and (70) into the convolution
integral given by Eq. (68), the creep compliance, J (t), of
the generalized fractional Kelvin-Voigt element is

J (t) = L−1 {C(s)}
= 1

Kq

1

�(1 + p)

∫ t

0
(t − ξ)pξ r−1Er , r

(
−Kp

Kq

ξr

)
dξ (127)

which is the fractional integral of orde 1 + p of the function
given by Eq. (70) in which r = q − p

J(t) = 1

Kq

I 1+p

[
1

t1−q+p
Eq−p, q−p

(
−Kp

Kq

tq−p

)]

= 1

Kq

tqEq−p, q+1

(
−Kp

Kq

tq−p

)
, 0 < q < p ∈ R

+ (128)

where the right-hand side of Eq. (128) was evaluated by
using the general result offered by Eq. (58) with α =

β = q − p. The result of Eq. (128) has been presented by
Schiessel et al. (1995) and Hristov (2019).

Special Cases: 1. Spring–Scott-Blair element in parallel
(p = 0, Kp = G, q ∈ R

+). In this case where p = 0,
Eq. (128) gives

J (t) = 1

Kq

tqEq, q+1

(
− G

Kq

tq
)

(129)

Alternatively, the creep compliance, J (t), for p = 0 can
be evaluated by returning to the expression of the complex
creep function, C(s), of the generalized fractional Kelvin-
Voigt element given by Eq. (125) by examining the special
case where r = q − p = q

C(s) = 1

Kq

1

s(sq + G
Kq

)
= 1

G

G
Kq

s(sq + G
Kq

)
(130)

The inverse Laplace transform of the right-hand side of
Eq. (130) is known

J (t) = L−1 {C(s)} = L−1

{
1

G

G
Kq

s(sq + G
Kq

)

}

= 1

G

[
1 − Eq

(
− G

Kq

tq
)]

, q ∈ R
+ (131)

The result of Eq. (131) has been presented by Koeller (1984)
and Schiessel et al. (1995) in their studies in viscoelasticity
and by Westerlund and Ekstam (1994) for a capacitor model
of mixed dielectrics. By employing the recurrence relation
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Eq. (57) of the Mittag-Leffler function

Eq

(
− G

Kq

tq
)

= Eq, 1

(
− G

Kq

tq
)

= 1 − G

Kq

tqEq, q+1

(
− G

Kq

tq
)

(132)

the substitution of the right-hand side of Eq. (132) into the
right-hand side of Eq. (131) yields the expression offered by
Eq. (129); therefore the result offered by Eq. (129) (outcome
of the fractional integral) and the result offered by Eq. (131)
(inverse Laplace transform of the complex creep function)
are identical. Figure 7 (left) plots the normalized creep
compliance (retardation function) of the spring–Scott-Blair
element parallel connection, GJ(t), for values of q = 0.2,
0.5, 1, 1.5 and 2 as a function of the dimensionless time[

G
Kq

tq
]1/q

. When q = 2 (inerto-elastic solid), the creep

compliance, J (t), exhibits oscillatory behavior since the
spring and the inerter exchange their potential (spring) and
kinetic (inerter) energies.

2. Springpot–Dashpot in parallel (q = 1, Kq = η,
0 < p < 1). In this case where q = 1 and Kq = K1 = η,
Eq. (128) yields

J (t) = 1

η
tE1−p, 2

(
−Kp

η
t1−p

)
(133)

For the limit case where p = 0 and Kp = K0 =
G, Eq. (133) yields J (t) = 1

η
tE1, 2

(
−G

η
t
)

. Using the

identity that E1, 2(z) = ez−1
z

, together with η/G =
λ = relaxation time, J (t) = 1

G

[
U(t − 0) − e−t/λ

]
,

which is the creep compliance of the classical Kelvin-
Voigt solid. Figure 7 (right) plots the normalized creep
compliance of the springpot–dashpot parallel connection,[

Kp

η

] 1
1−p

ηJ (t), for various values of p.

The five causal time-response functions of the gener-
alized fractional Kelvin-Voigt element together with the
time-response functions for the special cases of the spring–
Scott-Blair element parallel connection (p = 0), and the
springpot–dashpot parallel connection (q = 1) are summa-
rized in Table 4.

Conclusions

In this paper we studied the five time-response functions
of the generalized fractional derivative Maxwell fluid and
the generalized fractional derivative Kelvin-Voigt element.
These two rheological models are in-series or parallel
connections of two Scott-Blair elements which are the
elementary fractional derivative elements. In this work
the order of differentiation in each Scott-Blair element is

allowed to exceed unity reaching values up to 2; and at
this limit case the Scott-Blair element becomes an inerter.
With this generalization, where the Scott-Blair element goes
beyond the traditional springpot, inertia effects may be
captured in addition to the monotonic viscoelastic effects.
In the special case of spring–inerter connections, the time
response functions which are not superpositions exhibit
oscillatory behavior given the continuous exchange of
potential energy (spring) and kinetic energy (inerter).

In addition to the well-studied relaxation moduli and
creep compliances of the two generalized fractional
derivative rheological models, we compute closed-form
expressions of the remaining three time-response functions
which are the memory function, the impulse fluidity
(impulse response function) and the impulse strain-rate
response function. Central role to these calculations plays
the fractional derivative of the Dirac delta function which
is merely the kernel appearing in the convolution of the
Riemann-Liouville definition of the fractional derivative of
a function and it is the generalization of the Gel’fand and
Shilov (1964) definition of the Dirac delta function and
its integer-order derivatives for any positive real number.
This finding shows that the fractional derivative of the

Dirac delta function, dqδ(t−0)
dtq

, is finite everywhere other
than at the singularity point and it is the inverse Fourier
transform of (iω)q where q is any positive real number.
The fractional derivative of the Dirac delta function emerges
as key function in the derivation of the time-response
functions of generalized fractional derivative rheological
models, since it makes possible the extraction of the
singularities embedded in the fractional derivatives of
the two-parameter Mittag-Leffler function that emerges
invariably in the time-response functions of fractional
derivative rheological models. The mathematical techniques
developed in this work can be applied to calculate the time-
response function of higher-parameter rheological models
that involve fractional-order time derivatives.
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Fractional derivatives embody essential features of cell rheological
behavior. Ann Biomed Eng 31(6):692–699

Domı́nguez-Garcı́a P, Cardinaux F, Bertseva E, Forró L, Scheffold
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Erdélyi A (ed.) (1954) Bateman manuscript project, tables of integral
transforms vol i. McGraw-Hill, New York

Evans RML, Tassieri M, Auhl D, Waigh TA (2009) Direct conversion
of rheological compliance measurements into storage and loss
moduli. Phys Rev E 80(1):012501

Ferry JD (1980) Viscoelastic properties of polymers. John Wiley &
Sons, New York

Friedrich CHR (1991) Relaxation and retardation functions of the
Maxwell model with fractional derivatives. Rheol Acta 30(2):151–
158

Gel’fand IM, Shilov GE (1964) Generalized functions, vol. 1
properties and operations. AMS Chelsea Publishing: An Imprint
of the American Mathematical Society, Providence

Gemant A (1936) A method of analyzing experimental results obtained
from elastoviscous bodies. Physics 7(8):311–317

Gemant A (1938) XLV. On fractional differentials. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 25(168):540–549

Giesekus H (1995) An alternative approach to the linear theory of
viscoelasticity and some characteristic effects being distinctive of
the type of material. Rheol Acta 34(1):2–11

Gittes F, MacKintosh FC (1998) Dynamic shear modulus of a
semiflexible polymer network. Phys Rev E 58(2):R1241
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