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Abstract
In this work, we numerically investigate the deformation and breakup of a droplet flowing along the centerline of a
microfluidic non-orthogonal intersection junction. The relevant boundary data of the velocity field is numerically computed
by solving the depth-averaged Brinkman equation via a self-consistent integral equation using the boundary element method.
The effect of the capillary number, droplet size, intersection angle, and ratio of outlet channel width to inlet channel width
on maximum droplet deformation are studied. We study droplet deformation for the capillary numbers in the range of 0.08-
0.3 and find that the maximum droplet deformation scales with the capillary number with power law with an exponent 1.10.
We also investigate the effect of droplet size and intersection angle on the maximum droplet deformation and observe that
the droplet deformation is proportional to droplet volume and square root of intersection angle, respectively. In continue,
we study the droplet breakup phenomenon in an orthogonal intersection junction. By increasing the capillary number, the
deformation of a droplet traveling in the cross-junction region becomes larger, until the droplet shape is no longer observed
and droplet breakup takes place at a critical value of capillary number. We present a phase diagram for droplet breakup as a
function of undeformed droplet radius.

Keywords Non-orthogonal cross-section · Droplet deformation · Droplet breakup · Brinkman equation ·
Boundary element method

Introduction

Dispersed droplets are an important subject in the rheolog-
ical science. The droplet deformation (Delaby et al. 1995;
Malkin et al. 2004), droplet breakup (Marshall and Walker
2019; Niedzwiedz et al. 2010), and droplet coalescence
(Grizzuti and Bifulco 1997; Verdier and Brizard 2002) are
interesting subject of rheological studies, due to practical
application as well as due to rheological effects. Dispersed
droplet generation and its manipulation are two important
processes in the droplet dynamics in the microfluidic sys-
tems. The channel geometry has good ability to produce
and control the external and internal forces that create, flow,
breakup, and coalesce droplets (Bremond et al. 2008a; Baret
et al. 2009; Baret 2012; Salkin et al. 2013). In recent years,
numerous studies have been carried out on the dynamics
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of droplet motion in microchannels such as droplet defor-
mation (Chang et al. 2019; Trégouët et al. 2018), droplet
sorting (Kadivar et al. 2013; Kadivar 2016), droplet breakup
(Link et al. 2004; Salkin et al. 2013), and droplet coales-
cence (Bremond et al. 2008b; Huang et al. 2019; Baret et al.
2009; Kadivar 2014).

Taylor was the first researcher who formulated the
droplet deformation in terms of viscosity ratio and capillary
number Taylor (1932, 1934). There are several theoretical
models to describe the effect of droplet deformation on
the rheology properties. These theories are able to the
prediction of droplet breakup. The surface tension, droplet
size, shear rate, and viscosity ratio are important parameters
on the rheological properties of droplets. The effect of
droplet size on the rheological properties of a dispersion of
water droplet in continuous oil phase has been studied by
Malkin et al. (2004).

Deng et al. have applied Lagrangian-Eulerian algorithm
for studying the droplet deformation and droplet breakup
in Convective flows (Deng and Jeng 1992). By using the
hydrodynamic interactions between deformable droplets,
Manga and Stone have applied the three-dimensional
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boundary integral for systems containing two, three, or
four droplets to study the droplets motion in low Reynolds
number suspensions. They have also investigated the effect
of deformation on the droplet coalescence in this regime
(Manga and Stone 1995).

Droplet deformation and droplet breakup depend on
the concentration of insoluble surfactant. The effect of
surfactant concentration on the droplet deformation and
droplet breakup has been numerically studied by Bazhlekov
et al. (2006). They have solved the Stokes equation
together with equation of state by applying the boundary
element method to evolve the droplet shape as a function
of surfactant concentration, viscosity ratio, and elasticity
number.

The behavior of droplet dynamics under extensional
flow is of considerable scientific interest (Mulligan and
Rothstein 2011; Kadivar and Farrokhbin 2017; Ulloa et al.
2014; Cabral and Hudson 2006; Kadivar 2018). The effect
of droplet deformation on the rheological properties of
suspensions in elongational flow has been investigated by
Delaby et al. (Delaby et al. 1995). The effect of Marangoni
stress on the droplet deformation in an extensional flow has
been studied by Pawar and Stebe (Pawar and Stebe 1996).
They have solved the Stokes equation by using the boundary
element method in the presence of Marangoni boundary
condition (Pawar and Stebe 1996). Their results indicate
that the droplet deformation in the presence of Marangoni
stress is higher than with respect to case where surface
tension is fixed (Pawar and Stebe 1996). The deformation
of water droplets in confined shear and extensional flow has
been experimentally studied by Mietus et al. (2002). In their
experimental work, they passed the water droplets dispersed
in castor oil through a horizontal annular Couette flow cell.
Their experimental results indicate that the droplet size and
droplet deformation depend on flow history (Mietus et al.
2002).

The influence of confinement on the deformation and
orientation of a single droplet during steady-shear flow
has been experimentally studied by Vananroye et al.
(2011). Their results illustrate that at high viscosity ratio,
confinement strongly increases the droplet deformation.
They have also found that by increasing the degree of
confinement, the droplet deformation increases (Vananroye
et al. 2011). By applying the boundary integral method,
Cunha and Oliveira have numerically investigated the effect
of viscosity ratio and capillary number on the droplet
deformation of a droplet flowing through a cylindrical
tube (Cunha and Oliveira 2019). The effect of viscosity
on droplet formation and droplet deformation has been
experimentally investigated by Tice et al. (2004). Their
experimental results illustrate that the droplet shape
depends on the capillary number and contrast between the
viscosity of droplet phase and continuous phase. Mulligan

et al. have investigated the influence confinement-induced
flow shear on droplet deformation and breakup under
extensional flow. Their experimental results indicate that
the droplet deformation decreases by reducing the channel
confinement. Cabral and Hudson have been measured
the surface tension of droplet under extensional flow by
analyzing the droplet deformation (Cabral and Hudson
2006). Kadivar and Farrokhbin have been investigated the
droplet deformation and droplet relaxation of a droplet
flowing through a narrow channel opening to a planar
sudden expansion. They have found two different regimes
of droplet deformation. At the first regime, droplet
deformation is proportional to droplet volume while in the
second one, droplet deformation is independent of droplet
size (Kadivar and Farrokhbin 2017).

T-junction, Y-junction, and cross-junction are most com-
mon structures used in microfluidic systems (Kadivar 2016;
Jullien et al. 2009; Hoang et al. 2013; Brosseau et al. 2014;
Gai et al. 2016; Khor et al. 2017; Kadivar and Alizadeh
2017). Jullien et al. have experimentally studied the droplet
deformation and droplet breakup in microfluidic T-junction
at the small capillary numbers (Jullien et al. 2009). The
dynamics of droplet deformation in the three dimensional T-
junction has been numerically investigated by Hoang et al.
(2013). The interaction, deformation, and breakup of droplet
pairs in the Y-junction have been investigated by Khor et al.
(2017). Ulloa et al. experimentally studied the droplet defor-
mation in a microfluidic cross-junction at the low Reynolds
numbers and large aspect ratio of droplet radius to channel
height (Ulloa et al. 2014).

In this work, a numerically study of monodisperse
emulsion droplet flow through a microchannal non-
orthogonal intersection is presented. Figure 1 presents
the geometry considered in this work. The microchannal
consists a non-orthogonal intersection having two inlets and
two outlets. The inlet channels are along the x-axis and the
angle between the outlet channels and right inlet is called θ .
The width of inlet channel and outlet channel call win and
wout, respectively. In this study, we consider a two-phase
flow which consists of two fluids separated by an interface.
We assume that a flow past two-dimensional droplet
containing a droplet phase labeled, d , and suspended in
continuous phase labeled, c. Viscosity of continuous phase
is μc and viscosity of droplet phase is μd . In this study, we
apply Brinkman equation to describe the droplets dynamics
in the Hele-Shaw limit. In this way, the Brinkman partial
differential equation is converted to boundary integral
equation and solved by using the boundary element method
as well. Finally the dynamics of droplet deformation and
droplet breakup are discussed as function of droplet size,
capillary number, and channel geometry.

This paper is structured as follows: In the following
“Governing equations”, we will formulate Brinkman
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Fig. 1 Sketch of the microfluidic channel considered. The inlet
channels are along x-axis. The width of inlet and outlet channels is
labeled by win and wout, respectively

equation and boundary conditions for the velocity field
and normal component of stress tensor at the droplet-
continuous phase interface as well as at channel walls. The
numerical implementation to solve the boundary integral
representation equation for the velocity field as well as
for local droplet velocity is also contained in “Boundary
element discretization’. The results of our numerical
solutions, including the dynamics of droplet deformation
and droplet breakup, are reported in “Results”. Finally, in
“Conclusion”, we summarize our findings, conclude, and
give an outlook on possible future work in this field.

Governing equations

In the Hele-Shaw limit where straight width channel is much
larger than channel height, h, experimental observations
indicate that droplets are confined between the top and
bottom walls of the microfluidic channel. The fluidic
resistance decreases as the ratio of channel width to channel
height (cross-sectional area) increases. Therefore, the flow
rate is usually in the range from nl/min to mu l/min with
flow velocity in the order of mm/s. Numerical studies and
experimental observations illustrate that in the very narrow
straight channel, the velocity field is almost constant in
the channel width direction (Gondret et al. 1997; Nagel
and Gallaire 2015; Gallaire et al. 2014; Langlois and
Deville 2014). In the channel width direction, one can
find a deviation from the constant value in the vicinity
of channel walls. Although in the height axis, z-axis, the

velocity profile is parabolic shape. In the microfluidic
channel, the Reynolds number is much smaller than one.
Therefore, Stokes equation or Brinkman equation (modified
Darcy equation) is used in analyzing the dynamics of
droplet motion. The analytical solutions of Stokes equation
and Brinkman equation in a narrow straight microchannel
illustrate that the velocity profiles are not far from each
other (Gallaire et al. 2014; Langlois and Deville 2014). In
the present study, we will solve depth-averaged Brinkman
equation instead of solving 3D stokes equation. In this way,
we consider a two-phase flow which consists of two fluids
separated by an interface. We assume that a flow past two-
dimensional droplet containing a droplet phase labeled, d ,
and suspended in continuous phase labeled, c. Viscosity of
continuous phase is μc and viscosity of droplet phase is
μd . In order to report data with dimensionless numbers, we
select length scale L0, time scale μcL0/γ , pressure scale
γ /L0, velocity scale γ /μc, and capillary number Ca =
μc U0/γ . The dimensionless droplet area, ad , is defined as
the droplet area divided by the squared length scale. Here,
and in the remainder of this article, we will denote all
non-dimensional rescaled lengths and physical quantities by
lower case symbols. In the microfluidic systems, because
the channel size is in the micrometer range, we can neglect
the gravitational effect. The homogeneous dimensionless
Brinkman equation in the droplet phase (d) and carrier
phase (c) is given by:

∇p(i) = λ(∇2u(i) − α2u(i)) on �i with i ∈ {c, d} ,(1)

In addition, the continuity equation must be satisfied in both
droplet and continuous regions:

∇.u(i) = 0 on �i with i ∈ {c, d} (2)

where p(x, y) is the dimensionless pressure, u is the depth
averaged dimensionless velocity, α = √

12/h, λ = 1
and λ = μd/μc for the carrier phase and droplet phase,
respectively.

Boundary conditions on droplet interface and
channel walls

In the absence of Marangoni and thermocapillary effects,
because of surface tension, the normal component of stress
tensor is discontinuous across the the droplet-continuous
phase interface. The discontinuity condition on the normal
stress at the two phase interface is given by:

�f = σ (d) · n(cd) − σ (c) · n(cd) = γ (
π

4
κ‖ + κ⊥)n(cd), (3)

where σ is stress tensor and σ · n(cd) is normal component
of stress tensor, γ is surface tension, n(cd) is unit normal
vector pointing from the interior of the droplet phase into
the continuous phase, κ‖ is local curvature in-plane, and κ⊥
is curvature in the thin direction. Prefactor π/4 corresponds
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to non-wetting condition at the top and bottom walls of
the Hele-Shaw cell (Park and Homsy 1984). The effect of
prefactor on the droplet dynamics was discussed in more
detail by Park and Homsy (1984).

The other boundary condition on the droplet-continuous
phase interface apples on the normal and tangential
components of velocity. According to continuity equation,
Eq. 2, there is no mass transfer through the two phase
interface. Therefore, the normal component of fluid velocity
is continuous across the droplet-continuous phase interface.
On the other hand, we assume no-slip boundary conditions,
so the flow velocity is continuous across the droplet-carrier
liquid interface. This boundary condition reads:

u(c) = u(d) �= 0 on 
cd , (4)

where 
cd is the two-dimensional droplet contour.
Finally, the no-slip boundary condition requires that the

velocity must vanish over all channel walls.

Integral representation

In order to investigate the droplet shape under extensional
flow, we will calculate the velocity components of the
droplet interface ux and uy as the droplet moves through
the microchannal. One way to obtain the relevant boundary
data of the velocity field is to numerically compute a
self-consistent integral equation for velocity field u on
the liquid-liquid boundary and channel walls. Following
the formulation of Pozrikids (2002), the velocity field at

point (r0) that lies in the continuous fluid satisfies a self-
consistent integral equation of the following form:

u
(c)
j (r0)= 1

Cl

∮

w,
o

[u(c)
i (r)T B

ijk(r, r0)nk − f
(c)
i GB

ij (r, r0)]d� (5)

+ 1
cl

∮

cd

[(1 − μd/μc)u
(c)
i (r)T B

ijk(r, r0)nk − �fiGB
ij (r, r0)]d�,

where r = (x, y), r0 = (x0, y0) are the field and
the singular points, respectively. When integration point r
approaches the evaluation point r0, the integrands exhibit a
singularity. If the singularity at r0 is placed on the channel
domain the coefficient cl = 1

2 and if it is located on the
liquid-liquid interface cl = μc+μd

2μc
. 
w is the channel wall

contour and 
o is a straight line cutting through the open
ends of the microfluidic channel. GB

ij and T B
ijk are velocity

and stress tensor Green’s functions of Brinkman’s equation,
respectively. Free-space Green’s functions of Brinkman’s
equation are given by Pozrikids (2002)

GB
ij (r, r0) = −δijA(αρ) + ρ̂i ρ̂j

ρ2
B(αρ), (6)

T B
ijk = δij

ρ̂j

ρ2
2[B(αρ) − 1] + δij ρ̂k + δkj ρ̂i

ρ2
C(αρ)

−4
ρ̂i ρ̂j ρ̂k

ρ4
D(αρ), (7)

Fig. 2 Subsequent snapshots
and droplet deformation as a
function of droplet size. The
numerical parameters are as
follows: r = 0.43, Ca = 0.35,
and θ = π/4
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where

A(ρ) = 2[ 1

α2ρ2
− K1(αρ)

αρ
− K0(αρ)], (8)

B(ρ) = 2[ 2

α2ρ2
− 2

K1(αρ)

αρ
− K0(αρ)],

C(ρ) = 8

α2ρ2
− 4K0(αρ) − 2(αρ + 4

αρ
)K1(αρ)

D(ρ) = C(αρ) + αρK1(αρ).

ρ̂ = r − r0, ρ = |ρ̂|, and K0(αρ), K1(αρ) are modified
Bessel functions.

One may calculate the domain integral on the right-hand
side of Eq. 5 either directly by domain discretization followed
by numerical integration, or indirectly by themethod of approx-
imate particular solutions or the dual reciprocity method.
In the next subsection, we will discuss the numerical
procedure to solve the integral representation equation.

Boundary element discretization

The first step in the implementation of the boundary element
method is to discretize the boundary into a finite number of
elements which are called boundary elements. We discretize
fixed boundaries like walls and open ends into a collection
of N straight segments defined by the element end-points
or nodes, whereas the droplet is discretized by using the
cubic-spline method. The advantage of cubic spline method
is that slope and curvature of each cubic spline at the end
point of elements are continuous. On the other hand, the
cubic spline elements improve the accuracy of boundary
element method solutions. The coordinates of each cubic
spline element are presented in parametric form by the cubic
polynomial. Because the droplet is closed surface, we used
the periodic cubic-spline which periodicity conditions for
the first and second derivative at the first and last nodes are
imposed.

The grid independence study was performed by calcu-
lation of the droplet area as function of time. According
to continuity equation, the droplet area is constant over the
travel time. We have found that 98 points for droplet contour
and 352 straight elements for fixed boundaries are satisfac-
tory and any increase beyond this mesh size would lead to
insignificant changes in results.

The boundary integrals of Brinkman equation are
discretized over contours with sums of integrals over
the boundary elements. The integrals over each boundary
element should be computed accurately by the Gauss-
Legendre quadrature with 12 nodes. In this way, the integral
of a non-singular function over the interval [−1, 1] is
approximated with a weighted sum of the values of the
integrand at selected points. However, when the field point
r approaches the singular point r0, the integrands of the
Eq. 5 exhibit the weak (logarithmic) and strong (high-order)

singularities of the Green’s functions. The logarithmic
singularity should be integrated analytically. The high-order
singularity disappears as the field point r approaches the
singular point r0. In this case, the normal unit vector is
perpendicular to (r − r0).

After computing the local velocity at the collection
points, we update the position of the points by using an
explicit Euler method. Using the explicit Euler, the interface
droplet is advanced in discrete time steps:

x(n+1) =
∫ t=n+1

t=n

uxdt + x(n) , (9)

y(n+1) =
∫ t=n+1

t=n

uydt + y(n) ,

where u is the velocity field obtained by solving the
boundary element problem at node r(n). Since relative
positions of the points on the droplet contour are changed
over time, it is necessary to remesh the splines at each
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Fig. 3 Droplet velocity and droplet deformation as a function of
droplet distance from the center of oblique intersection, |l| when
the droplet flows into (red line) and out of (green line) the cross-
intersection. The numerical parameters are as follows: r = 0.43,
Ca = 0.35, and θ = π/4
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Fig. 4 Maximum droplet
deformation as a function of
capillary numbers for the
different values of droplet size.
The differently shaped dots are
the numerical data and the
dashed-dotted lines show the
numerical fit of each curve. The
solid circle points correspond to
the second regime, in which the
droplet diameter is larger than
the channel width. The inset is a
log-log plot
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time step. When the relative position of two adjacent nodes
on the interface is twice as big or twice as small as the
initial size, the points are remeshed equidistantly using a
cubic interpolation (Kadivar et al. 2013). Since the boundary
element method is only implemented for boundaries which
are discretized, it is unnecessary to remesh the whole
domain as the interface evolves.

Results

In this study, the droplet deformation and droplet breakup in
the flat microfluidic non-orthogonal cross-section have been
numerically studied. The microfluidic channel consists two

inlets and two outlets. The angle between each side outlet
microchannel and the right inlet microchannel calls θ . In
this way, we define the x-axis along the the inlet channels.
Figure 1 presents the channel geometry of the present study.
The width of inlets and outlets is equal to win and wout,
respectively. The channel height, h, is assumed to be much
smaller than the channel widths, win/h = 8. The channel
length of inlets and outlets is fixed by 10 times win. The
carrier fluid is injected from two opposite sides into the
microfluidic channel. It is clear that the velocity of carrier
fluid at the outlets depends on the θ and wout. Therefore, we
call the flow rate of the inlet channel by qin. In this way, the
outlet flux is well controlled by total flow rate. We assume
that at the left inlet, a droplet of radius r and viscosity ηd is

Fig. 5 Subsequent snapshots in
the time of the droplet motion for
two different values of droplet
size: (a) First regime: r = 0.43,
(b) Second regime: r = 0.52

y

x

r=0.52

r=0.43

T
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Fig. 6 Dependency of the
maximum droplet deformation
on dimensionless droplet radius.
The colored dashed-dotted
curves illustrate the best fit to the
data. The inset is a log–log plot
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suspended in a carrier liquid of viscosity ηc. Here, and in the
remainder of this article, the droplet phase and carrier phase
will be labeled with d and c, respectively.

When a droplet arrives at oblique symmetric cross-
junction, the droplet velocity decreases and droplet deforms.
Figure 2 shows subsequent snapshots in time of the droplet
deformation in the microfluidic channel. The time evolution
of the droplet deformation is also illustrated at the bottom
of snapshot series in Fig. 2. The droplet deformation is
calculated by δ = (b − a)/(b + a), where a and b

are diameters of the droplet along the x- and y-axes,
respectively. Figure 3 presents the droplet velocity and
droplet deformation as a function of its dimensionless
distance from the intersection center, |l| = √

x2 + y2. The
negative sign of droplet velocity indicates that the droplet
flows through downward outlet. Figure 3.b illustrates the
droplet deformation as a function of droplet distance from
the center of intersection zone when the droplet flows into
(red line) and out of (green line) the cross-intersection. The
negative value of δ denotes that the droplet is lengthened in
the x-axis while the positive value indicates that the droplet
is stretched along the y-axis. The zero value of δ indicates
that the droplet approaches to the its circular shape.

It is clear that the droplet deformation increases mono-
tonically as the droplet approaches the cross-intersection
zone. Finally, the droplet deformation reaches its max-
imum value where the droplet velocity is zero. How-
ever, the droplet deformation backs into a circular shape
when it flows into the upward or downward outlet (see
the movie given as Supplementary Material). As one can
see, the two curves of droplet deformation do not match
exactly due to variation in the velocity profile. When the
droplet approaches the cross-intersection, it experiences a
diverging flow field and slows down there. However, a

droplet flowing out of the cross-intersection experiences
a convergent flow. It means that droplet deformation in
the cross-junction microfluidic channel is an irreversible
phenomenon.

The experimental observations and numerical studies
indicate that the droplet formation and breakup dynamics
strongly depend the channel geometry, capillary number,
and droplet size. In this work, we will investigate the droplet
deformation and droplet breakup in an oblique intersection.
In the following subsection, we will investigate the effect
of control parameters on the maximum droplet deformation.
The results of droplet breakup including the breakup phase
diagram are contained in the “Droplet breakup”.

Droplet deformation

Influence of capillary number

In order to investigate the effect of capillary number on
the droplet deformation, we have calculated the maximum
deformation of droplet at given values of droplet size. In this
way, the channel geometry was kept fix, and we have varied
the capillary number at different given values of droplet size.
In a dynamic regime where the droplet deforms but does
not breakup when passing through the cross-intersection,
we have changed the capillary number in the range of
0.08–0.3 by varying the flow rate or surface tension.
Figure 4 illustrates the maximum droplet deformation as
a function of capillary number for different given values
of droplet size. The symbols depict the numerical data,
and the dashed-dotted curves show the best numerical fit.
The inset shows a logarithmic plot. In the Hele-Shaw
limit, the droplets are confined across the channel height
axis. However, when the droplet diameter is larger than
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Fig. 7 Snapshots of a droplet
deformation in the orthogonal
and oblique symmetric
cross-junction microchannel at
different values of intersection
angles. (a) θ = π/2, (b)
θ = π/3, (c) θ = π/4, and (d)
θ = π/6. The numerical
parameters are as follows:
r = 0.43, Ca = 0.35, and
w = 1

Time

d)

c)

b)

a)

x

y

the channel width, they are also confined the channel
width. Figure 5 indicates the subsequent snapshots in
the time of the droplet motion for two different values
of droplet size. We have found two regimes of droplet

deformation with a dependency on the droplet size. A first
regime, when the undeformed droplet diameter is smaller
than the channel width, we have found that the droplet
deformation increases linearly by increasing the capillary
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number. The results of our numerical fitting show that the
maximum droplet deformation scales with power law with
capillary number with an exponent 1.07. This behavior is in
qualitative agreement with previous theoretical predictions
and experimental observation. Taylor predicted that the
droplet deformation in the steady shape is proportional to
the capillary number with a power law exponent 1 (Taylor
1934). As one can see in Fig. 4, by increasing the droplet
size, a deviation from Taylor theory is visible. For example,
droplets having a radius 0.44 are not confined along the
channel width direction. However, they are confined along
the channel height direction. Therefore, droplets of different
sizes touch edge flow to different degrees. The effects
of confinement become much stronger when the droplets
are also confined along the channel width direction (as
demonstrated in Figs. 4 and 5 ). The experimental results of
Ulloa et al. indicate the the maximum droplet deformation is
proportional to the capillary number with power 0.92 (Ulloa
et al. 2014). However, dependency of maximum droplet
deformation on the capillary number is completely different
for the second regime, in which the droplet diameter is
larger than channel width. The solid circle points of Fig. 4
presents the maximum droplet deformation as a function
of capillary number for droplet diameter 1.04. The main
focus of the present study on the small droplet in which
the undeformed droplet diameter is smaller than the channel
width.

Effect of droplet size

As one can see in Fig. 4, the prefactor of the best power
law fit to our numerical results depends on the droplet
size. In order to investigate the effect of droplet size on
the droplet deformation, we ran the program for three

different values of capillary number. Figure 6 presents the
rescaled deformation as a function of undeformed radius of
droplet, r , for three different values of capillary number. The
symbols denote the numerical data, and the dashed-dotted
curves present the best power law fit. The inset is a log-log
plot. The best power law fit δmax/Ca1.07 = Arα leads to
α = 3.08. This result is in good agreement with previous
studies (Brosseau et al. 2014; Shapira and Haber 1990).

Influence of intersection angle

To explain the influence of the intersection angle of the
microchannel on the maximum droplet deformation, we
keep the droplet size and capillary number fixed and vary
the intersection angle. The simulations were implemented
for intersection angle varying from π/6 to π/2 at an
increment of π/18. The θ = π/2 corresponds to orthogonal
intersection geometry. Figure 7 shows subsequent snapshots
in time of the droplet deformation in the different values
of intersection angle. As one can see, the maximum droplet
deformation increases by increasing the intersection angle.
Figure 8 presents the rescaled droplet deformation as a
function of intersection angle. The inset of Fig. 8 indicates
the logarithmic plot of the rescaled droplet deformation.
The different symbols illustrate the numerical data. On the
log-log scale, the data can be fitted by a straight line,
indicating that the maximum droplet deformation illustrates
a power-law behavior of the form

δmax ∝ θβ (10)

where β = 0.50. The dashed-dotted curves on Fig. 8 show
the best power law fit. This result is in a good agreement
with previous numerical study (Kadivar 2018).

Fig. 8 Droplet deformation as a
function of intersection angle for
two different values of capillary
number. The dashed-dotted line
presents the best fit to the data.
The inset is a log–log plot
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Fig. 9 Droplet deformation as a
function of ratio of the
outlet/inlet width for two
different values of capillary
number. The dashed-dotted lines
present the best fit to the data.
The numerical parameters are as
follows: r = 0.43 and θ = π/2
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Effect of width ratio

Now, we investigate the effect of the ratio of the outlet
channel width to inlet channel width on the droplet
deformation. In this way, the inlet and outlet channels are
both equal initially and then the outlet width is varied
to study the effects of different width of outlets to the
maximum deformation of droplet. The ratio of the outlet
channel width to inlet channel width is defined as w =
wout/win. The simulations were performed for ratio of
outlet/inlet varying from 0.7 to 1.0. Figure 9 illustrates the
rescaled droplet deformation as a function of ratio of the
outlet channel width to inlet channel width. It is important
to mention that the flow through the channel intersection is
irreversible. This irreversibility is one reason that the droplet
deformation depends on the width ratio. The dashed-
dotted line indicates the best power-law fit to our numerical
data. According to the fitting curve shown on the graph
in Fig. 9, the maximum droplet deformation should be
rescaled as:

δmax = 7.30Ca1.07r3.08θ0.50w−1.08 (11)

Droplet breakup

When a droplet arriving at orthogonal intersection(θ =
π/2), the droplet velocity decreases and droplet deforms.
The deformation of a droplet flowing through the inter-
section area increases by increasing the capillary number,
until the droplet shape is no longer and droplet breakup
takes place at a critical value of capillary number. There-
fore, depending on the droplet size and capillary number,
single droplet can break into two smaller daughter ones at
the cross-junction or do not break, choosing one branch of
the intersection. For the geometry studied in this paper, we
will provide information on how the numerical parameters
affect the droplet breakup phenomenon. Figure 10 illustrates
an example of the temporary evolution of symmetric droplet
breakup.

As the tip of the droplet enters the intersection area, the
droplet front interface experiences a stronger hydrodynamic
force due to hyperbolic flow field. Therefore, its tip
becomes elongated perpendicular to the direction of travel.
As the droplet moves further in the intersection area, its
tip and rear become more elongated parallel to y-axis. In

Time

Fig. 10 Evolution of symmetric droplet breakup in an orthogonal intersection microfluidic channel
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Fig. 11 A phase diagram
indicating the mechanism of
droplet breakup as a function of
the droplet size
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the low capillary number, when the droplet center reaches
close to the center of intersection zone, front and rear of
the droplet contour start taking a concave shape. Therefore,
the radius of curvature of the front and rear becomes
negative. By passing time, a parabolic-like neck is formed
at the center of intersection zone and narrows with time.
The neck thickness monotonically decreases as the droplet
approaches the intersection center. The droplet breakup
takes place as the neck thickness reaches a critical value.
Depending on the droplet size and capillary number, a single
droplet may splits into into two identical daughter ones (see
the Supplementary Material).

Figure 11 presents the various regimes of breakup and
non-breakup on the capillary-droplet radius diagram. The
symbols represent the critical capillary number for a given
value of droplet size which above that the mother droplet
splits into two daughter droplets. To investigate the effect
of droplet size on the droplet breakup dynamics, several
simulation were carried out for droplet size varying from
0.34 to 0.42. Our numerical results indicate that the critical
capillary number decreases by increasing the undeformed
droplet radius.

Conclusion

In this work, we have presented a 2D simulation of
a droplet flowing through a microfluidic non-orthogonal
intersection junction. In order to investigate the dynamics
of droplet deformation and droplet breakup, we have
numerically solved the depth-averaged Brinkman equation,
describing the carrier fluid motion, as well as to track the
fluid-fluid interface. The effect of the capillary number,

droplet size, intersection angle, and ratio of outlet channel
width to inlet channel width on droplet deformation have
been studied. In this way, the maximum droplet deformation
has been scaled as a function of capillary number, droplet
size, intersection angle, and ratio of outlet channel width
to inlet channel width. We have found the maximum scales
with capillary number with power law with an exponent
1.07. Our numerical results indicate the the maximum
droplet deformation scales with undeformed droplet radius
and intersection angle with exponents 3.08 and 0.5,
respectively. Our numerical results are in a good agreement
with previous experimental and theoretical studies (Taylor
1934; Ulloa et al. 2014; Brosseau et al. 2014; Kadivar 2018).
In the second part of the current study, we have studied the
droplet breakup phenomenon in an orthogonal intersection
junction. It is clear that by increasing the capillary number,
the deformation of a droplet traveling in cross-junction
region becomes larger, until the droplet shape is no longer
observed and droplet breakup takes place at a critical value
of capillary number. We have presented a phase diagram for
droplet breakup as a function of undeformed droplet radius.
Our numerical results indicate that the critical capillary
number decreases with increasing the undeformed droplet
radius.
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