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Abstract
A constitutive equation for rubber-like materials is developed using the left stretch tensor. This process starts with a model for
hyperelastic solids based on a separable energy function. This model accurately fits extensional data for vulcanized natural rubber
until the onset of hysteresis at intermediate strains. Better predictions outside the hyperelastic range are obtained by directly
modifying this constitutive equation to describe limited extensibility. The resulting model accurately fits biaxial, planar, and
uniaxial extension data for a variety of rubber-like materials using three constants. This model also predicts simple shear results
derived from planar extension data and characterizes inflation of spherical membranes for elastomers and soft tissue. A final
modification accurately describes hardening associated with crystallization at large tensile strains.
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Introduction

Vulcanized rubber is an isotropic material consisting of
crosslinked polymers. This material is typically modeled as
an incompressible, hyperelastic solid, where deformation is
characterized by the left Cauchy–Green tensor B = FFT de-
fined in terms of the deformation gradient F (Gurtin 1981 p.
46). This objective tensor is usually assumed to be consistent
with the isochoric constraint det(B) = 1. However, applying
tensile stress to vulcanized rubber causes volume to increase
until strain-induced crystallization results in a decrease at
large strains (Treloar 2009 pp. 295, 20–23). Filled and unfilled
natural rubber also exhibit hysteresis at intermediate strains
(Omnès et al. 2008, Treloar 2009 pp. 87, 89, 92), implying
work in a closed cycle of deformation. While this behavior is
inconsistent with predictions for hyperelastic solids (Gurtin
1981 p. 190), these models are still used to fit extensional data
at large strains.

Constitutive equations for hyperelastic solids derive stress
from an energy function. Rivlin (1948) developed models for
rubber-like materials based on functions of the invariants tr(B)
and tr(B−1). For example, the function

w ¼ C1 tr Bð Þ−3½ � þ C2 tr B−1� �
−3

� � ð1Þ

involving constants C1 and C2 determines Cauchy stress

T ¼ −pIþ 2C1B−2C2B
−1 ð2Þ

to within an unspecified pressure p associated with the con-
straint det(B) = 1. While many models use this approach
(Hoss andMarczak 2010), most energy functions depend only
on the invariant tr(B). For example, Treloar (1943) used net-
work theory with a Gaussian distribution function to derive
the neo-Hookean model

T ¼ −pIþ 2C1B; ð3Þ
where I is the identity tensor. Theories for non-Gaussian net-
works of flexible chains lead to similar models (Arruda and
Boyce 1993; Horgan et al. 2004), where C1 becomes a func-
tion of tr(B).

Unfortunately, models based on energy functions involv-
ing tr(B) and tr(B−1) have generally failed to describe data for
rubber-like materials as summarized by Destrade et al. (2017).

“Following World War II, a huge research effort was
launched to find an explicit strain-energy function able
to describe accurately the experimental data obtained
from the testing of natural and synthetic rubbers.
However, in spite of decades of intensive work in that
area, to this day there is still no effective model able to
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perform this task in a satisfying and universal way. …
Here, a satisfactory model is defined as a model able to
describe the experimental data first of all from a qual-
itative point of view and then from a quantitative point
with acceptable relative errors of prediction with re-
spect to the data.”

Perhaps using models for hyperelastic materials outside their
range of validity contributed to this lack of success.

Varga (1966) suggested an alternate approach to modeling
rubber-like materials using the left stretch tensor V. This sym-
metric tensor and the material rotation R determine a polar
decomposition F =VR of the deformation gradient (Richter
1952; Gurtin 1981 p. 46). Varga’s linear principal stress–
strain model assumes stress is proportional to the objective strain
tensor V − I, which is also used here to describe strain. This
constitutive equation is derivable from an energy function in-
volving tr(V). Varga’s approach, like the neo-Hookean model
(3), accurately describes Treloar’s (1944) extensional data for
vulcanized natural rubber out to 50–70% strain depending on
the type of deformation (Ogden 1972a, Fig. 1). Even with this
limited range,Varga (1966) obtains good results for several prob-
lems involving finite deformation.

Other models for hyperelastic materials specify the energy
function in terms of positive principal stretches (λ1, λ2, λ3)
associated with a spectral decomposition of V (Gurtin
1981 pp. 11–12). For example,Mooney (1940) assumed shear
stress and strain are proportional in simple shear to develop
the energy function (1) in terms of (λ1, λ2, λ3). Ogden (1972a,
1984 p. 494) later fit Treloar’s (1944) extensional data out to
600% strain as well as biaxial data obtained by Jones and
Treloar (1975) using a function involving six constants

w ¼ ∑
3

i¼1
μi λ1

ai þ λ2
ai þ λ3

ai−3ð Þ; ð4Þ

where exponents (α1, α2, α3) can take non-integer values.
Varga’s model is a special case of (4) with constants μ1 and
α1 = 1, while the function (1) also has this form using expres-
sions tr(B) = λ1

2 + λ2
2 + λ3

2 and tr(B−1) = λ1
−2 + λ2

−2 + λ3
−2

for the invariants.
Varga (1966 p. 88), Ogden (1972a), and Treloar (2009 p.

215) all reject Rivlin’s (1948) requirement that strain energy
depends only on squared principal stretches. Specifically,
Treloar (2009 p. 233) states that “…the restriction of the
strain energy function to even powers of extension ratios have
no necessary basis in physical reality.”However, the function
(1) can be expressed in the separable form

w ¼ W λ1ð Þ þW λ2ð Þ þW λ3ð Þ ð5Þ
suggested by Valanis and Landel (1967). An accurate descrip-
tion of biaxial data apparently requires an energy function to
be consistent with this form, like Ogden’s model (4). While

this constraint is not sufficient, models based on non-
separable energy functions generally fail to fit and superpose
biaxial data. See Treloar (2009 pp. 236–251) and Ogden
(1984 pp. 488–501) for further discussion of separable energy
functions and their role in describing hyperelastic materials.

General constitutive equations for isotropic elastic solids
use the deformation tensor B or the stretch tensor V to de-
scribe large strains (Gurtin 1981 pp. 170–171; Truesdell and
Noll 1992 p. 140). Models based onB can easily be converted
to a function of V since B =V2. For example, the Mooney–
Rivlin model (2) is expressed in terms of the left stretch tensor
in Appendix 1. However, converting a simple model like
Varga’s to an isotropic function of B results in a very compli-
cated expression requiring the positive root of a quartic equa-
tion (see Appendix 1). This asymmetry suggests that V may
be a better variable for modeling elastic materials, especially
since Varga’s model provides an accurate description of
Treloar’s (1944) extensional data for relatively small strains.
A model for rubber elasticity is developed in the next section
using this approach.

Fig. 1 A fit of extensional data (Treloar 1944) for |V| < 3.5 using Eq. (7),
where coefficients m1 = 0.740 MPa and m2 = 0.0261 MPa determine all
curves with a goodness of fit R2 = 0.9988, relative error E = 4.6%, and
sum of squared error SSE = 0.010 (MPa)2. Residuals are differences
between data and fitted values. These differences are normalized by the
root mean squared error RMSE= 0.0168MPa, which is about 1% of full
scale for 39 data points shown in the figure. See Appendix 4 for addi-
tional information about determining model coefficients and statistics
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Elastic solids

A constitutive equation for isotropic elastic solids (see
Appendix 1) can be expressed as

T ¼ −pIþM1VþM2V
2 ð6Þ

in terms of the left stretch tensorV, an unspecified pressure p and
scalar coefficients M1 and M2. These moduli may depend on
moment invariants I1 = tr(V) and I2 = tr(V

2), while the remaining
invariant J = det(V) = 1 is constant for incompressible materials.
This solid has a fixed reference configuration, where V = I and
the Cauchy stress T reduces to a pressure determined by bound-
ary conditions. For small deformations from this reference state
(F ≈ I), the left stretch tensor and moment invariants become

V≈Iþ ε; tr Vð Þ≈3þ tr εð Þ; tr V2
� �

≈3þ 2tr εð Þ

to within products of the non-objective Cauchy strain
ε = [grad(u) + grad(u)T]/2, where the displacement gradient
can be expressed as F − I (Gurtin 1981 p. 42). The resulting
approximation

T≈−pIþ 2με

determines stress for an incompressible linear elastic solidwith a
positive shear modulus μ =M1/2 +M2, where material parame-
ters are evaluated at I1 = 3 and I2 = 3.

Coefficients M1 and M2 in Eq. (6) are usually specified by
fitting extensional data like Treloar (1944). Attempts involving
powers of I1/3 and I2/3 suggest the expressions M1 =m1 and
M2 =m2I2/3, where constants m1 and m2 satisfy the constraint
μ =m1/2 +m2 > 0 to ensure a positive shear modulus. The first
term after pressure in the resulting constitutive equation

T ¼ −pIþm1Vþm2I2V2=3 ð7Þ
is essentially Varga’s model, while the last term with V2 =B
and I2 = tr(B) is a variant of the neo-Hookean model (3). This
term also appears in models derived from an energy function
involving tr(B)2 as listed in Treloar (2009 p. 231) and Hoss and
Marczak (2010). This result suggests that the constitutive eq.
(7) can also be derived from an energy function.

An incompressible elastic solid (6) is hyperelastic (see
Appendix 2) if Cauchy stress can be expressed as

T ¼ −pIþ ∂w
∂I1

Vþ2
∂w
∂I2

V2 ð8Þ

in terms of a scalar function w(I1, I2) of invariants I1 = tr(V)
and I2 = tr(V2). The constitutive model (7) is readily obtained
using the function

w I1; I2ð Þ ¼ m1 I1−3ð Þ þm2 I22−9
� �

=12; ð9Þ

which is convex if m2 ≥ 0. The moment invariants become
I1 = λ1 + λ2 + λ3 and I2 = λ1

2 + λ2
2 + λ3

2 in terms of principal

stretches consistent with the constraint J = λ1λ2λ3 = 1.
Substituting these results into (9) gives an alternate form of
the energy function

bw λ1;λ2;λ3ð Þ ¼ m1 λ1;λ2;λ3–3ð Þ

þm2 λ1
4 þ λ2

4 þ λ3
4 þ 2λ1

–2 þ 2λ2
–2 þ 2λ3

–2–9
� �

=12

ð10Þ
in terms of stretches. This expression is a special case of the
energy function (4) with constants (μ1 = m1, μ2 = m2/12,μ3 =
m2/6, α1 = 1, α2 = 4,α3 = – 2). Ogden (1984 pp. 495, 498)
used similar exponent values (α1 = 1.3, α2 = 5, α3 = – 2) and
(α1 = 1.3, α2 = 4, α3 = – 2) to fit extensional data by Treloar
(1944) and Jones and Treloar (1975). The function

W λð Þ ¼ m1 λ−1ð Þ þm2 λ4 þ 2λ−2−3
� �

=12

can be used to express (10) in the separable form (5), where dW

=dλ ¼ m1 þm2 λ3−λ3
� �

=3 ¼ bW λð Þ determines a shift factor
λŴ(λ) for superposing biaxial data (Treloar 2009 pp. 241).

Treloar (1944) performed experiments on vulcanized nat-
ural rubber in equibiaxial, planar, and uniaxial extension.
These results are usually expressed in terms of the nominal
or first Piola–Kirchhoff stress (Gurtin 1981 p. 178)

P ¼ det Fð ÞTF−T;

where det(F) = 1 for incompressible materials. Expressions for

Fig. 2 Shear stress values derived from Treloar’s planar extension data
shown in Fig. 1 using the equivalence relations (11). Curves are
predictions of Eq. (7) using coefficients from Fig. 1 with correlation R2 =
0.9990 to derived data. The deviation from predicted values RMSE =
0.0167 MPa is about 1% of full scale for derived data shown in the figure
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the nominal stress component Pxx given in Appendix 3 are fit to
Treloar’s data (see Steimann et al. 2012) using a method de-
scribed in Appendix 4. These comparisons are limited to a range
consistent with an upper bound on the stretch magnitude |V|,
where |V|2 = I2/2 ≥ 3/2. For example, the term involving m1 fits
data (R2 = 0.9961) for 1.225 ≤ |V| < 1.7, similar to comparisons
by Ogden 1972a, Fig. 1). The term involving m2 becomes nec-
essary outside this range, resulting in a better fit (R2 = 0.9988) out
to |V| = 3.5 as shown in Fig. 1. This figure also shows the distri-
bution of error using normalized residuals (see Appendix 4).
While this approach can fit data (R2 = 0.9968) out to |V| = 5,
the root mean squared error increases significantly (0.0168→
0.0583 MPa). This increased error and a poorer fit suggest dif-
ferent material behavior for |V| > 3.5. Nah et al. (2010) question
the value of modeling vulcanized natural rubber as hyperelastic
for strains greater than 300%.

Simple shear results in Appendix 3 accurately predict de-
rived data shown in Fig. 2. Here, shear stress Txy is obtained
as a function of shear strain γ from planar extension measure-
ments in Fig. 1 using the equivalence relations

γ ¼ λ−λ−1;Txy ¼ Pxx= 1þ λ−2
� � ð11Þ

given by Treloar (2009 pp. 84, 93 with a sign correction on the
last exponent). This agreement is not surprising since the con-
stitutive model (7) fits planar extension data in Fig. 1 and
identically satisfies (11). The ratio Txy/γ is relatively constant
in Fig. 2, decreasing by less than 20% from an initial value
μ =m1/2 +m2 = 0.396 MPa. Destrade et al. (2017) obtain 8%
to 24% higher estimates for μ by fitting models only to
Treloar’s uniaxial data (see Appendix 5).

As expected, model (7) is consistent with the universal
result (Gurtin 1981 p. 177)

Txx−Tyy ¼ γTxy

relating primary normal stress difference N1 = Txx − Tyy to
shear stress Txy for all elastic solids. This result and (11) sug-
gest another equivalence relation N1 = Pxx(λ − λ−1)/(1 + λ−2)
with planar extension data. While N1 ≥ 0, the secondary nor-
mal stress difference N2 = Tyy − Tzz is typically negative with
− m1 ≤ N2 ≤ 0 for m1 > 0. In this case, the ratio N2/N1

Fig. 4 A fit of extensional data (Treloar 1944) for a vulcanized natural
rubber using the model (14), where coefficients m1 = 0.824 MPa, m2 =
0.0191 MPa, β = 0.0390, and α = 4.04E−5 determine curves with corre-
lation R2 = 0.9989, relative error E = 11.9%, and SSE = 0.15 (MPa)2. The
distribution of error is normalized by RMSE = 0.0530 MPa, which is
about 0.8% of full scale for 56 data points shown in the figure

Fig. 3 A fit of extensional data (Treloar 1944) to |V| = 5 using Eq. (12),
where coefficients m1 = 0.762 MPa, m2 = 0.0216 MPa, and β = 0.0446
determine curves with correlation R2 = 0.9990, relative error E = 5.2%,
and SSE = 0.045 (MPa)2. The distribution of error is normalized by
RMSE= 0.0309MPa, which is about 0.8% of full scale for 50 data points
(λ < 7). The uniaxial curve is extrapolated beyond fitted data to show
model deviation at large strains. This fit is visually similar to results by
Ogden 1972a, Fig. 4) using the six-constant energy function (4)
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increases from an initial value −m1/8μ = − 0.234 to zero like
steady shear data for polystyrene solutions (Hua et al. 1999).
Tractions associated with Tyy are negative if m1 > 0, which
implies axial elongation in torsion observed by Poynting
(1913) for twisted rubber cords. Similar results are obtained
for silicone rubber in Appendix 5, while a negative Poynting
effect involving axial contraction (m1 < 0) is predicted for
porcine liver tissue. Models derived from an energy function
depending only on the invariant tr(B) = tr(V2) predict no
Poynting effect (Horgan and Smayda 2012).

In Treloar’s various extensional tests, hysteresis appears
during unloading (Treloar 2009 pp. 87, 89, 92) at some point
in the range 3.1 < |V| < 3.6.While the constitutive Eq. (7) does
not predict this behavior, correlation with Treloar’s data for
|V| > 3.5 can be improved by simply replacing m2 with m2/[1
− β(I1 − 3)]. Gent (1996) suggested a similar model for
hyperelastic solids using a dimensionless parameter β−1 and
the invariant tr(B) = tr(V2) instead of I1 = tr(V). Here, the
resulting constitutive equation

T ¼ −pI ¼ m1Vþm2I2V2=3 1−β I1−3ð Þ½ � ð12Þ
reduces to (7) for β = 0. If β > 0, stress becomes unbounded
for I1 = 3 +β−1. This limited extensibility is associated with
crosslinked polymers being stretched to their full extent.
This limit should decrease at larger strain as more chains

Fig. 5 Fits of uniaxial data (Treloar 2009 p. 87) for a vulcanized natural
rubber using model (14), where points are obtained from curves in the
reference. Coefficients m1 = 0.785 MPa, m2 = 0.0225 MPa, β = 0.0176,
and α = 3.66E−8 fit loading data with correlation R2 = 0.9999 and shear
modulus μ = 0.415 MPa. Coefficients m1 = 0.586 MPa, m2 =
0.0542 MPa, β = −0.599, and α = − 1.02E−8 fit unloading data with cor-
relation R2 = 0.9989 and shear modulus μ = 0.347 MPa

Fig. 6 A fit of biaxial data (Jones
and Treloar 1975) for a vulca-
nized natural rubber using Eq.
(12), where coefficients m1 =
0.722 MPa, m2 = 0.0901 MPa,
and β = − 0.358 determine curves
with correlation R2 = 0.9995, rel-
ative error E = 9.4%, and SSE =
0.11 (MPa)2. The distribution of
error is normalized by RMSE=
0.0302 MPa, which is about 0.5%
of full scale for 125 data points
shown in the figure. This fit
compares well to correlations
based on the energy function (4)
using twice as many constants
(Ogden 1984 p. 494; Ogden et al.
2004, Fig. 11)
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become fully extended. In this case, the parameter β increases
with tensile strain for rubber-like materials described by the
model (12).

Expressions for the nominal stress component Pxx predicted
by (12) are obtained from results in Appendix 3withm2 replaced
by m2/[1 −β(I1 − 3)]. As shown in Fig. 3, these expressions
accurately fit Treloar’s loading data to |V| = 5 with R2 similar to
the value in Fig. 1. The parameterβ decreases by 62% (0.045→
0.017) as the limiting magnitude goes from 5 to 3.5, becoming
negative for |V| = 3.4. This sign change suggests an upper bound
on the hyperelastic range, where a similar fit is obtained out to
|V| = 3.5 using model (7) or (12). Strain-induced crystallization
may dominate uniaxial response for λ > 7, leading to hardening
shown in Fig. 3. The constitutive Eq. (12) underestimates this
response at large tensile strains similar to Ogden’s model (1972a,
Fig. 4). This deviation suggests a hardening mechanism is active
at very large strains.

The constitutive Eq. (12) is not derivable from an energy
function, which allows work in closed processes (Gurtin 1981
p. 185). Such materials can unload along a different path,
where the area between curves is the work per volume asso-
ciated with a cycle. Hyperelastic solids must traverse the load-
ing curve during this cycle, resulting in no hysteresis.
However, at least part of the stress (12) is derivable from an
energy function, since the alternate form

T ¼ –pIþm1Vþm2I2V2=3

þm2β I1–3ð ÞI2V2=3 1–β I1–3ð Þ½ �; ð13Þ

splits this constitutive equation into model (7) and a term in-
volvingβ that can dissipate energy (see Appendix 2). This term

is about 9.2% of total stress for planar and 19% for uniaxial and
equibiaxial extension at the limit of fitted data in Fig. 3. This
additive decomposition is consistent with observations by
Göritz (1992) on filled and unfilled rubber. This electron mi-
croscopy study suggests that highly oriented short chains can
significantly influence stress for these materials. These chains
limit extensibility leading to hysteresis at intermediate to large
strains associated here with positive values of β.

Hardening of vulcanized natural rubber at large strain is
associated with chains aligning in the direction of extension
(Treloar 2009 p. 20–23). The constitutive Eq. (12) can be
modified to predict effects of strain-induced crystallization
by adding a hardening term. For example, the equation

T ¼ –pIþm1V

þm2I2V2=3 1–β I1–3ð Þ þ α I2–3ð Þ3
h in o

ð14Þ

adds a term associated with the dimensionless parameter α to
fit Treloar’s extensional data shown in Fig. 4. This model can
be split like (12)

Fig. 7 Biaxial data from Fig. 6 are shifted up to a single curve using Eq.
(15) with coefficients m1 = 0.890 MPa and m2 = 0.0478 MPa. These
moduli fit data for λ1 > 0.5 in Fig. 6 with correlation R2 = 0.9997 and
deviation RMSE= 0.0202 MPa, which is about 0.4% of full scale for
103 points

Fig. 8 A plot of scaled pressure P as a function of tangential stretch λ for a
spherical balloon using both forms of Eq. (16). The lower curve uses
moduli m1 = 0.740 MPa and m2 = 0.0261 MPa from Fig. 1, while the
upper curve uses parameters m1 = 0.762 MPa, m2 = 0.0216 MPa, and
β = 0.0446 from Fig. 3. Both curves have a maximum P = 0.263 MPa at
λ = 1.375 followed by a pressure minimum outside the hyperelastic range.
The lower curve increases along a straight line after theminimum,while the
upper curve becomes unbounded for λ ≈ 11.95. This point decreases to λ ≈
6.2 using results for the model (14) with parameters from Fig. 4. This limit
suggests a bound on the size at rupture as shown in the figure
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T ¼ –pIþm1Vþm2I2V2=3

þm2β I1–3ð Þ þ α I2–3ð Þ3
h i

I2V2=3 1–β I1–3ð Þ þ α I2–3ð Þ3
h in o

into the constitutive Eq. (7) and a term involving α and β that
can dissipate energy. Like (13), this term is not derivable from
an energy function for m1 constant. The parameter α de-
creases by 94% (4.04E−5→ 0.248E−5) as the limiting mag-
nitude goes from 5.4 to 4.5. A similar fit is obtained out to
|V| = 5 using model (12) or (14), which suggests a lower
bound on the stretch magnitude associated with hardening.
However, the additional term in (14) may only be necessary
for filled rubber (see Appendix 5) or natural rubber at suffi-
ciently large strains. For example, model (12), corresponding
to α = 0, is sufficient to describe extensional and shear data
shown in Appendix 5 for a variety of rubber-like materials.

Treloar’s uniaxial data shown in Fig. 5 displays extensive
hysteresis during unloading, which is not predicted by consti-
tutive equations for hyperelastic materials. The unloading
curve requires a modified version of (14), where the hardening
term exponent is increased from 3 to 5. This modified model
accurately fits both loading and unloading curves shown in the
figure, but does not do as well with data in Fig. 4. The work
per volume associated with this closed cycle is the area
2.24 MPa between these curves. The shear modulus μ =m1/
2 + m2 drops 16% (0.415→ 0.347 MPa) for the unloading
curve. Parameters β and α decrease from positive values dur-
ing tensile loading to negative values for the unloading curve.

The drop in β is consistent with a dynamic constraint β İ2 ≥ 0
imposed by dissipation (see Appendix 2), where the invariant
I2 decreases during the unloading phase. Plotting this invariant
as a function of λ yields a convex curve with a minimum at
λ = 1. Consequently, the parameter β should also be negative
while unloading from compressive stresses outside the
hyperelastic range. The dynamic constraint further suggests
that dissipative stress associated with β can play a significant
role in shear wave propagation and other unsteady motions.

While agreement with Treloar’s extensional data is encour-
aging, the parameter β associated with limited extensibility
exhibits a complicated dependence on invariants of V.
Assume β is an increasing function of J − 1, where the
isochoric constraint J = det(V) = 1 becomes a less accurate
approximation outside the hyperelastic range. Since volume
increases for rubber subject to tensile stress (Penn 1970), the
density ρ should decrease relative to the reference state value
ρ0. In this case, the expression J = ρ0/ρ (Gurtin 1981 p. 88)
implies a positive value forβ that increaseswith tensile stress.
The 13% drop in β between Figs. 3 and 4 is consistent with
volume reduction during strain-induced crystallization
(Treloar 2009 pp. 22–23). A similar argument suggests that
β becomes negative and decreases with compressive stress.

This parameter could also depend on the material rate J̇ as

well as İ2 to exhibit the decrease during unloading shown in

Fig. 5. Pressure should be specified as a function of invariants
(Ogden 1972b) to model materials as compressible.

The special case (12) obtained by setting α = 0 in the con-
stitutive Eq. (14) is sufficient to fit Jones and Treloar’s biaxial
data (see Ogden 1984 p. 494). The normal stress difference
N1 = Txx − Tyy obtained from Appendix 3 is plotted as a func-
tion of stretches λ1 and λ2 in Fig. 6. As expected, the param-
eter β is negative for compressive stresses, increasing from −
0.36 to − 0.0092 as the minimum λ1 stretch goes from 0.18 to
0.5. For λ1 > 0.5, the special case (7) accurately fits biaxial
data (R2 = 0.9997) in Fig. 6 sinceβ ≈ 0. If additional data were
available at larger strains, a separate fit with positive β might
be required to describe tensile stress outside the hyperelastic
range. Note that non-zero values of β imply hysteresis for a
similar vulcanized natural rubber tested by Treloar (1944).
Also note that uniaxial and equibiaxial extension bound biax-
ial response in the I1–I2 plane similar to descriptions by
Urayama (2006) and Treloar (2009 p. 218) using invariants
tr(B) and tr(B−1).

The exceptional fit of biaxial data in Fig. 6 is aided by
separability of the associated energy function (9). The normal
stress difference in biaxial extension predicted by model (7)
has the alternate form

N1 ¼ λ1 bW λ1ð Þ−λ2 bW λ2ð Þ; bW λð Þ ¼ m1 þm2 λ3−λ−3
� �

=3 ð15Þ

implying a vertical shift λ2Ŵ(λ2) between curves in the
hyperelastic range. Extending this result by replacing m2 with
m2/[1 −β(I1 − 3)] essentially skews the shift between curves.
However, Treloar (2009 p. 243) successfully superposed all
data in Fig. 6 to a single curve. A similar result is obtained in
Fig. 7 by applying the shift factor λ2Ŵ(λ2) in Eq. (15), where
constants m1 and m2 fit biaxial data for λ1 > 0.5. This simple
shift does surprisingly well at aligning points outside the
hyperelastic range (λ1 < 0.5). This result highlights the ex-
tended role separability plays in describing biaxial data in
Fig. 6.

Equibiaxial tension approximates the state of stress in a
spherical balloon, where tangential stress components Tϕϕ ≈
Tθθ are nearly equal. The volume of material is about 4πt0R0

2

for a thin-walled balloon (t0/R0 < 0.1) with initial radius R0

and thickness t0. An inflated balloon with radius R and thick-
ness t has the approximate volume 4πtR2. Deformation is
isochoric if t/t0 ≈ (R/R0)−2, where the tangential stretch λ =
R/R0 is essentially a ratio of arc lengths. A force balance on
a hemispherical section implies 2πtRTϕϕ ≈ πR2pg in terms of
the gage pressure pg. Applying the isochoric constraint leads
to an approximation P ≈ Tϕϕ/λ3 for the scaled pressure P =
pgR0/2 t0. This approximation becomes a function of tangen-
tial stretch

P≈m1 λ−2−λ−5
� �þm2 λ−1−λ−7

� �
2λ2 þ λ−4
� �

=3 ð16Þ
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using the equibiaxial result for Txx in Appendix 3. Replacing m2

with m2/[1 − β(2λ + λ−2 − 3)] extends (16) beyond the
hyperelastic range. The resulting expression exhibits limited ex-
tensibility, where P becomes unbounded at λ corresponding to
the largest positive root of the polynomial 2λ3 − (3 +β−1)λ2 +
1 = 0. Both expressions for scaled pressure are plotted in Fig. 8
using material parameters for vulcanized natural rubber.

Curves in Fig. 8 exhibit a pressure maximum at small strains
first observed by Osborne (1909) for rubber balloons. This
point is measurable in experiments that control the volume of
air in a balloon. Varga’smodel (1966 p. 154) predicts a pressure
maximum at λ = (5/2)1/3 ≈ 1.357, while Ogden (1972a) calcu-

lated the value λ ¼ 2α1 þ 3ð Þ= 3� α1ð Þ½ �1=3α1 for − 3/2 <α1

< 3 using the first term in (4). If m2 > 0 and 0 < m2/m1 <
0.18768, the maximum predicted by (16) occurs in the range
1.357 < λ < 1.888 followed by a pressure minimum shown in
Fig. 8. For comparison, the Mooney–Rivlin model (2) exhibits
a maximum in the range 1.383 < λ < 1.840 if C2 > 0 and 0 <C2/
C1 < 0.21446 (Mangan and Destrade 2015). The scaled pres-
sure (16) is a strictly increasing function of λ if m2 > 0 and m2/
m1 > 0.18768. The constraint m2/m1 < − 0.5 implies a positive
shear modulus μ =m1/2 +m2 for m1 < 0 and m2 > 0. In this
case, the pressure (16) is also a strictly increasing function of λ
like the predicted curve for porcine liver tissue in Appendix 5.

Discussion

The model (14) based on the left stretch tensor V describes
rubber-like materials using four parameters linked to physical
processes observed in specific ranges of deformation. This
constitutive equation describes hysteresis at intermediate to
large strains as a consequence of limited extensibility, while
the effect of crystallization at very large strains is modeled
using a simple hardening term. The parameter α associated
with this term vanishes at smaller tensile strains, reducing (14)
to the model (12). The parameter β associated with limited
extensibility tends to decrease in compression and increase in
tension, with a slight decrease at very large tensile strains. This
behavior suggests a dependence on density as the isochoric
constraint becomes less accurate at larger strains. An abrupt
drop to negative values during uniaxial unloading is consistent
with a dynamic constraint imposed by dissipation. The param-
eter β vanishes for intermediate to small strains, reducing (12)
and (14) to the constitutive Eq. (7). This equation describes
hyperelastic solids, where remaining parameters satisfy the
constraint m1/2 + m2 > 0 ensuring a positive shear modulus.
This model can be derived from an energy function (9), which
is convex if m2 ≥ 0. This function can be expressed in the
separable form (10), which is a special case of Ogden’s model
(4). The modulus m1 determines a Poynting effect predicted
by Eqs. (7), (12), and (14) for rubber-like materials.

Data correlation for a wide variety of materials, including
natural and synthetic rubber as well as soft tissue, suggest the
utility of simple constitutive equations based on the left stretch
tensor V. Specifically, the model (14) and special cases (12)
and (7) provide excellent results with R2 > 0.995 over a large
range of deformation for biaxial, planar, and uniaxial exten-
sion. The Varga term involving m1 is essential to this capabil-
ity as well as predictions in simple shear and the inflation of
spherical membranes. An equivalent expression in terms of
the left Cauchy–Green tensor B is significantly more compli-
cated, requiring the positive root of a quartic equation. While
guessing this expression seems unlikely, simpler models
based onB have failed to describe the entire range of behavior
shown here. Regarding the proposed description of hysteresis,
Ericksen’s (1977) prescient advice seems appropriate.

“Gradually, it has become clear that elasticity theory
can predict effects that we do not commonly think of as
being associated with the adjective elastic. In such

Fig. 9 A fit of planar and uniaxial data (Meunier et al. 2008) for unfilled
silicone rubber using Eq. (12), where coefficients m1 = 0.262 MPa, m2 =
0.190 MPa, and β = −0.404 determine curves with correlation R2 =
0.9989, relative error E = 10.4%, and SSE = 0.024 (MPa)2. Distribution
of error is normalized by RMSE = 0.0275 MPa, which is about 0.8% of
full scale for 35 data points shown in the figure
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cases, we should, I think, let elasticity theory enter into
free competition with other theories capable of describ-
ing the effect at hand.”

Regardless of the outcome, constitutive equations presented here
provide a useful starting point for accurately describing rubber-
like materials in terms of an objective measure of deformation.
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Appendices

Model conversion

For isochoric deformation, the left stretch tensor V satisfies
the Cayley–Hamilton equation (Gurtin 1981 p. 16)

V3−ι1V2 þ ι2V ¼ I; ι1 ¼ tr Vð Þ ¼ I1; ι2

¼ tr Vð Þ2−tr V2
� �h i

=2 ¼ I21−I2
� �

=2;

where the principal invariants (ι1, ι2) are expressed in terms of
the moment invariants (I1, I2). Multiplying this equation by
V−2 and taking the trace implies the second result

tr Bð Þ ¼ tr V2
� � ¼ I2; tr B−1� � ¼ tr V−2� � ¼ I21−I2

� �2
=4−2I1

relating tr(B−1) to moment invariants of V, where B=V2. These
results are used to convert function (1) into an expression

w ¼ C1 tr Bð Þ−3½ � þ C2 tr B−1� �
−3

� �
¼ C1 I2−3ð Þ þ C2 I21−I2

� �2
=4−2I1−3

h i
involving stretch tensor invariants, where C1 and C2 are constants.
Using this energy function in (8) leads to an alternate form of the
constitutive Eq. (2)

Tþ pI ¼ C2 I31−I1I2−2
� �

Vþ 2C1 þ C2 I2−I21
� �� �

V2;

where the shear modulus μ= 2(C1 +C2) is positive. See Treloar
(2009 pp. 211–229) for further discussion of the Mooney–Rivlin
model.

The left stretch tensor can be expressed in terms of B using
the Cayley–Hamilton equation for V. Multiplying this equa-
tion by V gives an alternate form

V4−ι1V3 þ ι2V
2 ¼ V

in terms of principal invariants (ι1, ι2). Substituting for V3

using the Cayley–Hamilton equation results in the expression

B2 þ ι2−ι12
� �

B−ι1I ¼ 1−ι1ι2ð ÞV;

where B =V2. Solving for V leads to an expression

V ¼ B2− I2 þ I12
� �

B=2−I1I
� �

= 1−I1 I12−I2
� �

=2
� �

;

involving moment invariants I1 = tr(V) and I2 = tr(V2) = tr(B).
This expression can be written in terms of B−1 and B using a
result

B2 ¼ B−1 þ tr Bð ÞB−tr B−1� �
I

obtained from the Cayley–Hamilton equation for B. A real
root of the quartic equation

I21−tr Bð Þ� �2
=4−2I1 ¼ tr B−1� �

determines I1 ≥ 3 as a function of invariants tr(B) and tr(B−1).
Ogden (1972a) alluded to the complexity of this isotropic
function in the context of Varga’s (1966) model. See Hoger
and Carlson (1984), Ting (1985), and Sawyers (1986) for a
generalization where det(V) ≠ 1.

Constitutive equations for elastic solids determine
Cauchy stress T = S(F) as a function of the deformation
gradient F. This function satisfies the constraint S(F) =
S(FH), where the symmetry transformation H is a constant
rotation for isotropic materials. The polar decomposition
F =VR leads to a necessary condition S(F) = S(VRH) =
S(V) associated with the material rotation R =HT. The con-
stitutive function also satisfies the constraint S(QVQT) =
QS(V)QT, where Q(t) is a time-dependent rotation associ-
ated with a change of frame. This constraint implies the
general model (6) for incompressible elastic solids.
Substituting a complicated expression for V in terms of
B, which is implicit in Gurtin’s derivation (1981 p. 167),
leads to an alternate form of the general model. This result
suggests that basic constitutive equations involving the nat-
ural variable V might provide a better description of iso-
tropic elastic solids than simple models using the substitute
variable B.

Hyperelastic solids

An incompressible elastic solid described by the constitutive
eq. T = –pI + S(V) is hyperelastic if the symmetric tensor
S(V) can be derived from a scalar energy function of the left
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stretch tensor V. Assume the Cauchy stress T satisfies an
isothermal form of Planck’s inequality (Truesdell 1984 pp.
112–115)

T � L−ρψ̇≥0
involving the spatial velocity gradient L, density ρ, and a
material derivative of the specific free energy function
ψ(V), where the scalar product A·B = tr(ATB) is defined
for any tensors A and B in terms of the trace function
(Gurtin 1981 p. 5). For incompressible solids, this con-
straint reduces to

S � L− w� ≥0;

where w(V) = ρψ is the energy density function. The chain
rule implies

ẇ ¼ ∂w
∂V

⋅V̇;

which can be expressed as

ẇ ¼ ∂w
∂V

V � L

using an identity (VanArsdale 2003)

V̇þ VWR−WRV ¼ LDV; L ¼ WR þ LD

¼ ṘRT þ RU̇U−1RT

associated with a polar decomposition F =RU =VR of the
deformation gradient in terms of a material rotation R and
symmetric stretch tensors U and V with positive principle
values. Since the stress S and energy density w are inde-
pendent of L, the isothermal form of Planck’s inequality is
satisfied only if

S ¼ ∂w
∂V

V;

where this material does not dissipate energy in any
isochoric motion. Since w is an isotropic function of V,
the energy density can be expressed as ŵ(I1, I2) in terms
of the moment invariants I1 = tr(V) and I2 = tr(V2) (Gurtin
1981 p. 230). The resulting partial derivative

Fig. 10 Shear stress values derived from planar extension data for an
unfilled silicone rubber in Fig. 9 using the equivalence relations (11).
An absolute value is used to map all data to this quadrant. Curves are
predictions of Eq. (12) using coefficients from Fig. 9 with correlation
R2 = 0.9907 to derived data. Deviation from predicted values is
RMSE= 0.0209 MPa or about 1.8% of full scale over the entire range
of shear strain (− 1.07→ 1.62). The ratio Txy/γ increases from an initial
value μ =m1/2 +m2 = 0.321 MPa, while the ratio (Tyy − Tzz)/(Txx − Tyy)
increases from −m1/8μ = − 0.102 to zero. This material should exhibit
axial elongation in torsion since m1 > 0

Fig. 11 A fit of planar extension data (Gao et al. 2010) for porcine liver
tissue using Eq. (12), where coefficients m1 = − 0.946 kPa, m2 =
0.479 kPa, and β = 2.14 determine curves with correlation R2 = 0.9996,
relative error E = 4.4%, and SSE = 0.0012 (kPa)2. Distribution of error is
normalized by RMSE= 0.00866 kPa, which is about 0.7% of full scale
for 29 data points shown in the figure. Note that the shear modulus μ =
m1/2 +m2 = 0.006 kPa is positive for this soft tissue
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∂w
∂V

¼ ∂bw
∂I1

Iþ 2
∂bw
∂I2

V

leads to the expression (8) for stress in terms of the moment
invariants.

However, only some models described by the general con-
stitutive Eq. (6) have this property. For example, model (12)
cannot be derived from an energy function but can be
expressed in the alternate form (13). The preceding derivation
suggests that one part is determined by an energy function,
while the remaining stress can dissipate energy. The dissipa-
tion rate associated with this part

m2β I1−3ð ÞI2V2 � L
3 1−β I1−3ð Þ½ � ¼ m2β I1−3ð ÞI2V2 � V̇V−1

3 1−β I1−3ð Þ½ � ¼ m2β I1−3ð ÞI2 İ2
6 1−β I1−3ð Þ½ � ≥0

is non-negative for m2 > 0 if β İ2 ≥ 0 in dynamic processes.
This constraint, which also applies to the constitutive Eq. (14),
is consistent with the drop in β during uniaxial unloading
from a large tensile strain shown in Fig. 5.

Model predictions

Predictions of model (7) with material constants m1 and m2 are
listed below, where Txx, Txy, Tyy, Tzz, and Pxx denote Cauchy
and nominal stress components associated with the orthonormal
basis vectors e!x; e

!
y; e
!

z. Deformation is characterized by the
left stretch tensor V and the deformation gradient F, where
symbols γ, λ, λ1, λ2 denote the shear strain and principal
stretches in coordinate directions. Tensors are expressed as lin-
ear combinations of basis tensors defined using a tensor product
(Gurtin 1981 p. 4). Predictions of the constitutive Eqs. (12) and
(14) are obtained by replacing m2 with m2/[1 −β(I1 − 3)] or m2/
{1 – β[(I1 – 3) +α(I2 – 3)

3]} in the expressions below.

Uniaxial extension:

V ¼ λ e!x⊗ e!x þ λ−1=2 e!y⊗ e!y þ e!z⊗ e!z

� �
; tr Vð Þ

¼ λþ 2λ–1=2; tr V2
� � ¼ λ2 þ 2λ–1

Tyy ¼ Tzz ¼ 0⇒p ¼ m1λ
–1=2 þm2λ

–1tr V2
� �

=3⇒Txx

¼ m1 λ–λ–1=2
� �

þm2 λ2–λ–1
� �

tr V2
� �

=3

F ¼ λ e!x⊗ e!x þ λ−1=2 e!y⊗ e!y þ e!z⊗ e!z

� �
⇒Pxx

¼ m1 1–λ–3=2
� �

þm2 λ–λ–2
� �

λ2 þ 2λ–1
� �

=3

Planar extension:

V ¼ λ e!x⊗ e!x þ e!y⊗ e!y þ λ−1 e!z⊗ e!z; tr Vð Þ
¼ λþ 1þ λ–1; tr V2

� � ¼ λ2 þ 1þ λ–2

Tzz ¼ 0⇒p ¼ m1λ
–1 þm2λ

–2tr V2
� �

=3⇒Txx

¼ m1 λ–λ–1
� �þm2 λ2–λ–2

� �
tr V2
� �

=3

F ¼ λ e!x⊗ e!x þ e!y⊗ e!y þ λ−1 e!z⊗ e!z⇒Pxx

¼ m1 1–λ–2
� �þm2 λ–λ–3

� �
λ2 þ 1þ λ–2
� �

=3

Equibiaxial extension:

V ¼ λ e!x⊗ e!x þ e!y⊗ e!y

� �
þ λ−2 e!z⊗ e!z; tr Vð Þ

¼ 2λþ λ–2; tr V2
� � ¼ 2λ2 þ λ–4

Tzz ¼ 0⇒p ¼ m1λ
–2 þm2λ

–4tr V2
� �

=3⇒Txx

¼ m1 λ–λ–2
� �þm2 λ2–λ–4

� �
tr V2
� �

=3

F ¼ λ e!x⊗ e!x þ e!y⊗ e!y

� �
þ λ−2 e!z⊗ e!z⇒Pxx

¼ m1 1–λ–3
� �þm2 λ–λ–5

� �
2λ2 þ λ–4

� �
=3

Biaxial extension:

V ¼ λ1 e
!

x⊗ e!x þ λ2 e
!

y⊗ e!y þ λ1λ2ð Þ−1 e!z⊗ e!z; tr Vð Þ
¼ λ1 þ λ2 þ λ1λ2ð Þ–1;

tr V2
� � ¼ λ1

2 þ λ2
2 þ λ1λ2ð Þ–2; Txx–Tyy

¼ m1 λ1–λ2ð Þ þm2 λ1
2–λ2

2
� �

tr V2
� �

=3;

Simple shear:

V ¼ 4þ γ2
� �−1=2

2þ γ2
� �

e!x⊗ e!x þ γ e!x⊗ e!y þ e!y⊗ e!x

� �
þ 2 e!y⊗ e!y

h i
þ e!z⊗ e!z;

tr Vð Þ ¼ 1þ 4þ γ2
� �1=2

; tr V2
� � ¼ 3þ γ2; Txy

¼ m1γ 4þ γ2
� �–1=2 þm2γ 3þ γ2

� �
=3;

Txx ¼ m1 2þ γ2
� �

4þ γ2
� �–1=2

–1
h i

þm2γ
2 3þ γ2
� �

=3;Tyy

¼ m1 2 4þ γ2
� �–1=2

–1
h i

;Tzz ¼ 0
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Fitting algorithm

The method used here searches for m model parameters that
improve goodness of fit (also known as coefficient of
determination)

R2 ¼ 1− ∑
n−1

i¼0
yi− f ið Þ2= ∑

n−1

i¼0
yi−yð Þ2;

where predicted values fi are compared to n measurements yi
with mean y =Σyi/n. Residuals are errors yi − fi associated
with this correlation. The root mean squared error

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−m
∑
n−1

i¼0
yi− f ið Þ2

s

is essentially the standard deviation of data about a fit with
n −m degrees of freedom. This statistic normalizes residuals
plotted in most figures, suggesting a confidence interval for
predicted values. Root mean squared error is compared with

Fig. 13 Scaled pressure P as a function of tangential stretch λ for a
spherical membrane using the extended version of Eq. (16) with
coefficients from Fig. 11. This curve becomes unbounded for λ > 1.516,
suggesting a limit on the size at rupture. This trend is qualitatively similar
to measurements by Osborne (1909) on a monkey bladder as well as
porcine sclera data obtained by Lari et al. (2012). These authors also
observe hysteresis during sclera deflation and uniaxial unloading, which
is consistent with β ≠ 0

Fig. 12 Shear stress values derived from planar extension data for porcine
liver tissue in Fig. 11 using the equivalence relations (11). Curves are
predictions of Eq. (12) using coefficients from Fig. 11 with correlation
R2 = 0.9997 to derived data. Deviation from predicted values is RMSE =
0.00545 kPa or about 0.6% of full scale for data shown in the figure. Note
that the secondary normal stress difference Tyy − Tzz is positive. This
material should exhibit axial contraction in torsion since m1 < 0

Fig. 14 A fit of equibiaxial and uniaxial data (Alexander 1968) for a
synthetic rubber neoprene using Eq. (12), where coefficients m1 =
1.90 MPa, m2 = 0.0597 MPa, and β = 0.0887 determine curves with cor-
relation R2 = 0.9958, relative error E = 54%, and SSE = 8.7 (MPa)2. The
distribution of error is normalized by RMSE= 0.628MPa, which is about
2.2% of full scale for 25 data points shown in the figure
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the entire range of measurements ymax − ymin to obtain percent
full scale. Relative errors Ei are defined by Ogden et al. (2004)
as absolute residuals |yi − fi| normalized by the maximum of 0.5
or |yi|. The largest relative error E and the sum of squared error
SSE =Σ(yi − fi)2 are provided with two significant digits for
comparison with results in other papers. The goodness of fit
is expressed with four significant digits, while model coeffi-
cients and the root mean squared error appear with three digits.
A fit with R2 > 0.999 and RSME < 1% full scale is considered
excellent, while correlations with R2 < 0.99 and RSME > 2%
full scale are somewhat questionable for data shown in the
figures.

The resulting algorithm randomly searches for new coeffi-
cients near the initial guess, where the change is usually less
than 5% of the value. If a better fit is obtained withR2 closer to
one, the search resumes from the new set of coefficients. This
process stops after a specified number of attempts (typically
1000) fails to improve the fit. Like most methods, this

approach is sensitive to an initial guess. However, this guess
can usually be refined in real time for m < 4 since the search
only involves model evaluations. The resulting coefficients
listed in figure captions concurrently fit all data displayed
within the specified range except for Figs. 5 and 18. Shear
stress predictions in Figs. 2, 10, and 12 do not involve this
algorithm, where statistics are provided to characterize corre-
lation with derived data.

An alternate approach is used by Ogden et al. (2004),
where fitted values are determined using a least-squares
analysis based on the function SSE =Σ(fi − yi)

2. These
authors randomly vary their initial guess to improve this
solution as determined by SSE and relative errors Ei.
Plotting relative errors masks the trend of residuals
(Curran-Everett 2011) by mapping all values to the pos-
itive quadrant. The significance of relative error is dif-
ficult to assess without additional information about ex-
perimental uncertainty. Since most test equipment has a
fixed resolution, this uncertainty can be a large percent-
age of small data values. For example, Ogden et al.
(2004) obtain relative errors up to 40% for small

Fig. 15 A fit of uniaxial data (Fox and Goulbourne 2008) for polyacrylate
rubber VHB 4905 using Eq. (12), where coefficients m1 = 0.144MPa, m2 =
0.00135 MPa, and β = 0.0872 determine a curve with correlation R2 =
0.9994, relative error E = 1.1%, and SSE= 0.00013 (MPa)2. The distribution
of error is normalized by RMSE= 0.00308MPa, which is about 0.7% of full
scale for 17 data points shown in the figure. The value of β drops 79% to
0.0183 as the maximum stretch decreases to 6. A fit with β= 0 for λ < 6 has
coefficients m1 = 0.137 MPa and m2 = 0.00204 MPa with correlation R2 =
0.9995, which suggests an upper bound on the hyperelastic range for this
material

Fig. 16 A fit of uniaxial data (Yeoh and Fleming 1997) for a vulcanized
rubber using Eq. (12), where coefficients m1 = 0.168 MPa, m2 =
0.500 MPa, and β = −2.11 determine a curve with correlation R2 =
0.9992, relative error E = 11.9%, and SSE = 0.081 (MPa)2. The distribu-
tion of error is normalized by RMSE= 0.0949MPa, which is about 1% of
full scale for 12 data points shown in the figure
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strains, where models seem to accurately describe exten-
sional data. Smaller errors around 10% can occur at
larger strains, where models visually deviate from data.
Treloar’s uniaxial and equibiaxial measurements are fit
simultaneously by Ogden et al. (2004) to obtain a set of
coefficients, while excluding planar extension data. This
paper uses an energy function to describe Treloar’s data
well outside the hyperelastic range.

The approach in Ogden et al. (2004) is modified by
Destrade et al. (2017), where fitted values are deter-
mined by minimizing the function Σ[(fi − yi)/yi]

2 involv-
ing relative residuals. These authors must exclude mea-
surements near zero to use this approach, which weights
smaller values as more significant in determining a fit
compared to a least-squares analysis by Ogden et al.
(2004). This weighting is further exacerbated by an ap-
parent choice of units, which stretches the y-axis by a
factor of ten. At small strains, Destrade et al. (2017)
obtain relative residuals around 15 to 20% for the
neo-Hookean model even though fitted values appear

to accurately describe data deemed most reliable. They
determine model coefficients by fitting just uniaxial da-
ta. See referee Martin Kroon’s concern in Supplemental
Material as well as observations by Urayama (2006) and
Treloar (2009 p. 218) that uniaxial results are insuffi-
cient to distinguish between theories. Destrade et al.
2017, Fig. 9) limit predictions in simple shear to γ ≤
1 and do not compare with values derived from
Treloar’s planar extension data. They also use an energy
function to describe Treloar’s uniaxial data well outside
the hyperelastic range (λ < 5). Neither this paper nor
Ogden et al. (2004) provides guidance concerning the
significance of any particular relative error.

Data comparisons

The constitutive Eq. (12) is used to fit extensional data
obtained from Mansouri and Darijani (2014) for differ-
ent rubber-like materials. Correlations in Figs. 9, 11, 14,
15, 16 and 17 have a goodness of fit R2 > 0.995 and a
root mean squared error RMSE < 2.2% of full scale.
Predictions by (12) are similar to the best models eval-
uated by Mansouri and Darijani (2014, table 4) based
on the sum of squared error SSE. In Figs. 10 and 12,
simple shear predictions are compared with values

Fig. 18 Uniaxial data for carbon black–filled rubber NR 70 obtained by
Bechir et al. (2006), where compressive ( ) and tensile ( ) stresses are
fit separately using models (7) and (14). Coefficients m1 = − 0.134 MPa,
m2 = 3.00 MPa determine the compressive stress curve with shear mod-
ulus μ = 2.94 MPa and correlation R2 = 0.9985 RMSE = 0.140 MPa.
Coefficients m1 = 2.04 MPa, m2 = 0.0906 MPa, β = 2.27, and α =
−0.00713 determine the tensile stress curve with shear modulus μ =
1.11 MPa and correlation R2 = 0.9981, RMSE = 0.0681 MPa

Fig. 17 A fit of uniaxial data (Miehe and Lulei 2001) for carbon black–
filled rubber b186 using Eq. (12), where coefficients m1 = 3.28 MPa, m2 =
0.0282, and β= 2.37 determine a curve with correlation R2 = 0.9979, rela-
tive error E = 13.5%, and SSE = 0.11 (MPa)2. The distribution of error is
normalized by RMSE= 0.0745 MPa, which is about 1.4% of full scale for
23 data points shown in the figure. A better result can be obtained by fitting
compressive and tensile stresses separately similar to Fig. 18
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derived from planar extension data using the equiva-
lence relations (11). These predictions suggest axial
elongation in torsion for silicone rubber, while the por-
cine liver tissue should exhibit a negative Poynting ef-
fect associated with axial contraction. A prediction for
inflation of a spherical membrane is shown in Fig. 13
using parameters for porcine liver tissue. This plot is
qualitatively similar to measurements on soft tissue by
Osborne (1909) and Lari et al. (2012).

Uniaxial data shown in Fig. 18 are obtained from a
plot in Bechir et al. (2006, Fig. 8b) for carbon black–
filled vulcanized natural rubber. Separate curves for
compressive and tensile stress are fit using models (7)
and (14). Such an approach appears to be necessary for
carbon black–filled rubber due to amplification (Yeoh
1990) at sufficiently large tensile strains, where particle
interactions can lead to increased stiffness, tensile
strength, and hysteresis (Omnès et al. 2008). While cor-
relation is good, the predicted shear modulus μ = m1/2 +

m2 is not continuous at λ = 1. An unusual negative val-
ue for α in (14) essentially keeps the tensile stress
curve from becoming unbounded at large strains.
While using six constants to fit uniaxial data seems
excessive, Bechir et al. (2006, Fig. 9) obtain worse cor-
relation, especially for compressive stress, with the same
number of constants.

Values shown in Fig. 19 are obtained from a plot in
Destrade et al. (2017, Fig. 2a), where stresses are about
9.8 times too large in the stated units N/mm2 (Sec. 3a).
These authors exclude the first 14 data points (λ < 1.1)
from their analysis due to a Mooney plot discrepancy that
they attribute to possible issues with the experiment. While
some points are excluded here for λ < 1.5 due to large,
overlapping plot symbols, scanned data do not exhibit the
downturn shown in Destrade et al. (2017, Fig. 2c). This
material is accurately described by model (7), which sug-
gests hyperelastic behavior over the entire range of defor-
mation shown in Fig. 19. The shear modulus μ = m1/2 +
m2 = 0.777 MPa predicted for this material is within ± 2%
of values (0.761→ 0.791 MPa) obtained by Destrade et al.
(2017, tables 2, 3, 5) using 12 different models for
hyperelastic solids. However, these authors obtain a 14%
variation in μ (0.430→ 0.492 MPa) by fitting the same
models to Treloar’s (1944) uniaxial data (Destrade et al.
2017, tables 2, 3, 4), where some correlations involve data
outside the hyperelastic range. These values are typically
larger with greater variation than the shear modulus
(0.396→ 0.431 MPa) obtained for Treloar’s (1944) load-
ing data shown in Figs. 1, 3, 4, and 5.
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