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Abstract

This work explores the rheology of suspensions of spheres in a viscoelastic matrix. The volume fraction varies from zero to 0.2.
Steady shearing, small strain sinusoidal shearing and uniaxial elongation are considered. We conclude that the matrix response in
shear and elongation is fairly well described by a single-mode Oldroyd-B model, but the small-strain storage modulus (G’)
response is less well represented by such a model. The use of a two-mode Oldroyd-B model gives significant improvement. For
the suspensions, the viscometric functions 7, N; and N, are given for volume fractions of 5, 10 and 20%, plus the oscillatory
responses G°, G” at 1% strain amplitude. The uniaxial elongation data show a very large increase in flow resistance relative to the
matrix; for the same applied force, the rate of elongation decreases from about 17.5 s for the matrix to about 3 s~ for the
suspensions. It appears that this large increase in resistance is due to areas of intense extension attached to two adjacent spheres,
as has been demonstrated numerically. It is shown that a single-mode Oldroyd-B model cannot describe suspension behaviour. A
two-mode Oldroyd-B model can capture the macroscopic behaviour of the suspensions but only if an initial Hencky strain of
order 4 is present in the extending suspension filaments. A two-mode model of the matrix fluid also allows one to understand the

suspension response from the microscopic view.
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Introduction

The behaviour of suspensions with non-Newtonian matrix
fluids has been discussed in several reviews (Metzner 1985;
Shaqgfeh 2019; Tanner 2019). It is clear that the local flow
around the suspended spheres is quite complex and the char-
acterization and modelling of the matrix rheology is very im-
portant. As a minimum, the behaviour in steady viscometric
flows (the viscosity 7 and the two normal stress differences NV,
and N,) should be measured, but only in rare cases (Dai et al.
2014; Tanner et al. 2015) are all three functions available.
There are few measurements of extensional behaviour, in spite
of their importance in suspension rheology (Hwang et al.
2004). Unsteady flow properties are also of interest and mea-
surements of G’, G” are relevant to modelling.

Here, we will first give experimental results for 1, Ny, N,,
G’, G” and uniaxial extensional flow properties for the Boger
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fluid used by Dai et al. (2014). The modelling of the fluid as an
Oldroyd-B material will also be discussed. The behaviour of
semi-dilute suspensions using this matrix fluid is then
presented and discussed.

Matrix fluid rheology

The viscoelastic matrix fluid used here and by Dai et al. (2014)
was formed from corn syrup (79.42% by weight), glycerine
(19.8%), water (0.75%) and a small amount (0.03%) of poly-
acrylic acid (PAA) with a molecular weight of 5 x 10° g/mol.
A similar matrix fluid was used by Zarraga et al. (2001). The
matrix density was 1352 kg/m’, and the viscosity at 24 °C was
about 2.16 Pa s. N, was found to be too small to measure (<
0.1 Pa) and is assumed, from the results of Dai et al. (2014), to
be zero. The matrix viscosity and first normal stress behaviour
as functions of shear rate were measured using a Paar Physica
MCR302 rheometer and are shown in Table 1 (top row). The
viscosities were somewhat higher than those reported by
Zarraga et al. (2001) possibly due to differences in the PAA
molecular weights.
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Table 1 Viscosity (),) and normal stress coefficients for the matrix fluid (0%) and semi-dilute suspensions (5, 10 and 20% volume fractions)
¢ (%) o (Pa-s) N/ 7 (Pa-s” Noy* (Pa-s”
2.16 0.116 0
2.69 0.147 -0.0074
10 3.58 0.271 -0.0145
20 6.10 0.422 —-0.0870

Modelling of the matrix as a second-order fluid was
adopted by Dai et al. (2014); the second-order fluid had a

negligible N,. If Ny =0.116 ’}2 as in Table 1 and 7, is

2.16 Pa-s, then the relaxation time )\(=2N—V2 ) is 0.027 s.
r/[?’y

However, it is equally possible and is preferable to regard
the results of Table 1 via an Oldroyd-B model as did
Vazquez-Quesada et al. (2019). They considered the matrix
fluid to have a viscosity of 2.08 Pa-s of which the ‘polymer’
contribution was 0.666 Pa-s and a relaxation time of 0.084 s.
Yang et al. (2016) described the same fluid as a Giesekus
model with a relaxation time (\) of 0.09 s, 7, =2.2 Pa-s and
a ‘polymer’ viscosity of 0.704 Pa-s; the Giesekus parameter o
was fitted to be 0.0034. This model was able to describe the
droop away from the square law in N; near a shear rate of
100s™".

The modelling of the matrix fluid as an Oldroyd-B fluid in
steady viscometric flow is seen to be generally satisfactory.
The single relaxation time A is assumed equal to 0.087 s, the
mean of the values from the works of Vazquez-Quesada et al.
(2019) and Yang et al. (2016). The single-mode Oldroyd-B
stress tensor (o) for general flows can be written as follows:

o=—pl+2n, d+71 (1)

Here, the pressure p in the assumed incompressible fluid is
determined by the momentum balance. The Newtonian part of
the matrix viscosity is 7, (= 1.469 Pa.s in this case) and d is the
rate of deformation tensor. The extra stress T due to the poly-
meric component is described by an upper-convected
Maxwell element:

AAT/At+T=2n,d (2)

In the present case 7, =0.691 Pa.s, so the total shear vis-
cosity is 2.16 Pa.s; 7,/1, = 0.32. The upper convected deriva-
tive term in Eq. 2 is as follows:

At/At = {ot/ot+ v.Vr-L"-Lt} (3)

where t is time, v is the velocity vector and V is the gradient
operator. L is the transpose of the velocity gradient (Vv)
(Tanner 2000).

This model has the following properties:

@ Springer

*Steady shearing—constant viscosity (1, =15+, ), here
equal to 2.16 Pa.s

*First normal stress difference N; equal to 2A n, 7’2; or

0.116 7’2 in this case, where ’y is the shear rate
*The second normal stress difference (V) is zero.
*In small—strain oscillatory flow (Y=~ sinwt), one finds

G =A npwz/(l + ()\w)2> (4)
G” =n,w+mn, w/(l + ()\w)2> (5)

where A =0.087 s and w is the frequency in rad/s.

For the papers cited here, there seems to be no record of the
small strain behaviour. To rectify this for the sinusoidal small
strain case (1% strain), the results for G’ and G” are shown in
Fig. 1.

Each experimental determination used three samples de-
noted by ¢, A and m. The Oldroyd-B model results (Egs. 4
and 5) are shown by the + symbols.

The agreement between the experiments in Fig. 1 and Egs.
4 and 5 is fair, and more modes would reduce the difference.
Overall, the agreement with the model in simple and oscilla-
tory shearing is considered reasonable. We now consider uni-
axial elongational flow.

For the Oldroyd-B model in uniaxial elongation, there is no
steady state at Weissenberg (Wi) numbers > 0.5. In the anal-
ysis, we will assume that the rate of strain (5.) is constant; if
this is not the case then the analysis of experimental results
needs computation.

When the strain-rate is constant, the solution for the axial
stress o in the Oldroyd-B model can be re-arranged as a func-

tion of the Hencky strain (5 = ét) and is, using the notation

Wi = Ae:

o = 3n, & + 2n,e{1-exp[(2-1/Wi)e] } / (1-2Wi)
+mye {1-exp [~(1 + 1/Wi)e]} /(1 + Wi) (6)

When A = 0 or the strain-rate is very small this reduces to 3
noai. It is assumed in the derivation of Eq. 6 that the stretch rate
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is suddenly applied at ¢ = 0; at that time the polymer does not
contribute to the stress. The results of Eq. 6 will be compared
with experiments.

Whilst the shearing tests are routine, the measurement of
elongational flow is more difficult. We used the weight of the
fluid with or without an embedded steel ball to apply the load
and studied the development of the filament using a high-
speed camera (Mahmud et al. 2018).

About 20 ml of fluid was put into the glass funnel and it
flowed out through the attached capillary tube having 3.8 mm
inner diameter (Fig. 2).

Angular frequency [s'1]

A high-speed FASTCAM PCI R2 (Photron) camera was
used to film the motion of the fluid with a recording rate of
250 fps (frames per second), where the exposure time was
1 ms. In this experiment, following Mahmud et al. (2018),
we measured the diameter and length of the extending fila-
ment and the volume of the drop from the images taken by the
high-speed camera. At the central section, the flow was clearly
elongational and the length of the filament was measured as a
function of time, which enabled the value of the mean elon-

gation rate (5') to be found. If the length of the filament at zero
time is L, then, for a constant rate of strain the length L equals
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Funnel
High Speed Camera

Drop of fluid/suspension

Fig. 2 Sketch of falling-drop experiment. The drop of fluid contained in
some cases a steel ball which increased the load on the filament and
increased the uniformity of the filament

L, exp et. From Fig. 3, one sees that for the matrix fluid with
an embedded ball, the exponential form assumed for the
length L generally holds well, at least over an initial period,
and so the rate of strain can be found from the slope of the
lines in Fig. 3. The mean filament diameter d = d,, exp. ('—Et /2
) as is well-known. It was found that a much improved fila-
ment shape ensued if a small 3.17 mm diameter steel ball
(mass 0.1303 g) was extruded with the fluid (Mahmud et al.
2018). This increased the load and the extension rate. It also
allows more precise estimates of the filament length (L) to be
made, and only the results with embedded balls are analysed
in detail here.

Because the filament thins rapidly in time, it is difficult to
measure d accurately for longer times, and so the assumption
is made that the volume of fluid in the filament is constant and

equal to that near the beginning of the extension. Since the
actual test time on the matrix filaments is much less than 1 s
(Fig. 3), this assumption is considered fair; also one sees the
volume of fluid at the fluid exit and around the ball is a very
small fraction of the total filament volume. Knowing the fila-
ment length L as a function of time, the mean diameter d may
then also be found as a function of time.

To find the load on the filament, the acceleration («) of the
steel ball (or the leading blob when there is no ball) is needed. For

a constant ¢, the acceleration of the ball is given by d°L/dt, or

a=cL (7)

For the matrix fluid tests « is a maximum of about 1 m/s%; if

£ isnot constant, then the acceleration must be found numer-
ically. The stress at any strain can be found for the mid-point
of the filament from the force F' exerted on the filament by the
ball (or blob) plus half of the mass of the filament:

F=(m —|—7Tpd2L/8) {g—a} (8)

where m is the mass of the embedded ball, p is the fluid
density and g is the acceleration of gravity.

The apparent axial stress 4F/7t d* is borne by the axial stress
o in the fluid plus a contribution of the surface tension
(Mahmud et al. 2018) of 20,/d, where the surface tension
coefficient oy was measured as 0.07 Pa-m. Subtracting 20/d
from the apparent axial stress gives the uniaxial stress o in the
fluid, which can be compared with the analytical solution (6).

From the photo images the position of the ball as a function
of time could be found and the acceleration of the fluid
blob/steel ball could be estimated from Eq. 7. The whole test

Fig.3 Length (L) of filament as a 5r
function of time. The right-hand
curve with the steel ball shows a s [
constant rate of elongation of o "
17.5 s in the initial stages. The o, u®
left-hand curve has a complex rate 3L o
of extension at an average rate of [ e
extension of about 12 s~ — [ i
£ 2} y = 12.064x - 1.6072 .-'°
(S : o f
S— .. 0
= 1F oo
c D"D— -
- o y = 16.631x - 7.3238
of o
a.-
1 |
2L . . . . . .
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took about 0.3 s and generated about 100 photos. The accel-
eration (cv) was found to be at most of order 1 m/s*> which is
fairly small relative to the gravitational acceleration g
(9.81 m/sz). Hence, the load at the mid-length of the filament
could be found as the (mass of ball + 0.5 of the mass of the
filament) times (g—). For the steel ball case, the total load
was about 1 mN. In order to find the stresses, it is necessary to
find the filament diameter at the mid-length. For small times
this can be measured from the enlarged photographs, but
eventually this becomes inaccurate. Hence, the diameter was
found at later times by finding the volume of the fluid at small
times and assuming that the product of the filament length and
the square of the diameter remained constant. We considered
the images at 0.02 s time intervals and calculated the length
(L) of the filament as a function of time (Fig. 3); from these
data, the Hencky strain (¢ =1n (L/L,)) as a function of time
could be found. We found by plotting L vs. time (Fig. 3) that
for the case with the steel ball the rate of elongation (5. ) was
nearly constant at 17.5 s ' over the initial time rate of elonga-
tion and then it reduced.

From Fig. 3, the behaviour of the filament without the steel
ball results in an average rate of strain of about 12 s~',but in
fact the rate of strain for times greater than about 0.22 s is
nearly 17.5 s ! in the centre and around £=0.2 s, there is a
period of lower extension rate. In view of this complex result,
it was decided that only the results with the embedded steel
balls would be used.

The load on the fluid column in the experiments is due to
the (reduced) weight of the ball and half of the column, but
there is also a component due to surface tension, as mentioned
above. From previous work (Mahmud et al. 2018), an extra
force increases the apparent stress in the filament by oy/r,
where o, is the surface tension coefficient (measured as
0.07 Pa.m) and r is the radius of the filament. Unlike this
previous work which used silicone oil of larger viscosity,
and where surface tension was smaller, in the present case
the load borne by the fluid in the filament had to be reduced
by the surface tension component in order to compare with the
prediction from the Oldroyd-B model in Eq. 6, where no sur-
face tension was considered.

The results for the axial stress o are shown as a function of
the Hencky strain € in Fig. 4 (circles); here, the steel ball was
used. Hence, it appears that the single-mode Oldroyd-B model
represents the matrix rheology adequately. From Fig. 4, one
sees that there are deviations in the experimental stresses of
about +20%.We now consider suspension rheology.

Suspension rheology

In order to minimize the effects of interparticle friction, which
plays an important role when the volume fraction is greater

than about 0.25, the volume fractions considered here are
restricted to 5, 10 and 20% (Tanner et al. 2015). The polysty-
rene (PS) spheres used were described by Dai et al. (2014) and
were approximately 40 p in diameter with a comparatively
small average roughness of 0.15% of the sphere radius. The
shear viscosity of the suspensions was constant up to

Weissenberg numbers (Wi= )\'); ) of about 0.9; thereafter,
mild shear thickening occurred (Tanner 2019; Dai et al.
2014); the relaxation time of the matrix fluid is A =0.087s.
The constant viscosities at lower Wi are reported in Table 1
along with the normal stress data.

The small shear strain data (G, G”) are shown in Fig. 5a, b;
a strain amplitude of 1% was imposed.

Using the same embedded ball technique described above,
the uniaxial elongation behaviour was studied. The lengths of
the filament (L) as a function of time are shown in Fig. 6.
Again, one sees exponential increases in length with time, so

¢ is nearly constant and et is the Hencky strain. Roughly, the
load on the filament was always ~ 1.5 mN, but the resulting
rates of extension varied widely as the volume fraction was
varied, see Table 2.

The presence of just a 5% volume fraction of spheres re-
duces the rate of extension dramatically, given the same load
(Table 2). To provide a dimensionless plot of the behaviour,
the results derived from Fig. 6 are shown in Fig. 7, where the
dimensionless stress o* (= 0/31, £ ) is shown as a function of
€ (=1n (L/L,). The value of L, was chosen to be 3.2 mm (one
embedded ball diameter) as seen in Fig. 6.

Modelling the suspension rheology

The increase of relative viscosity (1,) with volume fraction in
dilute suspensions with non-Newtonian matrices was predict-
ed to follow the Einstein rule (n,=1+2.5¢) by Koch and
Subramanian (2008). The results in Table 1 show increases
of 25, 66 and 182% for =15, 10 and 20% respectively. The
Einstein formula predicts 12.5, 25 and 50% increases. It is
surprising that the 5% results differ from the Einstein result
by such a large amount. Generally the experimental values in
Table 1 for the increases in relative viscosity are about twice
the predicted values. We note that Vazquez-Quesada et al.
(2019) have suggested a more refined computational method
which gives results close to experiment for the 5% case.

The first normal stress difference was also predicted to
increase by the same amount as the viscosity, but from
Table 1, one sees that experiments show that increases of
27%, 133% and 260% occur for 5, 10 and 20% respectively,
again much higher than the Einstein prediction.

The presence of a non-zero N, shows that the Oldroyd-B
model is not adequate to describe suspension rheology. (A
simple solution for this problem is to replace the 2n, d term
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Fig. 4 Axial stress as a function 10000 +
of Hencky strain for the steel ball & 5O
case (circles)—the crosses are the V) 6
Oldroyd-B model results. Rate of + o]
: -1
extenélon 175s corres.ponds to 1000 ) 0}
a Weissenberg number ¢ of ©
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stress since Wi> 0.5 (_E +
©
O 100 & ®
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in Eq. 1 by a Reiner-Rivlin term of the form 2n d + 4v, d?,
where v, = Nz/y?; however, this inelastic contribution should
not be expected to describe unsteady flows.)

Turning to the G’, G” results, one might assume following
See et al. (2016) that the relaxation time for the suspensions is
the same as that of the matrix fluid and that the ratio of 7 to 7,
remains at 0.68, which has been used to describe the matrix.
These assumptions lead to results that are not close to exper-
imental values. For example, for a 10% suspension at w =
10 rad/s G’ is predicted to be 5.7 Pa, whereas experiment
shows about 15 Pa; corresponding values of G” are 12 Pa
and 53 Pa.

For the suspension uniaxial elongation tests (Fig. 7), the
assumption that the relaxation time is 0.087 s leads to
Weissenberg numbers below 0.5, so the dimensionless stress-

es (%) =0a/3n, ¢ are calculated to be of order 1.3 when the
Hencky strain is 3, whereas Fig. 7 shows values near 100.

Clearly the Oldroyd- B single-mode model with \ =
0.087 s does not come near to describing the experimental
data for the suspensions.

We now consider a two-mode Oldroyd-B model. At exit
from the tube in Fig. 2 where ¢ is small, the fluid needs to
support the weight of the embedded sphere immediately, so
the assumption that the polymeric stress is then zero, which
was used to derive Eq. 6, may not be realistic.

Hence, we assume that the polymer stress contribution is
not necessarily relaxed at the beginning of the filament (exit
from the funnel in Fig. 2) and at that point the Hencky pre-
strain is €, so that in Eq. 6 we replace ¢ by € +¢, We also
assume that there are two relaxation times (\; and \,) and a
corresponding set of viscosities 77; and 7, so there are two
equations for the partial stresses of the form given in Eq. 6.
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In order to generate significant axial stress in elongation, Wi
must be greater than 0.5 for at least one of the modes.

As an example, we consider the 10% volume fraction data
from Fig. 7.

To get an estimate of the effective Weissenberg number for
the suspensions, we note that when Wi> 0.5, one term dom-
inates the response for larger strains, and

o~ (20, /30,) {exp(2-1/Wi) (& + &0)-1}/(2Wi-1) ()

The strain has been augmented by a term €, which is not
yet determined. Equation 9 refers to the most active mode in
the bimodal Oldroyd-B model. By differentiating Eq. 9 with
respect to € one finds, approximately, and independent of €
and €,

do*/de~(2—1/Wi) o* or dlno*/de = 2—1/Wi (10)

This predicts that the slopes of the lines in Fig. 7 should be
constant in agreement with Eq. 10.The results found for Wi
from Fig. 7 and Eq. 10 are shown in Table 3, together with the
estimated properties of the two-mode Oldroyd-B model.

To find the parameters for the suspensions, we use the data
of Fig. 7 and Eq. 10, finding that the effective Weissenberg
number is 1.11 as shown in Table 3. Since the rate of elonga-
tion is 2.56 s~ (Table 2), the dominant relaxation time (\,)
must be 0.42 s. The smaller relaxation time (\;) can be found
from the G’ data (Fig. 5a). Atw=100 s !, the measured value
of G’ ~56.4 Pa, and for this frequency the contribution of ), is
only ~ 1 Pa. Hence, since 7; is about 1 Pa.s, A\; needs to be
around 0.01 s. If we set A; =0.01 s, then to match G’(100), the

value of 17; ~ 1.00 Pa.s. To maintain N,/ 'y 2=0.271 (Table 1),
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Fig. 5 Small-strain responses G’ a
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one finds 7, = 0.30 Pa.s and to maintain the total shear viscos-
ity at 3.58 Pa.s, 1, = 2.28 Pa.s, so that /1, = 0.64, close to the
value for the matrix (0.68). Thus, the fit to the viscometric data
is exact, but the fit of G’, G” is not so accurate. If we now
consider the elongational data from Fig. 7 for the 10% case,
then one sees that if the initial strain is set to zero then the
predicted o* is far too small—for example at e =3, with ¢, =
0, o0*~1.2, whereas Fig. 7 shows the measured o* to be ~ 76.
Hence, a pre-strain of 3.8 units is needed to reconcile model-
ling and experiment.

The results in Fig. 7 are then well described, but the origin
of g, is not clear; possibly the complex flow at exit from the

funnel (Fig. 2) is the cause because the fluid must resist the
total load on the filament immediately upon exiting the
nozzle.

Similarly, one can analyse the 5 and 20% volume fraction
data and the results are shown in Table 3.

Discussion
The matrix material used appears to be modelled quite well by

a single-mode Oldroyd-B equation, but improvements in the
correlation of the small-strain functions G’, G” could be made
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Fig. 6 Length-time response of 5.0
5% (m), 10% (A ) and 20% .
(diamond). The time 7 is set so that 4.5 E
at t=0, the length L =L, is set to 40 F
3.2 mm, which is one ball TE X A
diameter. All three curves 35 F - L] A
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by using more relaxation times. The large discrepancy of or-
ders of magnitude between experiment and an Oldroyd-B
model in elongational behaviour of the matrix fluid found by
Yang and Shaqfeh (2018) is not seen here—see Fig. 4.

If the procedure adopted for the suspensions is applied to
the single-mode matrix fluid, then Fig. 7 and Eq. 10 show
Wi=1.02. Then it follows that A=0.058 s, 1,=1.00 Pa.s
and 7,=1.16 Pa.s so that 7n,/n,=0.54 instead of 0.68.
Computing G” and G” for these values shows that the fit to
the data is little better with the new values. From the
elongational data in Fig. 7, one finds that a small initial strain
of ¢, of about 0.4 is sufficient to give agreement with exper-
iment: it is also true that if one uses the original parameters
(A=0.087 s) and allows an initial strain of ~0.4, then theory
and experiment in Fig. 4 agree even better.

Clearly, the single-mode Oldroyd-B model is not adequate
to describe the suspension responses. For the suspensions, the
idea of using the same relaxation time as the matrix does not
give a good description of G” and G” for these suspensions.
Nor is this idea applicable to the uniaxial elongational data for
the suspensions; the suspensions resist elongation much more
than one expects when assuming a single-mode model with a
low Wi of about 0.3.

Table 2 Average extension rates (5) for various volume fractions ()
using embedded steel balls

¢ (%) e(s™h
17.5
33

10 2.56

20 2.64
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For the suspensions, the problem remains that for low Wi,
there is no possibility of generating large stresses in extension
with a single-mode model. This is confirmed by the calcula-
tions of Jain et al. (2019). Using various single-mode models,
including an Oldroyd-B of the type used here, they found that
the relative elongational viscosity of a dilute suspension is at
most 1 + 3¢ at a Hencky strain of 2.3, and decreases for larger
strains. For a 5% suspension, this amounts to at most a 15%
increase. A 15% increase is also predicted from the steady-
state extensional analysis of Einarsson et al. (2018) for the 5%
suspensions. In contrast, the experiments in Fig. 7 show a 10-
fold increase.

If Wi~2, one can see large deformations and hence stress-
es even in shear (Vazquez-Quesada et al. 2019). To achieve
larger Wi values, either the effective elongation rate at the
particle level has to be increased or the effective relaxation
time has to be larger. Vazquez-Quesada et al. (2016) have
shown that in denser suspensions (volume fraction =0.4),
shear rates much larger than the macroscopic shear rate can
occur, but whether this is true for a suspension of volume
fraction 0.05 in elongation is not known.

We now consider a two-mode Oldroyd-B model for the
matrix fluid as a way of understanding the suspension behav-
iour from a microscopic (particle size) viewpoint. From
Table 2, the average clongation rate is 2.83 s ' and from
Fig. 7, the average Wi for the three sets of suspensions is about
1.04. Hence, the most active relaxation time in elongation
must be about 0.37 s. We shall assume that this is the value
of the larger relaxation time A, for the matrix. A second
shorter relaxation time \; of 0.09 s is assumed so that shear
thickening occurs as before at Wi~1 in shear. Satisfying the
requirements that the total viscosity 7,=ns+ 11+ 72 =

2.16 Pa.s and that N1/y =2 A +2 1, A = 0.116
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Fig. 7 Dimensionless stress ¢* vs. Hencky strain ¢ for matrix and )
suspensions 100
Pa.s® still needs a further condition—here, we assume &
G’(100)~4.6 Pa (Fig. la). This gives the values (7 is the 2
Newtonian component of the viscosity) 3
o
£
A1 =0.09s,m;, =0.414 Pa.s: A, = 0.37s,1, §
2 1
= 0.056Pa.s; 1, = 1.690 Pa.s. (11)
The fit of G” and G” is improved from the single-mode

model (Fig. 8a, b).

The elongational response is too low if Eq. 6 is used. By
assuming that the elongational strain ¢ is augmented from
what is observed by an initial strain €,, whose magnitude is
around 4, agreement between experiment and the model can
be found. With this matrix model, one can generate large
stresses via the A\, mode; one imagines at the microscopic
level that pairs of spheres separate from one another with a

small L, at around the mean elongation rate (¢).

We can estimate the shear-thickening properties of the 5%
suspension using the two-mode Oldroyd-B model for the matrix
by assuming that the formula of Einarsson et al. (2018), which
was developed for a single-mode Oldroyd-B model, also holds for
the two-mode model. Einarsson et al. (2018) found that the rela-
tive viscosity was expressed, to order chiz, as follows:

Table 3  Effective Weissenberg numbers (W1i), relaxation times (A\;, A;)
and pre-strains for matrix and suspensions modelled by a two-mode
Oldroyd-B model

P (%) Wi m(Pas) A (s) m@Pas) A(s) nsPas) &
1.52  0.691 0.087 - - 1.469 0
1.06 1.06 0.007 0.21 0.32 1.42 38

10 1.11  1.00 0.010 0.30 0.42 2.23 3.8

20 095 292 0.010 0.51 0.36 243 4.8

0.1 : :
0.1 1 10 100

Angular frequency (s'1)

Fig. 8 G’, G” for two-mode matrix model ( ) compared
with experiment (*)
n, = 142.5¢ + (0.62-0.033) @BWi’ (12)

Here (3=m,/n, for the single-mode model. For the
two-mode model we assume, from Eq. 11, that
3~0.026 so that the final term in Eq. 12, for the 5%
suspension, is 0.0008Wi’. For a shear rate of IOs_l,
where shear thickening is observed to begin (Dai et al.
2014), Wi=3.7 based on the long relaxation time
(0.37 s). Hence, the final term in Eq. 12 is around
0.011 in this case, which is much smaller than the value
seen experimentally. Similarly, the contribution to the
relative viscosity from the shorter relaxation time
(0.09 s) is also small, about 0.005 for a 5% suspension
at Wi=0.9. Hence, the analysis (12) does not seem to
explain observed shear thickening.

Regarding the initial strains, one can see that the
axial stress at £=0 must be non-zero due to the weight
of the embedded ball which must be supported. It is
thus probable that the complex flow at the inlet re-
sponds to the demands of the loaded, extending filament
leading to the initial strain.

@ Springer
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Conclusion

In conclusion, it is clear that extreme caution must be taken
when choosing a model for computation of viscoelastic sus-
pension properties. From the microscopic point of view, a
single-mode Oldroyd-B model is possibly adequate to de-
scribe the matrix rheology, but it is not useful to describe the
macroscopic or microscopic behaviour of suspensions, and
even a two-mode Oldroyd-B model gives only fair results
for G’and G”. These factors need to be taken into account
before engaging in massive computations if one is seeking
to reconcile experiment and computation because the large
local extensions seen by Hwang et al. (2004) depend on the
elongational model, and in turn they augment the axial stress.
In addition, as the work of Vazquez-Quesada et al. (2019)
has shown, the details of the computational procedures are
also important and multiple-sphere cell computations lead to
results quite different from those found in earlier investiga-
tions (for example Shaqfeh 2019; Tanner 2019; Vazquez-
Quesada et al. 2016; Yang et al. 2016) where a single sphere
to a cell was used. Hence, improvements in experiment,
modelling and computational strategy are still needed.
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