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Abstract
The two-layered electro-osmotic peristaltic flow of Phan-Thien-Tanner (PTT) fluid in a flexible cylindrical tube is analyzed. The
core (inner) layer fluid satisfies the constitutive equation of PTT fluid model and the peripheral (outer) layer is characterized as a
Newtonian fluid. For each region, the two-dimensional conservation equations for mass and momentum with electro-osmotic
body forces are transformed from the fixed frame to the moving frame of reference. These equations are further simplified by
invoking the constraints of longwavelength and low Reynolds number. Closed-form expressions for velocity and stream function
are derived and then employed to investigate the pressure variations, trapping, interface region, and reflux for a variety of the
involved parameters. The analysis reveals that the reflux and trapping can be restrained by appropriately tuning the electro-kinetic
slip parameter and Deborah number. Further, the pumping efficacy can also be improved by adjusting the rheological and the
electro-kinetic effects. These results may be helpful for improving the performance of the microfluidic peristaltic pump.
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Nomenclature
u, w Velocity components
τ Shear stress
λ Wavelength
μr Viscosity ratio between

two regions
μ1 Viscosity in the core region
μ2 Viscosity in the peripheral region
f Linear function
R1 Interface between the two fluids
R0 Boundary of the tube wall
q1 Flow rate over the

inner cross-section
q Flow rate over the

outer cross-section
ϵc Dielectric constant in the

inner region
ϵN Dielectric constant in the

outer region

De Deborah number
κ Relaxation time
U Velocity of the peristaltic wall
Re Reynolds number
k Height of the interface at z = 0
ϕoc Occlusion parameter
ψ∗ Stream function in the fixed frame
ψ Stream function in the wave frame
ρe Total charge density
r0 Characteristics radius of the tube
δ Ratio of the characteristics

radial length to the characteristics
axial length scale

TP Complete period

Subscripts:
c Core region
N Peripheral region

Introduction

Peristaltic mechanism is involved in manufacturing of several
devices of modern era. Few examples are: heart-lung machine,
dialysis machine, diabetic pumps, devices used in food
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manufacturing, paper industries and pharmaceutical productions.
Existing literature indicates that numerous theoretical approaches
have been carried out in the past to understand the physics of this
mechanism (Shapiro et al. 1969; Raju and Devanathan 1972;
Siddiqui and Schwarz 1994; Rao and Mishra 2004; Tripathi
2011; Ali and Hayat 2008; Hayat et al. 2009; Ali et al. 2010;
Hayat and Ali 2006; Hayat et al. 2017a, 2017b; Mekheimer
2004). The fundamental focus of such studies was to investigate
the various aspects of pumping, trapping, and reflux phenomena.
Apart from that, attempts have also been made to optimize the
wave shape of peristaltic pumping (Walker and Shelley 2010), to
include the solid mechanics of the tube wall in peristaltic wall
pumping of a viscous fluid (Takagi and Balmforth 2011a) and to
derive a model of peristaltic pumping of rigid objects suspended
in a fluid-filled elastic tube (Takagi and Balmforth 2011b).

In some physiological ducts such as the esophagus, ure-
ter, and small blood vessels, it is observed that the structure
of the wall pumping the fluid is coated with a fluid of dif-
ferent characteristics than the fluid being pumped out. In
order to properly recognize the influence of coated fluid on
transport properties, the single-fluid model should be ex-
tended to a two-fluid model by considering a different vis-
cosity fluid in the peripheral layer. Motivated by this fact,
Shukla et al. (1980) probed the effects of peripheral layer
viscosity on the peristaltic transport in both channel and
axisymmetric geometries for a presumed interface shape.
Brasseur et al. (1987) revised the analysis of Shukla et al.
(1980) for a case when interface is determined as a part of
the solution. Following Brasseur et al. (1987), Rao and
Usha (1995) examined the pumping of two immiscible
Newtonian fluids in circular tube geometry and emphasized
the trapping under co-pumping conditions and the
detachments of the trapped bolus from the centerline. The
simplified model of Shukla et al. (1980) was also extended
by Srivastava and Saxena (1995) by taking the Casson fluid
in the center region of a cylindrical tube. Misra and Pandey
(1999) followed the approach of Brasseur et al. (1987) and
presented the analytical results for peristaltic flow of
power-law fluid in a channel with a peripheral layer. The
effects of a porous medium in the model Brasseur et al.
(1987) were incorporated by Mishra and Rao (2005).
Vajravelu et al. (2006) utilized the Herschel-Bulkley con-
stitutive equation to characterize the fluid in the core region
and highlighted the influence of yield stress in peristaltic
transport of two immiscible fluids through a channel. The
analysis of Rao and Usha (1995) was extended by Vajravelu
et al. (2009) to the flow of Casson fluid in the core region
and a viscous fluid in the peripheral region in a tube with
permeable wall. Peristaltic flow of the Bigham fluid in
contact with the viscous fluid was analyzed by Narahari
and Sreenadh (2010) and Prabakaran et al. (2013). More
recently, Kavitha et al. (2017) investigated the peristaltic
flow of the Jeffery fluid in an inclined channel with a

peripheral layer and reported the variations in the shape of
the interface with respect to the Jeffery parameter. It is im-
portant to mention that all the studies mentioned above are
valid under the constraints of the long wavelength and low
Reynolds number. An important aspect highlighted in these
studies is that for prescribed wall movement, a larger vis-
cosity fluid in the peripheral layer dramatically increases
the pumped volume flow rate compared with the single-
fluid pump for a fixed pressure head. Thus, the presence
of a greater viscosity peripheral layer could lead to ampli-
fication in the peristaltic flow. This observation gives fur-
ther motivation to identify alternative means that could re-
sult in the augmentation of peristaltic flow. One such idea,
which is precisely the augmentation of the peristaltic flow
through electro-osmotic forces, was presented by
Chakrabor ty (2006) . The model invest igated by
Chakraborty (2006) was a singled-layered peristaltic flow
model. Several attempts have been made in the literature to
extend this model. These attempts are briefly reviewed be-
low. Jayavel et al. (2019) investigated the flow of the
Williamson fluid in a tapered channel driven by electro-
osmosis and peristalsis. Unsteady electro-osmotic peristal-
tic flow in the presence of transverse magnetic field has
been simulated by Tripathi et al. (2016). Goswami et al.
(2016) explored the simultaneous effects of a thin periph-
eral layer and electro-osmotic body force on the peristaltic
flow of power-law fluid through a circular tube. The analysis
of Goswami et al. (2016) is a direct extension of the work by
Usha and Rao (1995). Tripathi et al. (2018a) investigated the
electro-osmotic peristaltic transport of an aqueous nano-fluid in
a wavymicro-channel with Joule heating and buoyancy effects.
The simultaneous effects of buoyancy, peristaltic motion, and
electro-osmosis on an unsteady flow of a Newtonian fluid in a
micro-channel have been examined by Tripathi et al. (2017). The
flow of Jeffrey fluid in an asymmetric channel induced by
electro-osmosis and peristaltic activity has been investigated by
Tripathi et al. (2018b). Narla and Tripathi (2019) discussed the
two-layer electro-osmotic transport in a curved channel by con-
sidering the viscous fluid in both regions. Electro-osmotic peri-
staltic flow of a Jeffrey fluid model in a tapered channel induced
by asymmetric zeta potential at the walls of the channel has been
analyzed byNarla et al. (2018). Chaube et al. (2018) investigated
the inertia-free peristaltic flow of a power-law aqueous solution
in a mirco-channel under the influence of electro-kinetic body
force. Jayavel et al. (2019) examined the peristaltic transport of
pseudoplastic aqueous nano-liquids in amicro-channel under the
effects of an electric field. The pseudoplastic aqueous liquid has
been modeled by tangent hyperbolic equation. It is important to
mention that several theoretical studies are also available in the
literature on electro-osmotic flow of single and two-layered
fluids through a non-deformable channel or tube. In this regard,
Afonso et al. (2009) analytically examined the combined effects
of pressure and electro-kinetic force by applying the Debye-
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Huckel assumption. The electro-osmotic flow on nano-scale was
discussed by Zhao and Yang (2013), in which they theoretically
analyzed electro-kinetic influences on a non-Newtonian power-
law fluid through a cylindrical micro-channel. Zhao et al. (2013)
examined key properties of a non-steady flow of Oldroyd-B
fluid in a capillary under the effect of electro-kinetic force.
Afonso et al. (2013) analytically tackled the two-fluid electro-
kinetic flow of viscoelastic liquid in a cylindrical tube. Ferras
et al. (2014) probed electro-kinetic effects in the annular flow of
the viscoelastic fluid and provided both numerical and analytical
illustration of the solution of the problem.

Motivated by above attempts, our objective is to analyze the
electro-osmotic peristaltic flow of a two-fluid system in which
the outer Newtonian core surrounds a non-Newtonian core
characterized by the Phan-Thien-Tanner (PTT) model. The
PTT model exhibits three non-Newtonian effects, namely,
shear-thinning, viscoelastic, and time relaxation effects and
hence much advantageous than the power-law model. It is also
an established fact that bio-fluid such as blood, chyme, and
spermatic fluid exhibit both shear-thinning and viscoelastic
properties and hence can better be characterized by PTT equa-
tion instead of power-law equation. Similarly, the use of a PTT
model shall also make the applicability of the present analysis
to the transport of polymeric fluid in the industry by means of
electro-osmotic peristaltic pumps. The usage of the PTT model
in modeling of several flows can be seen through the refs
(Oliveira and Pinho 1999; Hayat et al. 2010; Ferras et al.
2012). The remaining part of the paper is organized as follows.

“Constitutive equations” section describes the constitutive
equation of PTT fluid model. The mathematical formulation
and solution of the flow problem are described in the
“Problem formulation and its solution” section. The graphical
interpretation of the computational results is provided in the
“Results and discussion” section. The present study is conclud-
ed in the “Deductions” section.

Constitutive equations

The constitutive equations for the Phan-Thien-Tanner (PTT)
fluid model are (Oliveira and Pinho 1999; Hayat et al. 2010;
Ferras et al. 2012):

T ¼ −pIþ τ
f tr τð Þð Þτþ κτ∇ ¼ 2μD

τ∇ ¼ ∂τ
∂t

þ u:∇ð Þτ−τ ∇uð ÞT− ∇uð Þτ

8><
>: ð1Þ

where p is the pressure, κ is the relaxation time, τ is an extra-
stress tensor, D is the deformation rate tensor, tr is the trace, I is
the identity tensor, τ∇ is the Oldroyd’s upper-convected deriva-
tive, T is the Cauchy stress tensor, and μ is the dynamic viscosity.
The function f is defined as:

Linearized PTT LPTTð Þ : f tr τð Þð Þτ ¼ 1þ εκ

μ
tr τð Þð Þ; ð2Þ

Exponential PTT EPTTð Þ : f tr τð Þð Þτ ¼ exp
εκ
μ

tr τð Þð Þ
� �

:

ð3Þ
Problem formulation and its solution

The physical sketch of the problem under consideration is
shown in Fig. 1. It describes the flow of a bio-fluid due to
combined action of the electro-osmotic force and the peristal-
tic movement of the tube wall. Within the tube, two different
regions can be identified; the region near to the wall of the
tube is the peripheral (outer) region and the central core is the
core (inner) region. The charged surface of the tube is neutral-
ized through equal and opposite ions in the polar liquid inside
the tube. The charged surface attracts the counter-ions in the
polar liquid to form a thin layer adjacent to it. Thus, this layer

Fig. 1 Geometry of the flow problem
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of immobile counter-ions is designated as a stern layer. A
thicker layer of moving counter-ions develops adjacent to
the stern layer. The combination of the aforementioned two
layers is known as the electric double layer (EDL). Now, when
a DC potential difference is applied along the axis at the inlet
and outlet, an electric field is produced that exerts a body force
on the opposite ions of the EDL, and as a result of which, EDL
moves along the channel dragging the neutral core. Next, our
aim is to compute the flow fluid generated by both electro-
kinetic body force and peristaltic movement of the wall.

The basic equations necessary to formulate the flow prob-
lem are:

Momentum equation : ρ
Du
Dt

� �
¼ ∇:Tþ Fe ; ð4Þ

Continuity equation :
∂ρ
∂t

� �
þ ∇: ρuð Þ ¼ 0 ; ð5Þ

where ρ is the density, Fe is the electro-kinetic body force, and
D/Dt is the material derivative. The inner core region (0 ≤ r ≤
R1(z, t)) is filled with a fluid characterized by the PTT model
for which the stress tensor is given by Eqs. (1)–(3).

In the peripheral region (R1(z, t) ≤ r ≤ R0(z, t)), the stress
tensor is defined as:

T ¼ −pIþ τ;

where

τ ¼ 2μ2D: ð6Þ

In the above relation, R1 is the function defining the interface
between inner and outer regions, μ1 and μ2 are the viscosities of
the fluids in the inner and outer regions, respectively, and R0 is
the radius of the conduit. The velocity field for axisymmetric
incompressible flow under investigation is defined as:

u ¼ u r; z; tð Þ; 0;w r; z; tð Þ½ �: ð7Þ

Invoking Eq. (7) into Eqs. (4) and (5), one gets

1

r
∂ ruð Þ
∂r

þ ∂w
∂z

¼ 0; ð8Þ

ρ
∂u
∂t

þ u
∂u
∂r

þ w
∂u
∂z

� �
¼ −

∂p
∂r

þ 1

r
∂ rτ rrð Þ
∂r

þ ∂τ rz
∂z

−
τθθ
r

� �
; ð9Þ

ρ
∂w
∂t

þ u
∂w
∂r

þ w
∂w
∂z

� �
¼ −

∂p
∂z

þ 1

r
∂ rτ rzð Þ
∂r

þ ∂τ zz
∂z

� �
þ Fe: ð10Þ

When the system is connected to the external electric field
Ez, the fluid experiences a body force given by Hunter 1981:

Fe ¼ ρeEz; ð11Þ
where ρe stands for the total ionic concentration and is the sum
of ionic charge concentrat ions for core(ρec) and

peripheral(ρeN)regions, respectively. In a frame (r, z) which
is fixed relative to the peristaltic wave, the flow phenomenon
is unsteady and wall deformation is a function of time.
However, the flow become steady and wall appears stationary
in a frame moving with wave speed U. This frame designated
as r ; zð Þ is known as the wave frame. The conversion between
both frames is achieved through the transformations:

r→r; p→p; u→u; z→z−Ut;w→w−U :

Using the above transformations, Eqs. (8)–(10) and stress
components for the both regions take the following form:

1

r

∂ r u
� �
∂r

þ ∂w

∂z
¼ 0; ð12Þ

ρ u
∂w

∂r
þ w

∂w

∂z

 !
¼ −

∂p

∂z
þ 1

r

∂ rτ rr
� �
∂r

þ ∂τ zz
∂z

−
τθθ

r

2
4

3
5; ð13Þ

ρ u
∂w

∂r
þ w

∂w

∂z

 !
¼ −

∂p

∂z
þ 1

r

∂ rτ rr
� �
∂r

þ ∂τ rz
∂z

2
4

3
5þ Fe: ð14Þ

Stress equations for the core region:

f tr τ
� �� �

τ rr þ κ u
∂

∂r
þ w

∂

∂z

 !
τ rr−2

∂u

∂r
τ rr þ ∂u

∂z
τ rz

 !( )
¼ 2μ1

∂u

∂r
;

ð15Þ

f tr τ
� �� �

τ rθ þ κ u
∂

∂r
þ w

∂

∂z

 !
τ rθ−

u

r
τ rθ−

∂u

∂r
τ rθ−

∂u

∂z
τ zθ

( )
¼ 0;

ð16Þ

f tr τð Þð Þτ rz þ κ u
∂

∂r
þ w

∂

∂z

 !
τ rz−

∂w

∂r
τ rr−

∂w

∂z
þ ∂u

∂r

 !
τ rz−

∂u

∂z
τ zz

( )

¼ μ1
∂u

∂z
þ ∂w

∂r

 !
;

ð17Þ

f tr τ
� �� �

τθθ þ κ u
∂

∂r
þ w

∂

∂z

 !
τθθ−2

u

r
τθθ

( )
¼ 2μ1

u

r
; ð18Þ

f tr τ
� �� �

τθz þ κ u
∂

∂r
þ w

∂

∂z

 !
τθz−

u

r
τθz−

∂w

∂r
τθr−

∂w

∂z
τθz

( )
¼ 0;

ð19Þ

f tr τ
� �� �

τ zz þ κ u
∂

∂r
þ w

∂

∂z

 !
τ zz−2

∂w

∂r
τ rz−2

∂w

∂z
τ zz

( )
¼ 2μ1

∂w

∂z
:

ð20Þ
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Stress equations for the peripheral region:

τ rr ¼ 2μ2
∂u

∂r
; τ rz ¼ τ zr ¼ μ2

∂u

∂z
þ ∂w

∂r

 !
; τθθ ¼ μ2

u

r
; τ zz ¼ 2μ2

∂w

∂z
; τ rθ ¼ τθr ¼ τθz ¼ τ zθ ¼ 0: ð21Þ

Employing the dimensionless variables Goswami et al.
(2016):

r* ¼ r
r0

; z* ¼ δ z
r0

; u* ¼ u
δ Uð Þ ;w

* ¼ w
U

; t* ¼ δ U
r0

t;

p* ¼ δ r0
μ1U

p;Re ¼ ρcUr0
μ1

; τ* ¼ r0
μ1U

τ ; Fe
* ¼ −Fer20

εNξEz
;De ¼ κU

r0
:

9>>>=
>>>;

ð22Þ

Equations (12)–(21)after dropping the bars reduce to:
Core region:

1

r
∂ rucð Þ
∂r

þ ∂wc

∂z
¼ 0; ð23Þ

δ2 δRe uc
∂uc
∂r

þ wc
∂uc
∂z

� �� �

¼ −
∂p
∂r

þ δ
1

r
∂ r τ rrð Þ

∂r
þ δ∂τ rz

∂z

� �
−
τθθ
r

� �
; ð24Þ

δ2 δRe uc
∂wc

∂r
þ wc

∂wc

∂z

� �� �

¼ −
∂p
∂z

þ 1

r
∂ r τ rzð Þ

∂r

� �� �
þ ϵNμrUE

ϵc
ρec; ð25Þ

f tr τð Þð Þμ1τ rr

þ De
δuc

∂
∂r

þ δwc
∂
∂z

� �
μ1τ rr−

2 δ
∂
∂r

ucð Þμ1τ rr þ δ2
∂
∂z

ucð Þμ1τ rz

� �
8>><
>>:

9>>=
>>;

¼ 2μ1δ
∂
∂r

ucð Þ; ð26Þ

f tr τð Þð Þμ1τ rz

þ De
δuc

∂
∂r

þ δwc
∂
∂z

� �
μ1τ rz−μ1

∂wc

∂r
τ rr

− δ
∂wc

∂z
þ δ

∂uc
∂r

� �
μ1τ rz−δμ1

∂uc
∂z

τ zz

8>><
>>:

9>>=
>>;

¼ μ1 δ2
∂uc
∂z

þ ∂wc

∂r

� �
; ð27Þ

f tr τð Þð Þμ1τ rθ þ De
δuc

∂
∂r

þ δwc
∂
∂z

� �
μ1τ rθ−δ ucð Þμ1τ rθ−

δuc
∂uc
∂r

τ rθ−δ3uc
∂uc
∂z

μ1τ zθ

8>><
>>:

9>>=
>>; ¼ 0;

ð28Þ
f tr τð Þð Þμ1τθθ

þ De δuc
∂
∂r

þ δwc
∂
∂z

� �
μ1τθθ−2δ ucUð Þμ1τθθ

� 	

¼ 2μ1δuc; ð29Þ
f tr τð Þð Þμ1τ zz

þ De
δuc

∂
∂r

þ δwc
∂
∂z

� �
μ1τ zz−2μ1τ rz

∂wc

∂r

� �

−2μ1δτ zz
∂wc

∂z

� �
8>><
>>:

9>>=
>>;

¼ μ1δ
∂wc

∂z
: ð30Þ

Linearized PTT : f tr τð Þð Þ ¼ 1þ εDe τ zzð Þ;
Exponential PTT : f tr τð Þð Þ ¼ exp εDe τ zzð Þð Þ:

�
ð31Þ

Peripheral region:

1

r
∂ ruNð Þ
∂r

þ ∂wN

∂z
¼ 0; ð32Þ

δ2 δRe uN
∂uN
∂r

þ wN
∂uN
∂z

� �� �

¼ −
∂p
∂r

þ δ
1

r
∂ r τ rrð Þ

∂r
þ δ∂τ rz

∂z

� �
−
τθθ
r

� �
; ð33Þ

δ2 δRe uN
∂wN

∂r
þ wN

∂wN

∂z

� �� �

¼ −
∂p
∂z

þ 1

r
∂ r τ rzð Þ

∂r

� �� �
þ ϵNμrUE

ϵc
ρec; ð34Þ

τ rr ¼ 2μrδ
∂uN
∂r

; τ rz ¼ τ zr ¼ μr δ2
∂uN
∂z

þ ∂wN

∂r

� �
; τθθ

¼ μrδ
uN
r
; τ zz ¼ 2μrδ

∂wN

∂z
; τ rθ ¼ τθr ¼ τθz ¼ τ zθ ¼ 0:

ð35Þ

The subscripts c and N are used to differentiate between the
core and peripheral regions. The parameter µr = µ2/µ1 is the
viscosity ratio between the two regions. The parameter De is
the Deborah number and is a measure of the elasticity in the
fluid. On the other hand, the parameter ϵ is the measure of the
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extensional property of the fluid. It is evident that variations of
De have stronger impact than similar variations of ϵ because
of the manner in which both parameters appear in the analysis.
The combined effects of ϵ and De can be felt via a single
parameter b = ε1/2 De which gives a measure of both elastic
and extensional properties of the fluid. At this stage, we make
use of long wavelength (δ ≪ 1) and low Reynolds number
(Re ≪ 1) constraints to get the following equations for each
region.

Core region:

0 ¼ −
∂p
∂z

þ 1

r
∂ r τ rzð Þ

∂r

� �� �
þ μrUE

ϵr
ρec;

0 ¼ −
∂p
∂r

;

8><
>: ð36Þ

Linearized PTT :

1þ εDeτ zzð Þτ rz ¼ ∂wc

∂r

� �
;

1þ εDeτ zzð Þτ zz ¼ 2 De
∂wc

∂r

� �
τ rz;

τ rr ¼ τθθ ¼ τ zθ ¼ τ rθ ¼ 0;

8>>>><
>>>>:

ð37Þ

Exponential PTT :

exp εDeτ zzð Þτ rz ¼ ∂wc

∂r

� �
;

exp εDeτ zzð Þτ zz ¼ 2De
∂wc

∂r

� �
τ rz;

τ rr ¼ τθθ ¼ τ zθ ¼ τ rθ ¼ 0;

8>>>><
>>>>:

ð38Þ
where UE = − ϵNξEz/µ2 is the electro-kinetic slip velocity and
ϵc and ϵN stand for dielectric constants corresponding to the
inner and outer regions, respectively.

Peripheral region:

0 ¼ −
∂p
∂z

þ 1

r
∂ r τ rzð Þ

∂r

� �� �
þ UE

μr

ϵr
ρec;

0 ¼ −
∂p
∂r

;

τ rz ¼ μr
∂wN

∂r

� �
:

8>>>>>><
>>>>>>:

ð39Þ

From the set of Eqs. (38) and (39), a simple manipulation
gives:

Linearized PTT : 1þ 2b2τ2rz

 �

τ rz ¼ ∂wc

∂r
;

Exponential PTT : exp 2b2τ2rz

 �

τ rz ¼ ∂wc

∂r
:

8><
>: ð40Þ

The appropriate dimensionless boundary conditions for the
model under consideration are:

∂wc

∂r
¼ 0; atr ¼ 0; centerline symmetryð Þ ð41Þ

wc ¼ wN and τ rzð ÞN ¼ τ rzð Þc at r
¼ R1; continuity of shear stress and velocity of the fluid at the interfaceð Þ

ð42Þ
wN ¼ −1atr ¼ R0; no−slip conditionð Þ ð43Þ

In Eqs. (36) and (39), we drop the electro-osmotic body
force term by incorporating the well-known artifice from the
electro-kinetic literature. Through this artifice, the plug velocity
of electro-osmotic flow can be equivalently achieved either by
taking into account the body force term in the governing
(momentum) equation or observing the effects of this term in
the boundary in the form of slip condition based on electro-
osmotic slip velocity. In our problem, we shall drop the
electro-osmotic body force term from the momentum equation
with an appropriate modification of no-slip boundary condition
at the tube wall. This procedure is already used by Goswami
et al. (2016). In this way, our problem is now governed by the
following equations and boundary conditions.

Core region:

0 ¼ −
∂p
∂z

þ 1

r
∂ r τ rzð Þ

∂r

� �� �
;

0 ¼ −
∂p
∂r

8><
>: ð44Þ

Linearized PTT : 1þ 2b2τ2rz

 �

τ rz ¼ ∂wc

∂r
;

Exponential PTT : exp 2b2τ2rz

 �

τ rz ¼ ∂wc

∂r
:

8><
>: ð45Þ

∂wc

∂r
¼ 0; atr ¼ 0; ð46Þ

Peripheral region:

0 ¼ −
∂p
∂z

þ 1

r
∂ r τ rzð Þ

∂r

� �� �
;

0 ¼ −
∂p
∂r

;

τ rz ¼ μr
∂wN

∂r

� �
:

8>>>>>><
>>>>>>:

ð47Þ

∂wN

∂r
¼ 0; atr ¼ 0;

wN ¼ UE−1; atr ¼ R0:
ð48Þ

In order to adopt stream function formulation, it is appro-
priate to define:

u ¼ −
∂ψ*

∂z
;w ¼ −

1

r
∂ψ*

∂r
: ð49Þ

The stream functions in fixed and moving frames are relat-

ed to each other by the relation ψ ¼ ψ*− r2
2 . Employing the

definition of stream function, equations and boundary condi-
tion governing the flow read:
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Linearized PTT :
∂
∂r

1

r
∂ψ
∂r

� �
¼ r

2

∂p
∂z

þ b2

4

∂p
∂z

� �3

r3; 0≤r≤R1

ð50Þ

Exponential PTT :
∂
∂r

1

r
∂ψ
∂r

� �

¼ exp
b2

2

∂p
∂z

� �2

r2
 !

r
2

∂p
∂r

; 0≤r≤R1

ð51Þ

∂p
∂z

¼ 1

r
∂
∂r

rμr
∂
∂r

1

r
∂ψ
∂r

� �� �� �
;R1≤r≤R0 ð52Þ

ψ ¼ 0;
∂
∂r

1

r
∂ψ
∂r

� �
¼ 0atr ¼ 0; ð53Þ

ψ ¼ q=2; ∂ψ=∂r ¼ UE−1ð ÞR0atr ¼ R0; ð54Þ
ψ ¼ q1=2; atr ¼ R1: ð55Þ

In the above equations, q and q1 stand for volume flow rate
over the outer and the inner cross-sections, respectively.
Solving Eqs. (50)–(52) with boundary conditions (Eqs. (53)
and (54)), the stream function (ψ) for each region appears as:

For linearized PTT model:

ψ ¼
r2

2
UE−1ð Þ þ b2

48

∂p
∂z

� �3

r4−3R1
4

� þ 1

8

∂p
∂z

r2−2R1
2

� �þ 1

4μr

∂p
∂z

R1
2−R0

2
� �( )

; 0≤r < R1

r2

2
UE−1ð Þ þ q

2
− UE−1ð Þ R0

2

2

� �
þ 1

4μr

∂p
∂z

r2−R0
2


 �2
;R1≤r≤R0

8>>><
>>>:

ð56Þ

For exponential PTT model:

ψ ¼
1

2b4 ∂p
∂z

� �2 ∂p∂z exp b2
∂p
∂z

� �2 r2

2

 !
−1

" #
þ r2

2

UE−1ð Þ þ 1

4μr

∂p
∂z

R1
2−R0

2

 �

−
1

2b2 ∂p
∂z

� �2 ∂p∂z exp b2
∂p
∂z

� �2 R1
2

2

 !
0
BBBB@

1
CCCCA; 0≤r < R1

r2

2
UE−1ð Þ þ q

2
− UE−1ð Þ R0

2

2

� �
þ 1

4μr

∂p
∂z

r2−R0
2


 �2
;R1≤r≤R0

8>>>>>>>><
>>>>>>>>:

ð57Þ

From the above expressions and Eq. (49), the axial velocity
corresponding to the inner and outer regions for both linear-
ized and exponential PTT fluid models becomes:

For linearized PTT model:

w r; zð Þ ¼
UE−1ð Þ þ b2

16

∂p
∂z

� �3

r4−R1
4

� þ 1

4

∂p
∂z

r2−R1
2

� �þ 1

4μr

∂p
∂z

R1
2−R0

2
� �

; 0≤r≤R1

UE−1ð Þ þ 1

4μr

∂p
∂z

r2−R0
2


 �
;R1≤r≤R0

8>><
>>: ð58Þ

For exponential PTT model:

w r; zð Þ ¼

1

2b2 ∂p
∂z

� �2 ∂p∂z exp b2
∂p
∂z

� �2 r2

2

 !
−exp b2

∂p
∂z

� �2 R1
2

2

 !" #

þ UE−1ð Þ þ 1

4μr

∂p
∂z

R1
2−R0

2
� �

; 0≤r≤R1

UE−1ð Þ þ 1

4μr

∂p
∂z

r2−R0
2


 �
;R1≤r≤R0

8>>>>>>>><
>>>>>>>>:

ð59Þ

The function characterizing wall deformation in dimen-
sionless is:

Ro zð Þ ¼ 1þ ϕocsin 2πzð Þ;
where ϕoc is the occlusion parameter.

The solution of the considered problem is still incomplete
because of two unknowns R1 and ∂p/∂z appearing in the Eqs.
(56) and (57). In order to obtain these unknowns, a semi-
analytical approach (Goswami et al. 2016) is used. Invoking
the boundary condition (Eq. (55)) yields:
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q1
2

¼ R1
2

2
UE−1ð Þ þ q

2
− UE−1ð Þ R0

2

2

� �
þ 1

16μr

∂p
∂z

R1
2−R0

2

 �2

: ð60Þ

In order to eliminate q1, we set R0 = 1 and R1 = k at z = 0 in
Eq. (60), to get

q1
2

¼ k2

2
UE−1ð Þ þ q

2
− UE−1ð Þ 1

2

� �
þ 1

16μr
P0 k2−1

 �2

: ð61Þ

Eliminating q1 from Eqs. (60) and (61), we get

k2

2
UE−1ð Þ þ q

2
− UE−1ð Þ 1

2

� �
þ 1

16μr
P0 k2−1

 �2

¼ R1
2

2
UE−1ð Þ þ q

2
− UE−1ð Þ R0

2

2

� �
þ 1

16μr

∂p
∂z

R1
2−R0

2

 �2

ð62Þ

where the term P0 is define as P0 = (∂p/∂z)|z = 0. In this way, q1
is replaced by another unknown P0. Now, there are three un-
knowns to be determined i.e., P0, R1 , and ∂p/∂z. Thus, there
must be three equations relating these unknowns for a unique
solution. One of the three required equations is available in
Eq. (62), while the other two equations can be obtained by
equating the stream functions given in Eqs. (56) and (57) at
the interface. This gives:

Linearized PTT :
b2

48

∂p
∂z

� �3

R1
6 þ 1

16

∂p
∂z

R1
4

þ 1

16μr

∂p
∂z

R0
4−R1

4

 �þ q

2
− UE−1ð Þ R0

2

2
¼ 0;

ð63Þ

Exponential PTT :
1

2b2 ∂p=∂zð Þ2 ∂p=∂z exp b2 ∂p=∂zð Þ2 R1
2

2

R1
2

2
−1=b2 ∂p=∂zð Þ2

� �� �
þ 1=b2 ∂p=∂zð Þ2

� �

þ q
2
− UE−1ð Þ R0

2

2
þ 1

16μr

∂p
∂z

R0
4−R1

4

 � ¼ 0;

; ð64Þ

Setting R0 = 1and R1 = katz = 0, the above expressions be-
come:

Linearized PTT :
b2

48
P0

3k6 þ 1

16
P0k4 þ 1

16μr
P0 1−k4

 �

þ q
2
− UE−1ð Þ 1

2
¼ 0:

ð65Þ

Exponential PTT :
1

b2 P0ð Þ2 P0 exp
k2

2

k2

2
−1=b2 P0ð Þ2

� �� �
þ 1=b2 P0ð Þ2

� �

þ q
2
− UE−1ð Þ 1

2
þ 1

16μr
P0 1−k4
� � ¼ 0;

ð66Þ

Eqs. (62)–(66) are solved numerically using the bisection
technique at each axial station z to obtain the values of P0, R1,

and ∂p/∂z for both linearized and exponential PTT fluid
models. Mathematica 8.1 has been used for producing the
numerical results. It is mentioned that Eqs. (62), (63), and
(65) for LPTT model can be reduced to the following polyno-
mial equation in R1:

A14R14
1 þ A12R12

1 þ A10R10
1 þ A8R8

1 þ A6R6
1 þ A4R4

1 þ A2R2
1 þ A0 ¼ 0:

ð67Þ

The coefficients of the above polynomial are defined in the
Appendix. A further simplification of the interface polynomial
for limiting case b = 0 yields:

k2 μr−1ð Þ þ 1

 �

UE−1ð Þ μr−1ð Þ� 
R1

6 þ
k2 μr−1ð Þ þ 1

 � k2 þ R0

2−1

 �

UE−1ð Þ μr−1ð Þ
þ q− UE−1ð ÞR0

2

 �� 	

þ k2−1

 �2

UE−1ð Þ μr−1ð Þ−q
� �

2
64

3
75R1

4

−R0
2 k2 μr−1ð Þ þ 1

 �

2q− UE−1ð ÞR0
2

� 
R1

2 þ k2 μr−1ð Þ þ 1

 �

k2−1

 �

UE−1ð Þ þ q
� þ k2−1


 �2
UE−1ð Þ−q½ � ¼ 0

In the absence of the electro-kinetic slip velocity UE,
the above polynomial is further simplified to the inter-
face polynomial equation reported by Rao and Usha

(1995)). In contrast, it is tedious to setup a polynomial
equation of interface for EPTT model.
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Results and discussion

Analysis of interface region

Parameter b is the measure of the non-Newtonian shear-
thinning behavior of the core region fluid. Greater values
of this parameter correspond to the enhanced shear-
thinning effects of the inner (core) region fluid. The pa-
rameter μr is the ratio of the viscosity of the outer
(peripheral) region and the core region. Three cases arise
depending on the values of μr. The situation when the
viscosity of the core (inner) region is greater than the
viscosity of the outer (peripheral) region is represented
by taking μr < 1. When both regions have equal viscosi-
ties, then μr = 1. Similarly, μr > 1 corresponds to the situ-
ation when the viscosity of the outer (peripheral) region is
greater than the viscosity of the inner (core) region. The
remaining important parameter in the problem is denoted
by UE and is known as the electro-kinetic slip velocity.
Naturally, each of the abovementioned parameters affect
the interface shape, pumping features, reflux, and trap-
ping. In order to quantify such effects, Fig. 2 a–c are
prepared. Figure 2 shows that an increase in the viscosity
ratio leads to an increase in the vertical force exerted on
the fluid present in a peripheral layer region in the crest
region. Further, the peripheral fluid in the trough region
experiences an increased vertically downward force with

increasing the viscosity ratio. In such an arrangement, the
interface curves for μr < 1 and μr = 1 lies in between the
interface curves for μr < 1 and μr > 1. In contrast, the pe-
ripheral fluid in the upper half of the wave (crest) region
experiences an increased vertically downward force with
increasing UE. While the peripheral fluid in the lower half
of the wave (trough) region is acted upon an increased
upward force with increasing the electro-kinetic slip ve-
locity. A similar variation in the interface is noted with
increasing parameter b as observed with raising parameter
μr. However, the peripheral fluid in the upper half of the
wave (crest) region is less sensitive to an increase in pa-
rameter b in comparison with the peripheral fluid in the
lower half of the wave (trough) region for which the ef-
fects of b are much pronounced. As a result, the interface
curves for b = 4 shows larger deviation from the corre-
sponding interface curves for b = 0.1. Such a deviation is
attributed to enhance shear thinning in viscosity for larger
values of parameter b and the greater deformation gradi-
ents in the trough region.

A comparison between the predictions of the linear PTT
model and the exponential PTTmodel is presented in Fig. 3a–
c. It is observed that the results of both models are in excellent
correlation for smaller values of parameter b. However, the
deviation between the results of both models amplifies as pa-
rameter b increases. Therefore, we have presented the subse-
quent results only for EPTT model.

Fig. 2 The behavior of the
interface region with respect to µr,
UE and b
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Pressure expression and graphical discussion

From Eq. (62), the expression of pressure rise ∂p/∂z in the tube
is given by:

∂p
∂z

¼ 16μr

R1
2−R0

2

 �2 1

2
UE−1ð Þ k2−R1

2 þ R0
2−1


 �þ 1

16μr
P0 k2−1

 �2� 	

:

ð68Þ
The change in the pressure gradient across one wavelength

is achieved by integrating Eq. (68). Thus on integrating Eq.
(68), we get:

Δp

¼ 16μr ∫
λ

0

1

2
UE−1ð Þ k2−R1

2 þ R0
2


 �þ 1

16μr
P0 k2−1

 �2� �

= R1
2−R0

2

 �2� 	

dz:

ð69Þ

The volume flux in moving and fixed frame of references is
linked through with the following expression:

QS ¼ 2 ∫
0

R0

wþ 1ð Þr dr ¼ qþ R2
0:

The above expression after time averaging over a complete

period gives Q ¼ 1
TP
QS dt ¼ qþ 1þ ϕ2

2

� �
,

The solution of Eq. (69) is achieved through numerical
integration and the profiles of ΔP0(=ΔP|Q = 0) versus ϕoc

are demonstrated in Fig. (4). Special attention is given to
seek the influence of the involved parameters such as, UE,

μr, and the rheological parameter b on the pressure rise at
zero volume flow rate. It is observed that both electro-

Fig. 3(a–c) Comparison between
the results of linear and
exponential PTT models

Fig. 4 The variation in pumping characteristic with respect toUE,μr and b
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kinetic slip velocity (UE) and viscosity ratio (μr) amplify
the pressure rise at zero volume flow rate. The amplifica-
tion with raising UE is maximum at lower occlusion values
and least when occlusion parameter approaches unity. On
the other hand, increase in ΔP0 with increasing μr is ob-
served over the complete range of occlusion parameter.
Contrary to effects of UE and μr, an increase in the fluid
rheological parameter b causes a decrement in the pressure
required to produce zero volume flow rate. Again, this
decrease is a consequence of enhanced shear thinning in
the viscosity of the fluid in the inner (core) region for
higher values of b.

Trapping phenomena

Trapping corresponds to the formation of eddying regions in
the flow domain. Such regions enclose a volume of fluid
which is usually known as bolus in the literature. The bolus
is transported along the tube via the peristaltic activity with the
speed of wave. Its formation is linked with the bulk momen-
tum of the flow. The zones of low bulk momentum are more
vulnerable to the bolus formation in comparison with the re-
gion where bulk movement is high. Figures 5, 6, 7, and 8
indicate the influence of electro-kinetic slip velocity on the
trapping phenomena in both the core and peripheral (outer)

Fig. 5 The streamline behavior in
the inner region for k = 0.4, b =
0.1, μr = 10, ϕoc = 0.75,Q = 0 and
the outer region for k = 0.8, b =
0.1, μr = 1, ϕoc = 0.75, Q = 4. The
dashed line curve corresponds to
the interface
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regions. It is evident that the area of trapping bolus reduces
and the bolus eventually disappears with raising the
electro-kinetic slip velocity. In contrast, raising parameter
b results in an increase in the area and circulation of the
trapped bolus. Similar results are obtained with increasing
the viscosity ratio μr. Another important aspect is to find
the trapping limit on the normalized volume flow rate for a
given set of the involved parameters. To do so, we have
plotted the normalized volume flow rate (Q/QΔp = 0) versus
the ϕoc for different values of b and UE. In fact, the values
of stream function lies between 0 and Q where ψ = 0 is the

center streamline while ψ = Q represents the boundary
wall. In order to obtain the pair (ϕoc,Q/QΔp = 0), the first
step is to locate a sub-region in the flow domain {0 ≤ ϕoc ≤
1 : 0 ≤Q/QΔp = 0 ≤ 1} where ψ changes its sign from nega-
tive to positive. In the next step, a suitable iterative tech-
nique is deployed to obtain the exact value of the pair (ϕoc,
Q/QΔp = 0) at which the transition takes place. The region
above a specific curve in each figure is the region of trap-
ping. It is noted that the trapping region expands with rais-
ing the values of the parameter b while it narrows down
with enhancing the electro-kinetic slip velocity.

Fig. 7 The trapping phenomenon
for viscosity ratio when k = 0.4,
b = 0.1, ϕoc = 0.75, Q = 0.1, UE =
0

Fig. 6 Effect of b on trapping for
k = 0.4, μr = 0.1, ϕoc = 0.6, Q =
0.6, UE = 0
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Reflux interpretation

The phenomenon which estimates the net flow of fluid in a
complete wave cycle is known as reflux. This is due to an
unfavorable pressure rise across the tube or backward motion
of the fluid elements within the tube. In both regions, the
reflux phenomena is strongly dependent on the emerging pa-
rameters, for example, viscosity ratio, electro-kinetic slip ve-
locity, and b. In the earlier analysis, Brasseur et al. (1987))
estimated the amount of reflux through the quantity (Q −Qψ)/
Q during a wave cycle, whereQψ is given by the relation (Rao
and Mishra 2004)

Qψ ¼ 2ψþ ∫
1

0
r2dz: ð70Þ

Equation (70) arises as a consequence of transforming the

expression Qψ* ¼ 2 ∫
r ψ*;zð Þ
0 rwdr from the fixed frame to the

wave frame and then averaging over one period of wave. The
quantity Qψ* is the average volumetric flow rate between the

axis of the tube and a streamline ψ∗ = constant in the fixed

frame. The quantity (Q −Qψ)/Q is such that 1 < (Q −Qψ)/Q <
0 because 0 <Qψ/Q < 1. However, it may happen that Qψ/Q
takes values greater than unity from some values ofψ∗ thereby
indicating that the flow domain has some kind of backward
motion or reflux. An analytical expression for reflux condition
can be obtained by treating the integral appearing in Eq. (70)
analytically. However, the indicated integration is difficult to
perform analytically due to the complicated nature of stream
function given by Eq. (57). In the limiting case when b = 0, it
turns out that for reflux to occur one must have (Rao and Usha
1995)

− ∫
1

0

8μ qþ R0
2


 �
dz

R0
4 þ μ−1ð ÞR1

4 ≥0:

For the case when b ≠ 0, numerical quadrature is used to
calculate the values ofQψ* ¼ Qψ=Q


 �
for given values of ψ∗.

The curves Qψ* verses ψ∗ are plotted in Fig. 9. Fig. 9 depicts

that reflux is enhanced by raising the parameter b while it
reduces with increase in the electro-kinetic slip velocity.

Fig. 8 Trapping limit against b and UE· Fig. 9 (a–b) The reflux phenomenon against different combinations of
viscosity ratio, electro-kinetic slip velocity, and parameter b
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Deductions

In the present article, the electro-osmotic peristaltic flow of
PTT fluid model in contact with the Newtonian in a tube is
investigated. The governing equations are simplified by using
well-known approximations of long wavelength and low
Reynolds number. The main focus of this study is to highlight
the effects of electro-kinetic slip velocity and PTT model pa-
rameters on pressure rise per wavelength, interface region,
trapping, and reflux phenomena. The information about these
phenomena is important for both physiological and industrial
application of peristaltic transport. Our study reveals that both
trapping and reflux can be controlled either by increasing the
strength of the applied electric field or by exploiting the vis-
coelastic and extensional characteristics of the core region
fluid. In fact, it turns out that in order to avoid trapping and
reflux the non-dimensional number b which provides a mea-
sure of both the extensional (measured by ϵ) and the elastic
(measured byDe) characteristics of the core fluid must be kept
small. This observation also advocates for carrying out a

complete rheological characterization of the material in the
core region. In contrast, the efficiency of the pumping can
be improved by taking the lower values of the non-
dimensional group b associated with the core region fluid or
by regulating the strength of the applied electric field.

The analysis presented here can be extended to three lay-
ered electro-osmotic flow. The efforts are under way in this
direction and would be communicated soon. It is worthy to
mention that the studies on three layered electro-osmotic peri-
staltic flow carried out by (Tripathi et al., 2017b, 2018b, c)
would serve as a starting point for this research.
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Appendix

Here, we provide the values of coefficients appearing in the
interface polynomial Eq. (67):

A14 ¼ UE−1ð Þ μr−1ð Þ;
A12 ¼ 1

24μr
3 −1þ k2

 �2

P0 −1þ μrð Þ þ 8μr 3 −1þ k2 þ qþ UE−k2UE

 �þ 3 −1þ k2


 �
UE−1ð Þμr−64b

2 UE−1ð Þ3μ3
r þ 3R2

0 UE−1ð Þ −6þ 5μrð Þ
� �� �

;

A10 ¼ 1

2μr
−1þ k2

 �2

P0 −R2
0 −1þ μrð Þ þ 16b2 UE−1ð Þ2μ3

r

� �
þ 2μr R2

0 4−4k2−6qþ 15R2
0 UE−1ð Þ þ 4 −1þ k2


 �
UE


 �
−2R2

0 −2þ 2k2 þ 5R2
0


 �
UE−1ð Þμr þ 64b2 −1þ k2 þ R2

0


 �
UE−1ð Þ3μ3

r

� �� �
;

A8 ¼ 1

8μr
ð−8b2 −1þ k2


 �4
P2
0 UE−1ð Þμ2

r þ −1þ k2

 �2

P0 −5R4
0 þ 6R4

0μr−128b
2 −1þ k2 þ R2

0


 �
UE−1ð Þ2μ3

r

� �
þ 8μrð5R4

0ð−1þ k2 þ 3q−4R2
0 UE−1ð Þ þ UE−k2UEÞ

þ 2R4
0 −3þ 3k2 þ 5R2

0


 �
UE−1ð Þμr−64b

2 −1þ k2 þ R2
0


 �2
UE−1ð Þ3μ3

r ÞÞ;
A6 ¼ 1

24
ðb2 −1þ k2

 �6

P3
0−480qR

6
0 þ 24b2 −1þ k2


 �4
P2
0 −1þ k2 þ R2

0


 �
UE−1ð Þμr þ 12 −1þ k2


 �2
P0 −R6

0 þ 16b2 −1þ k2 þ R2
0


 �2
UE−1ð Þ2μ2

r

� �
þ8 UE−1ð Þ 45R8

0−3R
6
0 −4þ 4k2 þ 5R2

0


 �
μr þ 64b2 −1þ k2 þ R2

0


 �3
UE−1ð Þ2μ3

r

� �
Þ
;

A4¼ 1

8μr
R8
0 −1þ k2

 �2

P0 5þ μrð Þ þ 8μr 5−5k2 þ 15qþ R2
0 UE−1ð Þ −6þ μrð Þ þ μr−k

2μr þ −1þ k2

 �

UE 5þ μrð Þ
 �� �
;

A2¼ 1

2μr
R10
0 − −1þ k2


 �2
P0−2 4−4k2 þ 6q−R2

0 UE−1ð Þ þ 4 −1þ k2

 �

UE

 �

μr

� �
;

A0¼ 1

8μr
R12
0 −1þ k2

 �2

P0 þ 8 1−k2 þ qþ −1þ k2

 �

UE

 �

μr

� �
:
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From Eq. (65), the real solution of P0 can be obtained by
employing Cardan-Tartaglia formula of algebraic cubic equa-
tion as follows:

P0 ¼ −
B
S
þ S

A
;

where S ¼ −d þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3B3 þ d2

p� �1
3
,

with d = 12(q − (UE − 1))A2, B = 1 + (μr − 1)k4 and A =
b2μrk

6.
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