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Abstract
Concentrated solutions of nearly monodisperse poly(methyl methacrylate), PMMA-270k and PMMA-86k, in oligo(methyl
methacrylate), MMA o-4k and MMA o-2k, investigated by Wingstrand et al. (Phys Rev Lett 115:078302, 2015) and
Wingstrand (2015) do not follow the linear-viscoelastic scaling relations of monodisperse polystyrenes (PS) dissolved in olig-
omeric styrene (Wagner in Rheol Acta 53:765–777, 2014a, in Non-Newtonian FluidMech 222:121–131, 2014b;Wagner et al. in
J Rheol 59:1113–1130, 2015). Rather, PMMA-270k shows an attractive interaction with MMA, in contrast to the interaction of
PMMA-86k and MMA. This different behavior can be traced back to different tacticities of the two polymers. The attractive
interaction of PMMA-270k with o-4k creates pseudo entanglements, which increase the interchain tube pressure, and therefore,
the solution PMMA-270k/o-4k shows, as reported byWingstrand et al. (Phys Rev Lett 115:078302, 2015), qualitatively a similar
scaling of the elongational viscosity with ε̇τRð Þ−1=2 as observed for polystyrene melts. For the solution PMMA-270/o-2k, this
effect is only seen at the highest elongation rates investigated. The elongational viscosity of PMMA-86k dissolved in oligomeric
MMA is determined by the Rouse time of the melt, as in the case of polystyrene solutions.
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Introduction

Experimental data of elongational properties of polymer solu-
tions and melts of monodisperse and polydisperse polymers
obtained by the filament stretching technique (see, e.g.,
Bhattacharjee et al. 2002, 2003; McKinley and Sridhar
2002; Bach et al. 2003; Nielsen et al. 2008) have challenged

the predictive capabilities of the classical Doi-Edwards (DE)
tube model. In elongational flow, the tube model with the so-
called independent alignment assumption predicts an upper
limit of the tensile stress equal to five times the plateau mod-
ulus GN (Doi and Edwards 1986). The tube diameter and
tension in the polymer chain are assumed to be constant, and
the macroscopic stress is a consequence of chain orientation
only, resulting in a scaling of the steady-state elongational
viscosity at strain rates ε˙ larger than the inverse reptation time
according to ε˙ −1

. Various reptation-based models have in-
voked chain stretch when the deformation rate is larger than
the inverse Rouse time τR of the chain (see e.g. Pearson et al.
1989; Mead et al. 1995, 1998; Fang et al. 2000), and these
models seem to capture the essential features seen in the
elongational viscosity of polymer solutions (Bhattacharjee et
al. 2002), i.e., a decrease of the elongational viscosity propor-
tional to ε̇ −1 for elongation rates less than the inverse Rouse
time, and a sudden increase at larger elongation rates.

In strong contrast to polymer solutions, elongational vis-
cosity measurements of Bach et al. (2003) on narrow molar
mass distribution polystyrene melts revealed that the
elongational viscosity scales approximately with ε˙ τRð Þ−1=2
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in the nonlinear viscoelastic regime. To account for this
behavior and relaxing the assumption of a constant tube
diameter, Marrucci and Ianniruberto (2004, 2005) introduced
an interchain pressure term arising from lateral forces between
polymer chain and tube wall into the DE model, which limits
chain stretching. Their analysis was restricted to scalar argu-
ments and to the steady-state viscosity. A full constitutive
equation, which describes time-dependent as well as steady-
state rheology of nearly monodisperse polymer melts, was
presented by Wagner et al. (2005), and predictions are in ex-
cellent agreement with the elongational viscosity data of Bach
et al. (2003), Hassager (2004), Nielsen et al. (2008), and
Rolón-Garrido et al. (2006). Later, Wagner and Rolón-
Garrido (2009a, b) proposed a combination of Rouse relaxa-
tion and tube diameter relaxation in agreement with experi-
mental evidence of elongational flow data of monodisperse
linear polymer melts and showed that the tube diameter relax-
ation time is equal to three times the Rouse time. This concept
was extended to bidisperse polymer systems consisting of a
short and a long-chain component, and demonstrated that the
effective tube diameter relaxation time of the long-chain com-
ponent is increased in accordance with the expansion of the
tube diameter due to dynamic tube dilation (Wagner 2011).

Huang et al. (2013a, b) investigated elongational viscosities
of two polystyrene melts as well as of several concentrated
solutions of the same polystyrenes with polymer volume frac-
tionsφ≥44% in oligomeric styrene, and they reported that poly-
mer solutions show much stronger strain hardening than the
corresponding melts. They also speculated on a nematic inter-
action between the polymer and the oligomeric styrene (Huang
et al. 2013b). In agreement with the experimental data of Huang
et al., Wagner (2014a, b) presented a unifying concept of model-
ing the elongational viscosity of polymermelts and concentrated
solutions. Later, Narimissa et al. (2015, 2016), Narimissa and
Wagner (2016a, b, c) extended this idea to a Hierarchical Multi-
mode Molecular Stress Function (HMMSF) model for polydis-
perse linear and long-chain branched polymer melts.

Recently, Wingstrand et al. (2015) reported elongational
viscosity data of two PMMA polymers dissolved in oligomer-
ic MMAs. Their aim was to demonstrate linear and nonlinear
universality in the rheology of polymer melts and solutions by
comparing the two PMMA solutions to two polystyrenemelts,
PS-285k and PS-100k, with supposedly the same number of
entanglements and the same number of Kuhn steps per entan-
glement. Also, by using MMA as solvent, the flow-induced
monomeric friction reduction as proposed by Ianniruberto et
al. (2012) should be similar as in the melt. Wingstrand et al.
(2015) came to the conclusion that the two PMMA solutions
show indeed a similar elongational viscosity as the polysty-
rene melts. However, their analysis was based on an empirical
relation for the number of entanglements per polymer chain of
the PMMA solutions. Here, we examine the interaction of the
two PMMA polymers with the oligomeric MMA and present

quantitative modeling of the steady-state and start-up
elongational viscosities of the PMMA solution data of
Wingstrand et al. (2015) and Wingstrand (2015), based on
the extended interchain pressure model.

Experimental data and linear-viscoelastic
characterization

The experimental data discussed are those presented by
Wingstrand et al. (2015) and Wingstrand (2015) on nearly
monodisperse poly(methyl methacrylate) PMMA-270k and
PMMA-86k. Forty-four percent of PMMA-270k was diluted
in 4k oligo(methyl methacrylate) (o-4k), and 43% was diluted
in 2k oligo(methyl methacrylate) (o-2k). The solutions were
denoted as PMMA-270k/o-4k and PMMA-270/o-2k, respec-
tively. Also, 51% of PMMA-86k was diluted in o-4k, and
43% was diluted in o-2k, and the solutions were denoted as
PMMA-86k/o-4k and PMMA-86k/o-2k, respectively. Details
of molecular characterization and sample preparation are given
byWingstrand et al. (2015). Elongational viscosities were mea-
sured using a filament stretching rheometer capable of measur-
ing at high temperatures. Measurements were performed at
150 °C, or shifted to 150 °C by standard time-temperature
shifting. The elongational viscosity data of PMMA-270k and
PMMA-86k diluted in o-2k (Wingstrand 2015) have not been
published previously and are reported here for the first time.

From linear-viscoelastic mastercurves of G’ and G”,
Wingstrand et al. (2015) determined continuous Baumgärtel-
Schausberger-Winter (BSW) relaxation spectra (Baumgaertel
et al. 1990). The relaxation modulus G(t) is found from the
spectrum H(τ) by

G tð Þ ¼ ∫
∞

0

H τð Þ
τ

exp −t=τð Þdτ ð1Þ

H(τ) is composed of two part, the entanglement contribution
He(τ) and the glassy contribution Hg(τ),

H τð Þ ¼ He τð Þ þ Hg τð Þ ð2Þ

with

He τð Þ ¼ neGN
τ
τm

� �ne

h 1−τ=τ tð Þ ð3Þ

and

Hg τð Þ ¼ neGN
τ
τ c

� �−ng
h 1−τ=τ tð Þ ð4Þ

GN is the plateau modulus, τt the longest or “terminal” relax-
ation time, τc the characteristic time constant of the glassy
contribution, and h(x) the Heaviside step function. The values
of ne and ng are fixed to 0.23 and 0.70, respectively, as in the
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case of polystyrene melts and polystyrene diluted in oligomer-
ic styrene (Huang et al. 2013a, b). The other characteristic
material constants of the BSW spectra for the melts and solu-
tions investigated are summarized in Tables 1 and 2.

The zero-shear viscosity calculated from the BSW spectrum
is given by

η0 ¼ ∫
∞

0
G sð Þds ¼ neGNτ t

1

1þ ne
þ 1

1−ng
τ c
τ t

� �ng� �
≅neGNτ t

1

1þ ne

� �
ð5Þ

However, due to the slight polydispersity of PMMA-276k
and PMMA-86k, we prefer to determine η0 from a parsimonious
spectrum fitted to the mastercurves of G’ and G”, and this value
of η0 is reported in Tables 1 and 2 and is used in the following.

The entanglement molar mass Me is obtained from the pla-
teau modulusGN by the relation of classical rubber elasticity as

Me ¼ ρRT
GN

φ ð6Þ

with density ρ at 150 °C taken as ρ = 1.130g/cm3 and gas
constant R. φ is the volume fraction of polymer in the solution
withφ = 1 specifying the melt.WithM being themolar mass of
the polymer, the number of entanglements per chain, Z, follows
then from

Z ¼ M
Me

ð7Þ

The Rouse stretch relaxation time τR is calculated accord-
ing to Osaki et al. (1982), Menezes and Graessley (1982),
Takahashi et al. (1993), and Isaki et al. (2003),

τR ¼ 12Mη0
π2ρ RTφ

Mcm

Mφ

� �2:4

ð8Þ

Mcm indicates the critical molar mass in the melt state and was

taken as Mcm = 2Mem (see, e.g., Fuchs et al. 1996), with Mem

being the entanglement molar mass of the melt. The charac-
teristic quantities of all PMMA melts and solutions
investigated are summarized in Tables 1 and 2.

We note that the analysis of Wingstrand et al. (2015) was
based on the empirical relations

Z∝
τ t
τc

� � 1
3:4

ð9Þ

and

τR ¼ τ cZ2 ð10Þ
which in some cases led to substantially different values for Z,
Me, and τR (see values in parenthesis in Tables 1 and 2). These
relations depend sensitively on the experimental determina-
tion of τc, and deviation from values derived by relations (6)
to (8) are not surprising.

The horizontal shift factors aT used to obtain mastercurves
of G’ and G” at the reference temperature T0 = 150 °C (see
Wingstrand et al. 2015) are shown in Figs. 1a and 2a. The shift
factors of the melts are fitted by the WLF equation

log10aT ¼ −c01 T−T 0ð Þ
c02 þ T−T0ð Þ ð11Þ

with c01 ¼ 10:08 and c02 ¼ 102:38 for PMMA-270k, and c01
¼ 13:84 and c02 ¼ 180:43 for PMMA-86k. The WLF param-

eters c01 and c
0
2 are in the range of WLF parameters reported by

Fuchs et al. (1996), and the difference in the temperature de-
pendence of PMMA-270k and PMMA-86k is due to a differ-
ence in the tacticity of the two melts. The glass transition tem-
peratures Tg of the solvents (oligomeric MMA) are much lower
than the glass transition temperature of the melts, and are re-
ported as 98.9 °C for o-4k and 72.5 °C for o-2k. Therefore, the

Table 1 Molecular characterization andmaterial parameters of PMMA-
270k and its solutions in o-4k and o-2k at 150 °C. Quantities in
parenthesis as reported by Wingstrand et al. (2015)

PMMA-270k PMMA-270k/o-4k PMMA-270k/o-2k
Mw = 270 kg/mol,
MWD= 1.09

φ 1 0.44 0.43

GN [kPa] 408 121 125

τt [s] 229,000 2610 933

τc [s] 0.802 0.235 0.0397

η0 [MPa.s] 21,789 56.1 23.9

Me [kg/mol] 9.7 (5.2) 14.5 (13.5) 13.7 (10.8)

Ζ [−] 27.2 (52) 18.7 (20) 19.8 (25)

τR [s] 3277 (2169) 137.5 (94.0) 63.5 (24.8)

Tg [°C] 141.8 120.7 108.6

aTg 1 0.0189 0.00340

Table 2 Molecular characterization andmaterial parameters of PMMA-
86k and its solutions in o-4k and o-2k at 150 °C. Quantities in parenthesis
as reported by Wingstrand et al. (2015)

PMMA-86k PMMA-86k/o-4k PMMA-86k/o-2k
Mw = 86 kg/mol,
MWD= 1.08

φ 1 0.51 0.43

GN [kPa] 1070 181 135

τt [s] 537 29.4 5.52

τc [s] 0.147 0.0917 0.0162

η0 [MPa.s] 109 1.06 0.143

Me [kg/mol] 3.1 (6.1) 11.2 (12.3) 12.7 (14.3)

Ζ [−] 23.2 (14) 7.7 (7.0) 6.8 (6.0)

τR [s] 8.04 (28.8) 0.77 (0.97) 0.19 (0.59)

Tg [°C] 122.8 106.9 90.4

aTg 1 0.0757 0.00782
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glass transition temperature of the solutions as indicated in
Tables 1 and 2 is shifted by a temperature difference

ΔTg ¼ Tgm−Tg ð12Þ

relative to the glass transition temperature Tgm of the melt to
lower values. The change in the glass transition temperature
leads to a reduction of the friction factor of the polymer

solutions relative to the friction factor of the melt. Following
Wagner (2014a, b), this is characterized by a shift factor aTg,
which is obtained by insertingΔTg from Eq. (12) into Eq. (11),

log10aTg ¼
−c01ΔTg

c02 þΔTg
ð13Þ

a

b

Fig. 2 a Temperature shift factors aT as a function of temperature for
PMMA-86k melt and solutions at reference temperature of T0 = 150 °C
as reported byWingstrand et al. (2015) andWingstrand (2015). Solid line
for PMMA-270k is given by Eq. (11). b Same temperature shift factors aT
as a function of T-Tg and vertically shifted by multiplication with shift
factor aTg. Solid line is given by Eq. (11)

a

b

Fig. 1 a Temperature shift factors aT as a function of temperature for
PMMA-270k melt and solutions at reference temperature of T0 =
150 °C as reported by Wingstrand et al. (2015). Solid line for PMMA-
270k is given by Eq. (11). b Same temperature shift factors aT as a
function of T-Tg and vertically shifted by multiplication with shift factor
aTg. Solid line is given by Eq. (11)

594 Rheol Acta (2018) 57:591–601



The temperature dependence of melts and solutions is then
given by

log10aTaTg ¼
−c01 T þΔTg−T0

� �
c02 þ T þΔTg−T0

� �

¼ −c01 T−Tg
� �

− T0−Tgm
� �� �

c02 T−Tg
� �

− T 0−Tgm
� �� � ð14Þ

The experimentally determined shift factors aT are plotted
in Figs. 1b and 2b according to Eq.(14), and agreement of the
temperature dependence of melts and solutions is excellent for
PMMA-86k, while for PMMA-270k dissolved in MMA de-
viations appear at temperatures 60 K (for o-2k) and 100 K (for
o-4k) above the glass transition temperature. A possible ex-
planation for this is given below.

For a range of polystyrenes dissolved in oligomeric styrene
with polymer volume fractions between 0.10 and 0.72, Huang
et al. (2013a, b) found a dilution exponent of α = 1, and the
scaling relations with the exponents shown in Tables 3 and 4
for polystyrene were confirmed by comparison with the ex-
perimental data (Wagner 2014a, b; Wagner et al. 2015).
Recently, Shahid et al. (2017) showed the apparent dilution
exponent as determined from the maximum of the loss mod-
ulus or the minimum of the loss angle scales with α = 1.3, and
attribute this to constraint release effects. It is obvious from
Tables 3 and 4 that these scaling relations are not followed by
the PMMA solutions. The entanglement molar mass Me of
both PMMA-270k/o-4k and PMMA-270k/o-2k increases
with dilution much less than expected from the relation
Me =Memφ

−1 with dilution exponents of α = 0.5 and α =
0.4, respectively (Table 3). This may be due to attractive in-
teractions between polymer and the oligomeric solvents lead-
ing to the effective formation of pseudo entanglements be-
tween PMMA and oligomeric MMAwhich enhance the elas-
tic plateau modulus of the solutions, in spite of the fact that the
molar masses of the solvents o-4k and o-2k with 3.5 and
2.1 kg/mol, respectively, are much smaller than the entangle-
ment molar mass Me = 9.7 kg/mol of PMMA-270k.

In contrast to PMMA-270k, the entanglement molar mass
Me of both PMMA-86k/o-4k and PMMA-86k/o-2k increases

with dilution more than expected from the relation Me =
Memφ

−1 (Table 4), which may be due to a repulsive interaction
between polymer and solvent, but we also note that the expo-
nents observed are not far from the apparent dilution exponent
of α = 1.3 reported by Shahid et al. (2017). The entanglement
molar mass of melt PMMA-86k resulting from Eq. (6) is
Mem = 3.1 kg/mol (Table 2), and therefore similar to the molar
mass of the solvents o-4k and o-2k. By using the relation (9),
Wingstrand et al. (2015) report instead an entanglement molar
mass of Mem = 6.1 kg/mol. This value would result in a dilu-
tion exponent ofα ≈ 1 for both PMMA-86k/o-4k and PMMA-
86k/o-2k instead ofα = 1.6 and α = 1.5, respectively, bringing
it in line with the dilution coefficient found for polystyrene
dissolved in oligomeric styrene.

Unfortunately, no information on the tacticity of the
PMMA polymers and solvents investigated by Wingstrand
et al. (2015) is available. However, we note that Fetters et al.
(1999) report values of the plateau modulus of 310 and
760 kPa for an atactic and a predominantly syndiotactic
PMMA, respectively. By comparison with the data given in
Tables 1 and 2, this indicates that PMMA-270k with GN =
408 kPa is predominantly atactic, while PMMA-86k with
GN = 1070 kPa has a very high tacticity. Considering the dif-
ference in the temperature dependence of the shift factors of
PMMA-270k and its solutions at higher temperatures as
shown in Fig. 1b, the attractive interaction of PMMA-270k
and the oligomeric solvents seems to be temperature depen-
dent, while the shift factors of PMMA-86k and its solutions
coincide perfectly (Fig. 2b). In summary, from the scalings
presented in Tables 3 and 4, it is obvious that the characteristic
properties of the PMMA solutions of PMMA-270k and
PMMA-86k such as plateau modulus and entanglement
molar mass are largely influenced by the different tacticities
of the two PMMA polymers, which lead to different
interactions with MMA.

The extended interchain tube pressure model

The tube model of Doi and Edwards (1986) assumes that the
diameter a0 of the tube is constant, or equivalently the tension

Table 3 Exponents “x” of scaling relations for polystyrene (PS)
solutions and PMMA solutions in o-4k and o-2k at 150 °C

PS solutions
(Wagner 2014a, b)

PMMA-
270k/o-4k

PMMA-
270k/o-2k

φ 0.44–0.72 0.44 0.43

GN =GNmφ
x 2 1.5 1.4

Me =Memφ
−x 1 0.5 0.4

η0 = η0maTgφ
x 3.4 2.4 1.3

τt = τtmaTgφ
x 1.4 0.6 − 0.2

τc = τcmaTgφ
−x 2 3.3 3.2

Table 4 Exponents “x” of scaling relations for polystyrene (PS)
solutions and PMMA solutions in o-4k and o-2k at 150 °C

PS solutions
(Wagner 2014a, b)

PMMA-
86k/o-4k

PMMA-
86k/o-2k

φ 0.44–0.72 0.51 0.43

GN =GNmφ
x 2 2.6 2.5

Me =Memφ
−x 1 1.6 1.5

η0 = η0maTgφ
x 3.4 3.1 2.1

τt = τtmaTgφ
x 1.4 0.5 − 0.3

τc = τcmaTgφ
−x 2 3.1 3.1
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in the macromolecular chain remains constant and equal to its
equilibrium value even for nonlinear deformations. The extra
stress tensor σ(t) is then a consequence of the orientation of
tube segments due to the flow. The resulting constitutive equa-
tion is of the single integral form,

σ tð Þ ¼ ∫
t

−∞

∂G t−t0
� �
∂t0

SIADE t; t
0

� 	
dt

0 ð15Þ

if the tube segments are assumed to align independently of each
other in the flow field (the “Independent Alignment (IA)” ap-
proximation). G(t) is the linear-viscoelastic shear relaxation

modulus, and the relative strain measure SIADE is given by

SIADE t; t
0

� 	
≡5

u
0
u

0

u02


 �
o

¼ 5S t; t
0

� 	
ð16Þ

S is the relative second order orientation tensor. The bracket
denotes an average over an isotropic distribution of unit vectors
u(t') at time t’ and can be expressed as a surface integral over the
unit sphere,

h io≡
1

4π
∯½�sinθodθodφo ð17Þ

At the observation time t, the unit vectors are deformed to vec-
tors u', which are calculated from the affine deformation hypoth-
esis (withF−1(t, t') as the relative deformation gradient tensor) as

u
0
t; t

0
� 	

¼ F−1 t; t
0

� 	
:u t

0
� 	

ð18Þ

u' indicates the length of the vector u'.
The DEmodel does not account for any strain hardening. Doi

and Edwards (1986) added a stretch process with a stretch λ of
the tube segments to their model in order to explain the discrep-
ancies of the DE theory at start-up of extensional flows. Pre-
averaging the stretch, i.e., assuming that the stretch is uniform
along the chain contour length and an explicit function λ(t) of the
observation time, the extra stress tensor is given by

σ tð Þ ¼ λ2 tð Þ ∫
t

−∞

∂G t−t0
� �
∂t0

SIADE t; t
0

� 	
dt

0 ð19Þ

Equation (19) required finding a stretch evolution equation,
and a vast variety of concepts based on different kinetic ideas
has been proposed in recent years (see e.g. Doi and Edwards
1986; Pearson et al. 1989; McLeish and Larson 1998; Mead et
al. 1998). However, it should be noted that Eq. (19) with any
function λ2(t) is not in agreement with experimental results of
reversed elongational flow of a monodisperse polystyrene
melt (Nielsen and Rasmussen 2008).

While in models with pre-averaged stretch, the tube diam-
eter is always assumed to stay constant and equal to its equi-
librium value ao; stretch can also be introduced by the assump-
tion of a strain-dependent tube diameter, as first suggested by
Marrucci and de Cindio (1980). In this way, also the pre-
averaging of the stretch can be avoided, which is inherently
present in models based on Eq. (19) or its differential approx-
imations. A generalized tube model with strain-dependent
tube diameter was presented by Wagner and Schaeffer
(1992, 1993, 1994), and Wagner et al. (2001). In the
Molecular Stress Function (MSF) theory, tube segment stretch
f = f(t,t’) is the inverse of the relative tube diameter a,

f t; t
0

� 	
¼ a0=a t; t

0
� 	

ð20Þ

which decreases from its equilibrium value ao with increasing
stretch. Taking into account that the tube diameter a represents
the mean field of the surrounding chains, it is assumed that the
tube diameter is independent of tube segment orientation. The
extra stress is then given as

σ tð Þ ¼ ∫
t

−∞

∂G t−t0
� �
∂t0

f 2SIADE t; t
0

� 	
dt

0 ð21Þ

In contrast to Eq. (19), stretch in Eq. (21) does not only
depend on the observation time t, but depends on the strain
history: for time-dependent strain histories, chain segments
with long relaxation times (i.e., at the center of the chain)
experience higher stretches than chain segments with short
relaxation times (i.e., at the chain ends).

Based on the so-called “interchain tube pressure” concept
of Marrucci and Ianniruberto (2004), Wagner and Rolón-
Garrído (2009a, b) developed an Extended Interchain
Pressure (EIP) model consisting of Eq. (21) and an evolution
equation for the molecular stretch f,

∂ f
∂t

¼ f κ : Sð Þ− 1

3

f −1
τRm

−
2

3

f 2 f 3−1
� �
3τRm

ð22Þ

with the initial conditions fi(t, t) = 1. The first term on the right
hand side represents an on average affine stretch rate with κ the
velocity gradient tensor, the second term takes into account
Rouse relaxation in the longitudinal direction of the tube, and
the third term limits molecular stretch due to the interchain tube
pressure in the lateral direction of a tube segment. τRm is the
Rouse time of the melt according to Eq. (8) with φ = 1.
Excellent agreement of the EIP model with elongational viscos-
ity data of the monodisperse melts PS390k and PS200k (Wagner
et al. 2008; Wagner and Rolón-Garrido 2009a, b) was shown, as
well as excellent agreement formelt PS-285k (Wagner 2014a, b),
which is used as a comparison here and is shown in Figs.4 and 5.

In the case of the monodisperse melts PS100k and PS50k
with lower molar masses, it was necessary to account for the
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self-dilution due to fluctuating chain ends (Wagner 2011).
Introducing an effective polymer volume fraction wi with

wi ¼ M−Mcm

M
ð23Þ

into the evolution Eq. (22),

∂ f
∂t

¼ f κ : Sð Þ− 1

3

f −1
τRm

−
2

3
w2
i
f 2 f 3−1
� �
3τRm

ð24Þ

resulted in improved agreement with experimental data, as
shown in Fig. 7 for PS100k.

For polystyrene dissolved in oligomeric styrene, due to the
shift in the glass transition temperature, the Rouse time of the
solutions is much smaller than the Rouse time of the melts
(Wagner 2014a, b). The additional free volume created by the
solvent speeds up Rouse relaxation along the tube axis, but
does not affect the interchain tube pressure created by binary
contacts of polymer chains. The tube diameter relaxation of
the solutions is then the same as in the melt state, resulting in
an evolution equation of the form

∂ f
∂t

¼ f κ : Sð Þ− 1−
2

3

τR
τRm

� �
f −1
τR

−
2

3

f 2 f 3−1
� �
3τRm

ð25Þ

Thus, even in the case of solutions, the interchain tube
pressure is characterized by the Rouse time of the correspond-
ing melt. The Rouse time τR of the PS solution can be
expressed in terms of the Rouse time τRm of the PS melt as
τR = aTgτRm, leading to an alternative formulation of the evo-
lution equation in terms of the Rouse time τRm of the melt,

∂ f
∂t

¼ f κ : Sð Þ− 1−
2

3
aTg

� �
f −1

aTgτRm
−
2

3

f 2 f 3−1
� �
3τRm

ð26Þ

Evolution Eq. (26) was successfully used in modeling the
elongational viscosity of PS dissolved in oligomeric styrene as
well as in small molecule solvents (Wagner et al. 2015).

Comparison to experimental data

Predictions of the EIP model are now confronted with exper-
imental evidence as presented byWingstrand et al. (2015) and
Wingstrand (2015). The parameters of the relaxation spectra
for melts and solutions, Eqs. (3) and (4), are given in Tables 1
and 2, as well as the Rouse times calculated by Eq. (8).

Solutions of PMMA-270k

Predictions assuming that the PMMA solutions in oligomeric
MMA behave in the same way as PS solutions in oligomeric

styrene, i.e., using the evolution Eq. (26) with the Rouse time
of the solution defined by τ*R ¼ aTgτRm, are shown in Fig. 3.
Predictions are in agreement with experimental evidence up to
elongation rates when the Rouse relaxation term in the evolu-
tion equation diverges, i.e., for Weissenberg numbers

WiRm ¼ ε˙ aTgτRm→1 ð27Þ

For PMMA-270k/o-4k and PMMA-270k/o-2k, the critical
elongation rates are ε˙ c ¼ 1

aTgτRm
¼ 0:016s−1 and ε˙ c ¼ 0:090s−1,

respectively. At larger elongation rates, the divergence of the
Rouse relaxation term is suppressed by the interchain pressure
term, which, after the maximum, leads to a decreasing viscosity

with a slope corresponding to ε˙ τRmð Þ−1=2. The predicted behav-
ior up to the maximum of the elongational viscosity is qualita-
tively similar to what is reported for PMMA dissolved in small
molecule solvents (Bhattacharjee et al. 2002; Wagner et al.
2015).

On the other hand, when the PMMA solutions in oligomer-
ic MMA are considered as melts, i.e., when the evolution Eq.
(22) for melts is used with the Rouse times of the solutions
according to Eq. (8) and Tables 1 and 2,

∂ f
∂t

¼ f κ : Sð Þ− 1

3

f −1
τR

−
2

3

f 2 f 3−1
� �
3τR

ð28Þ

qualitative agreement between experimental evidence and
predictions is obtained for PMMA-270k/o-4k, while the
agreement with the data of PMMA-270k/o-2k is marginal

(Fig. 4). Predictions of ηE ε˙ð Þ scale with ε˙ τRð Þ−1=2 at higher

Fig. 3 Steady-state elongational viscosity data (symbols) and predictions
(lines) by Eqs. (21) and (26)
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strain rates, which is a signature of the interchain pressure
effect. Qualitatively, as observed by Wingstrand et al.
(2015), PMMA-270k/o-4k can be considered to behave as a
pseudo polymer melt with the Rouse time of the solution
being taken as the characteristic Rouse time of the pseudo
melt, while the data of PMMA-270/o-2k show clearly a dif-
ferent behavior.

Nearly quantitative agreement between data and model can
be obtained as shown in Fig. 5, when the evolution Eq. (26)
for the solutions is used, but with the Rouse time of the melt in
the interchain pressure term replaced by the Rouse time of the
solution,

∂ f
∂t

¼ f κ : Sð Þ− 1−
2

3

aTgτRm
τR

� �
f −1

aTgτRm
−
2

3

f 2 f 3−1
� �
3τR

ð29Þ

a

b

Fig. 6 a, b Start-up elongational viscosity data (symbols) and predictions
(lines) by Eqs. (21) and (29)

Fig. 5 Steady-state elongational viscosity data (symbols) and predictions
(solid blue and red lines for PMMA solutions) by Eqs. (21) and (29).
Dotted blue and red lines for PMMA solutions and solid black line for PS
are predictions by Eqs. (21) and (28)

Fig. 4 Steady-state elongational viscosity data (symbols) and predictions
(lines) by Eqs. (21) and (28)
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We note that in the limit of small elongation rates, Eq. (29)
reduces to the small stretch limit of evolution Eq. (26)
(Wagner and Rolón-Garrido 2009a, b; Wagner 2014a, b),

∂ f
∂t

¼ f κ : Sð Þ− 1

3

f −1
aTgτRm

ð30Þ

while at high elongation rates, Eq. (29) approaches the high
stretch limit of evolution Eq. (28),

∂ f
∂t

¼ f κ : Sð Þ− 2

3

f 2 f 3−1
� �
3τR

ð31Þ

This means that Rouse relaxation in the longitudinal direc-
tion of the tube, which is effective at small elongation rates, is
determined by the true Rouse relaxation time of the diluted
PMMA polymer chains τ*R ¼ aTgτRm, unaffected by the at-
tractive interaction with oligomeric MMA, while the inter-
chain pressure in the perpendicular direction of the tube,
which limits chain stretch at higher elongation rates, is in-
creased by the interaction with the oligomers and is deter-
mined by the Rouse time τR of the solution as calculated from
Eq. (8). Note that τ*R is smaller than τR, with τ*R ¼ aTgτRm
being 62.1 s for PMMA-270k/o-4k and 11.1 s for PMMA-
270k/o-2k, respectively. Especially for PMMA-270k/o-2k,
the effect of Rouse relaxation is important due to the low value
of aTg, and the increase of the interchain pressure due to the
presence of the MMA oligomer is only significant at the
highest elongation rates investigated.

Evolution Eq. (29) also gives a quantitative description of
the start-up elongational viscosities of both PMMA-270k/o-
4k and PMMA-270k/o-2k within experimental accuracy as
demonstrated in Fig. 6.

Solutions of PMMA-86k

Figure 7 shows predictions of the EIP model by use of evolu-
tion Eqs. (22) and (24), respectively, for PS100k. Taking into
account the dilution effect of the chain ends results in a qual-
itative improvement of the agreement between data and model
(Wagner 2011). The solutions of PMMA-86k can be

a

b

Fig. 8 a, b Start-up elongational viscosity data (symbols) and predictions
(lines) by Eqs. (21) and (24)

Fig. 7 Steady-state elongational viscosity data (symbols) and predictions
(full lines) by Eqs. (21) and (24); dotted lines predictions by Eqs. (21) and
(22)

Rheol Acta (2018) 57:591–601 599



considered as solutions with no attractive interaction of poly-
mer and oligomeric solvent, and the appropriate Rouse relax-
ation time is, as in the case of the solutions of PS in oligomeric
styrene, governed by the Rouse relaxation of the melt. Using
the evolution Eqs. (22) and (24) results in the predictions
presented in Fig. 7. The enhanced maximum seen in the pre-
diction of the steady-state elongational viscosity of PMMA-
86k/o-2k is caused by the terminal relaxation time τt being
smaller than the Rouse time τRm of the melt, τt < τRm. Due to
the lower value of the entanglement molar mass of PMMA-
86k (Table 2), the effect of dilution by chain end fluctuations
is less pronounced than in the case of PS100k. Nevertheless,
qualitative agreement between data of the steady-state (Fig. 7)
as well as the start-up elongational viscosity (Fig. 8) and mod-
el is achieved. For a more quantitative evaluation an improved
modeling of the effect of chain end fluctuations would be
needed, which is outside the scope of the present paper.

Conclusions

The experimental data in elongational flow of two monodis-
perse PMMA polymers with different tacticity dissolved in two
oligomeric MMAs are consistent with the assumption that the
tube, i.e., the confinement of a test chain, is characterized by the
orientation in the direction along the tube and the diameter of
the tube in the lateral dimension. Chain stretch is associated
with a reduction of the tube diameter and is balanced by a
linear spring force in the longitudinal direction and a
nonlinear interchain tube pressure in the lateral direction.

By dilution of the polymer with a solvent, the glass transition
temperature Tg of the polymer in solution is reduced relative to
Tg of the melt, resulting in a temperature shift factor aTg, which
enters the scaling relations between melt and solutions. The
PMMA solutions in oligomeric MMA investigated by
Wingstrand et al. (2015) and Wingstrand (2015) do not follow
the scaling of polystyrene dissolved in oligomeric styrene.
Rather, PMMA-270k shows an attractive interaction with
MMA, in contrast to the interaction of PMMA-86k and
MMA. This different behavior can be traced back to different
tacticities of the two polymers. The attractive interaction of
PMMA-270k with o-4k creates pseudo entanglements increas-
ing the interchain tube pressure, and the solution PMMA-270k/
o-4k shows, as observed by Wingstrand et al. (2015), qualita-
tively a similar scaling of the elongational viscosity with

ε˙ τRð Þ−1=2 as melt PS-285k. For PMMA-270/o-2k, this effect
is only observed at the highest elongation rates investigated.
The elongational viscosity of PMMA-86k dissolved in oligo-
meric MMA is determined by the Rouse time of the melt, as in
the case of polystyrene solutions. While the steady-state
elongational viscosity data of PMMA-86k/o-4k show qualita-
tively a similar trend as PS100k with a well-defined maximum

followed by a decrease of the viscosity with increasing elonga-
tion rate, PMMA-86k/o-2k features a nearly constant
elongational viscosity within the experimental window.
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